DATABASDESIGN FÖR INGENJÖRER - 1056F

Sommar 2005

En introduktionskurs i databassystem

http://user.it.uu.se/~udbl/dbt-sommar05/ alt. http://www.it.uu.se/edu/course/homepage/dbdesign/st05/

Kjell Orsborn (Ruslan Fomkin)
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

Introduction to Relational Algebra

Elmasri/Navathe ch 6

Kjell Orsborn \&
Ruslan Fomkin
Department of Information Technology
Uppsala University, Uppsala, Sweden

Query languages

- Languages where users can express what information to retrieve from the database.
- Categories of query languages:
- Procedural
- Non-procedural (declarative)
- Formal ("pure") languages:
- Relational algebra
- Relational calculus
- Tuple-relational calculus
- Domain-relational calculus
- Formal languages form underlying basis of query languages that people use.

Relational algebra

- Relational algebra is a procedural langaue
- Operations in relational algebra takes one or two relations as arguments and return a new relation.
- Relational algebraic operations:
- Operations from set theory:
- Union, Intersection, Difference, Cartesian product
- Operations specifically introduced for the relational data model:
- Select, Project, Join
- It have been shown that the select, project, union, difference, and cartesian product operations form a complete set. That is any other relational algebra operation can be expressed in these.

Operations from set theory

- Relations are required to be union compatible to be able to take part in the union, intersection and difference operations.
- Two relations R_{1} and R_{2} is said to be union-compatible if:
$\mathrm{R}_{1} \subseteq \mathrm{D}_{1} \times \mathrm{D}_{2} \times \ldots \times \mathrm{D}_{\mathrm{n}}$ and $\mathrm{R}_{2} \subseteq \mathrm{D}_{1} \times \mathrm{D}_{2} \times \ldots \times \mathrm{D}_{\mathrm{n}}$
i.e. if they have the same degree and the same domains.

Union operation

- The union of two union-compatible relations R and S is the set of all tuples that either occur in R, S, or in both.
- Notation: $\mathrm{R} \cup \mathrm{S}$
- Defined as: $R \cup S=\{t \mid t \in R$ or $t \in S\}$
- For example:

A	B
a	1
a	
b	
b	

A	B			
a	2			
b	3	$=$	A	B
:---	:---			
a	1			
a	2			
b	1			
b	3			

Difference operation

- The difference between two union-compatible sets R and S is the set of all tuples that occur in R but not in S.
- Notation: R - S
- Defined as: $R-S=\{t \mid t \in R$ and $t \notin S\}$
- For example:

A	B			
a	1			
a	2			
b	1	$-$	A	B
:---	:---			
a	2			
b	3	$=$	A	B
:---:	:---:			
a	1			
b	1			

Intersection

- The intersection of two union-compatible sets R and S, is the set of all tuples that occur in both R and S.
- Notation: $\mathrm{R} \cap \mathrm{S}$
- Defined as: $R \cap S=\{t \mid t \in R$ and $t \in S\}$
- For example:

A	B
a	1
a	2
b	1

A	B
a	2
b	3

A	B
a	2

Cartesian product

- Let R and S be relations with k 1 and k 2 arities resp. The cartesian product of R and S is the set of all possible $\mathrm{k}_{1}+\mathrm{k}_{2}$ tuples where the first k_{1} components constitute a tuple in R and the last k_{2} components a tuple in S.
- Notation: $\mathrm{R} \times \mathrm{S}$
- Defined as: $\mathrm{R} \times \mathrm{S}=\{\mathrm{tq} \mid \mathrm{t} \in \mathrm{R}$ and $\mathrm{q} \in \mathrm{S}\}$
- Assume that attributes of $\mathrm{r}(\mathrm{R})$ and $\mathrm{s}(\mathrm{S})$ are disjoint (i.e. $\mathrm{R} \cap \mathrm{S}=\perp$). If attributes of $r(R)$ and $s(S)$ are not disjoint, then renaming must be used.

Cartesian product example

A	B						
a	1						
b	2	C	C	D			
:---	:---						
a	5						
b	5						
b	6						
c	5	$	$	A	B	C	D
:---	:---	:---	:---				
a	1	a	5				
a	1	b	5				
a	1	b	6				
a	1	c	5				
b	2	a	5				
b	2	b	5				
b	2	b	6				
b	2	c	5				

Selection operation

- The selection operator, σ, selects a specific set of tuples from a relation according to a selection condition (or selection predicate) P.
- Notation: $\sigma_{p}(\mathrm{R})$
- Defined as: $\sigma_{p}(\mathrm{R})=\{\mathrm{t} \mid \mathrm{t} \in \mathrm{R}$ AND $P(\mathrm{t})\}$ (i.e. the set of tuples t in R that fulfills the condition P)
- Where P is a logical expression ${ }^{(*)}$ consisting of terms connected by:
$\wedge($ and $), \vee($ or $), ~ \neg($ not $)$ and each term is one of:
<attribute> op <attribute> or <constant> where $o p$ is one from the set $\{=,<, \leq, \geq,>, \neq\}$

Example: $\sigma_{\text {SALARY }>30000}$ (EMPLOYEE)
$(*)$ a formula in propositional calculus

Selection example

$$
\mathrm{R}=\begin{array}{|l|l|l|l|}
\hline A & B & \mathrm{C} & D \\
\hline \mathrm{a} & \mathrm{a} & 1 & 7 \\
\mathrm{a} & \mathrm{~b} & 5 & 7 \\
\mathrm{~b} & \mathrm{~b} & 2 & 3 \\
\mathrm{~b} & \mathrm{~b} & 4 & 9 \\
\hline
\end{array}
$$

$$
\sigma_{A=B, D>5}(\mathrm{R})
$$

$$
=\begin{array}{|c|c|c|c|}
\hline A & B & C & D \\
\hline \mathrm{a} & \mathrm{a} & 1 & 7 \\
\mathrm{~b} & \mathrm{~b} & 4 & 9 \\
\hline
\end{array}
$$

Projection operation

- The projection operator, π, picks out (or projects) listed columns from a relation and creates a new relation consisting of these columns.
- Notation: $\pi_{A_{1}, A_{2}, \ldots, A_{k}}(R)$ where A_{1}, A_{2} are attribute names and R is a relation name.
- The result is a new relation of k columns.
- Duplicate rows removed from result, since relations are sets.

Example: $\pi_{\text {LNAME,FNAME,SALARY }}(E M P L O Y E E)$

Projection example

$$
\mathrm{R}=\begin{array}{|l|l|l|}
\hline A & B & C \\
\hline \mathrm{a} & 1 & 1 \\
\mathrm{a} & 2 & 1 \\
\mathrm{~b} & 3 & 1 \\
\mathrm{~b} & 4 & 2 \\
\hline
\end{array}
$$

$$
\pi_{A, C}(\mathrm{R})=\begin{array}{|l|l|}
\hline A & C \\
\hline \mathrm{a} & 1 \\
\mathrm{~b} & 1 \\
\mathrm{~b} & 2 \\
\hline
\end{array}
$$

Join operator
 $凶$

- The join operator creates a new relation by joining related tuples from two relations.
- Notation: $R \bowtie_{C} S$
C is the join condition which has the form $A_{r} \Theta A_{S}$, where Θ is one of $\{=,<,>, \leq, \geq, \neq\}$. Several terms can be connected as C_{1} $\wedge C_{2} \wedge \ldots C_{k}$
- A join operation with this kind of general join condition is called "Theta join".

Example Theta join

R			S				$R \bowtie_{A \leq D} \mathrm{~S}$						
A	B	C	$\bigotimes_{A \leq D}$	B	C	D	$=$	A	B	C	B	C	D
1	2	3		2	3	4		1	2	3	2	3	4
6	7	8		7	3	5		1	2	3	7	3	5
9	7	8		7	8	9		1	2	3	7	8	9
								6	7	8	7	8	9
								9	7	8	7	8	9

\qquad -

Equijoin

- The same as join but it is required that attribute A_{r} and attribute A_{s} should have the same value.
- Notation: $R \bowtie_{C} S$
C is the join condition which has the form $A_{r}=A_{s}$. Several terms can be connected as $C_{1} \wedge C_{2} \wedge \ldots C_{k}$.

Example Equijoin

R		S					$\mathrm{R} \bowtie_{B=C} \mathrm{~S}$				
A	B	$凶{ }_{B=C}$	C	D	E	$=$	A	B	C	D	E
a	2		2	d	e		a	2	2	d	e
a	4		4 9	d	e		a	4	4	d	e

\qquad

Natural join

- Natural join is equivalent with the application of join to R and S with the equality condition $A_{r}=A_{s}$ (i.e. an equijoin) and then removing the redundant column A_{s} in the result.
- Notation: R * ${ }_{A r, A s} S$
A_{r}, A_{s} are attribute pairs that should fulfil the join condition which has the form $A_{r}=A_{s}$. Several terms can be connected as $C_{1} \wedge C_{2} \wedge \ldots C_{k}$.

Example Natural join

R		S				$\mathrm{R}{ }^{\text {B }, \mathrm{C}} \mathrm{S}$				
A	B	* ${ }_{\text {C }}$	C	D	E	$=$	A	B	D	E
a	2		2	d	e		a	2	d	e
a	4		4	d	e		a	4	d	e

Composition of operations

- Expressions can be built by composing multiple operations
- Example: $\sigma_{A=C}(\mathrm{R} \times \mathrm{S})$

$\mathrm{R} \times \mathrm{S}$	A	B	X	C			$=$	A	B	c		D
		1		a				a	1			
	b	2		b				a	1	b		5
				b				a	1			6
				c				a	1			5
								b	2			5
								b	2			5
$\sigma_{A=C}(\mathrm{R} \times \mathrm{S})$		A	B		D			b	2			6 5
		a	1					b				
		b	2		5							
		b	2	b								

Assignment operation

- The assignment operation (P) makes it possible to assign the result of an expression to a temporary relation variable.
- Example: temp $\mathrm{P} \quad \sigma_{d n o=5}(E M P L O Y E E)$
result $\mathrm{P} \pi_{\text {fname,lname,salary }}$ (temp)
- The result to the right of the P is assigned to the relation variable on the left of the P.
- The variable may use variable in subsequent expressions.

Renaming relations and attribute

- The assignment operation can also be used to rename relations and attributes.
- Example: NEWEMP P $\sigma_{\mathrm{dno}=5}($ EMPLOYEE)
$\rho_{\text {(FIRSTNAME,LASTNAME,SALARY) }} \pi_{\text {fname,Iname,salary }}$ (NEWEMP)

Division operation

- Suited to queries that include the phrase "for all".
- Let R and S be relations on schemas R and S respectively, where $R=\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{n}\right)$

$$
s=\left(B_{1}, \ldots, B_{n}\right)
$$

- The result of $\mathrm{R} \div \mathrm{S}$ is a relation on schema
$R-S=\left(A_{1}, \ldots, A_{m}\right)$
$R \div S=\left\{\mathrm{t} \mid \mathrm{t} \in \pi_{R-S}(R) \forall \mathrm{u} \in S \wedge \mathrm{tu} \in R\right\}$

Example Division operation

Relation algebra as a query language

- Relational schema: supplies(sname, iname, price)
- "What is the names of the suppliers that supply cheese?" $\pi_{\text {sname }}\left(\sigma_{\text {iname='CHEESE }}(S U P P L I E S)\right)$
- "What is the name and price of the items that cost less than $5 \$$ and that are supplied by WALMART"
$\pi_{\text {iname, price }}\left(\sigma_{\text {sname }}=\right.$ 'WALMART'^ price < 5 (SUPPLIES))

