DATABASDESIGN FÖR INGENJÖRER - 1056F

Sommar 2005

En introduktionskurs i databassystem

http://user.it.uu.se/~udbl/dbt-sommar05/alt. http://www.it.uu.se/edu/course/homepage/dbdesign/st05/

Kjell Orsborn (Ruslan Fomkin)
Uppsala Database Laboratory
Department of Information Technology, Uppsala University,
Uppsala, Sweden

Introduction to Relational Algebra

Elmasri/Navathe ch 6

Kjell Orsborn & Ruslan Fomkin

Department of Information Technology Uppsala University, Uppsala, Sweden

Query languages

- Languages where users can express what information to retrieve from the database.
- Categories of query languages:
 - Procedural
 - Non-procedural (declarative)
- Formal ("pure") languages:
 - Relational algebra
 - Relational calculus
 - Tuple-relational calculus
 - Domain-relational calculus
 - Formal languages form underlying basis of query languages that people use.

Relational algebra

- Relational algebra is a procedural langaue
- Operations in relational algebra takes one or two relations as arguments and return a new relation.
- Relational algebraic operations:
 - Operations from set theory:
 - Union, Intersection, Difference, Cartesian product
 - Operations specifically introduced for the relational data model:
 - Select, Project, Join
- It have been shown that the *select*, *project*, *union*, *difference*, and *cartesian product* operations form a complete set. That is any other relational algebra operation can be expressed in these.

Operations from set theory

- Relations are required to be **union compatible** to be able to take part in the union, intersection and difference operations.
- Two relations R_1 and R_2 is said to be union-compatible if:

$$R_1 \subseteq D_1 \times D_2 \times \dots \times D_n$$
 and $R_2 \subseteq D_1 \times D_2 \times \dots \times D_n$

i.e. if they have the same degree and the same domains.

Union operation

• The **union** of two union-compatible relations R and S is the set of all tuples that either occur in R, S, or in both.

• Notation: $R \cup S$

• Defined as: $R \cup S = \{t \mid t \in R \text{ or } t \in S\}$

• For example:

R

S

A	В
а	1
а	2
b	1

UPPSALA UNIVERSITET

Difference operation

- The **difference** between two union-compatible sets *R* and *S* is the set of all tuples that occur in *R* but not in *S*.
- Notation: R S
- Defined as: $R S = \{t \mid t \in R \text{ and } t \notin S\}$
- For example:

A	B
а	1
a	2
b	1

В
2 3

Α	В
а	1
b	1
b	1

Intersection

• The **intersection** of two union-compatible sets *R* and *S*, is the set of all tuples that occur in both *R* and *S*.

• Notation: $R \cap S$

• Defined as: $R \cap S = \{t \mid t \in R \text{ and } t \in S\}$

• For example:

Α	В
а	1
а	2
b	1

Α	В
a b	2 3

Α	В
а	2

Cartesian product

- Let R and S be relations with k1 and k2 arities resp. The **cartesian product** of R and S is the set of all possible k_1+k_2 tuples where the first k_1 components constitute a tuple in R and the last k_2 components a tuple in S.
- Notation: R x S
- Defined as: $R \times S = \{t \mid q \mid t \in R \text{ and } q \in S\}$
- Assume that attributes of r(R) and s(S) are disjoint (i.e. $R \cap S = \bot$). If attributes of r(R) and s(S) are not disjoint, then renaming must be used.

Cartesian product example

A	В	
a b	1 2	

X

С	D
а	5
b	5
b	6
С	5

Α	В	С	D
а	1	а	5
а	1	b	5 5 6 5 5 5 6 5
а	1	b	6
а	1	С	5
b	2	а	5
b	1 2 2 2 2	b	5
b	2	b	6
b	2	С	5

Selection operation

- The selection operator, σ , selects a specific set of tuples from a relation according to a selection condition (or selection predicate) P.
- Notation: $\sigma_p(R)$
- Defined as: $\sigma_p(R) = \{t \mid t \in R \text{ AND } P(t) \}$ (i.e. the set of tuples t in R that fulfills the condition P)
- Where P is a logical expression^(*) consisting of terms connected by:

```
\land (and), \lor (or), \neg (not)
and each term is one of:
<attribute> op <attribute> or <constant>
where op is one from the set \{=, <, \le, \ge, >, \ne\}
```

Example: $\sigma_{SALARY>30000}$ (EMPLOYEE)

(*) a formula in propositional calculus

Selection example

$$\sigma_{A=B, D>5}(R) = A B C D$$
a a 1 7
b b 4 9

Projection operation

- The **projection** operator, π , picks out (or projects) listed columns from a relation and creates a new relation consisting of these columns.
- Notation: $\pi_{A_1,A_2,...,A_k}$ (R) where A_1 , A_2 are attribute names and R is a relation name.
- The result is a new relation of k columns.
- Duplicate rows removed from result, since relations are sets.

Example: π_{LNAME.FNAME.SALARY}(EMPLOYEE)

Projection example

$$\pi_{A,C}(R) = \begin{array}{c|c} A & C \\ \hline a & 1 \\ b & 1 \\ b & 2 \end{array}$$

Join operator

- The join operator creates a new relation by joining related tuples from two relations.
- Notation: $R\bowtie_C S$ C is the join condition which has the form $A_r \Theta A_S$, where Θ is one of $\{=,<,>,\leq,\geq,\neq\}$. Several terms can be connected as $C_1 \land C_2 \land ... C_k$.
- A join operation with this kind of general join condition is called "Theta join".

Example Theta join

R

S

 $R\bowtie_{A\leq D} S$

A	В	С
1	2	3
6	7	8
9	7	8

 \bowtie $A \leq D$

В	С	D
2	3	4
7	3	5
7	8	9

Α	В	С	В	С	D
1	2	3	2	3	4
1	2 2 2	3	7	3	5
1	2	3	7	8	9
6	7	8	7	8	9
9	7	8	7	8	9

Equijoin

- The same as join but it is required that attribute A_r and attribute A_s should have the same value.
- Notation: $R \bowtie_C S$ C is the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \wedge C_2 \wedge ... C_k$.

Example Equijoin

R

S

 $R\bowtie_{B=C}S$

 A
 B

 a
 2

 a
 4

 \bowtie B=C

С	D	E
2	d	е
4	d	е
9	d	е

Natural join

- Natural join is equivalent with the application of join to R and S with the equality condition $A_r = A_s$ (i.e. an equijoin) and then removing the redundant column A_s in the result.
- Notation: $R *_{Ar,As} S$ A_r,A_s are attribute pairs that should fulfil the join condition which has the form $A_r = A_s$. Several terms can be connected as $C_1 \wedge C_2 \wedge ... C_k$.

Example Natural join

R

*B C

S

 $R^*_{B,C}S$

В
2
4

Composition of operations

- Expressions can be built by composing multiple operations
- Example: $\sigma_{A=C}$ (R × S)

$$R \times S =$$

 $\sigma_{A=C}$ (R × S)

Α	В	
a b	1 2	

6

b

A	В	С	D
а	1	а	5
a	1	b	5 5 6
a	1	b	6
a	1	С	5
b	2	а	5
b	2	b	5
b	2 2 2	b	5 5 6 5
b	2	С	5

Assignment operation

- The assignment operation (P) makes it possible to assign the result of an expression to a temporary relation variable.
- Example:

```
temp P \sigma_{dno = 5}(EMPLOYEE)
result P \pi_{fname, Iname, salary} (temp)
```

- The result to the right of the P is assigned to the relation variable on the left of the P.
- The variable may use variable in subsequent expressions.

Renaming relations and attribute

- The assignment operation can also be used to rename relations and attributes.
- Example:

```
NEWEMP P \sigma_{dno=5}(EMPLOYEE)
```

 $\rho_{(FIRSTNAME, LASTNAME, SALARY)} \, \pi_{\text{fname, Iname, salary}} \, (NEWEMP)$

Division operation

- Suited to queries that include the phrase "for all".
- Let R and S be relations on schemas R and S respectively, where $R = (A_1, ..., A_m, B_1, ..., B_n)$ $S = (B_1, ..., B_n)$
- The result of $R \div S$ is a relation on schema $R S = (A_1, ..., A_m)$

$$R \div S = \{t \mid t \in \pi_{R-S}(R) \ \forall u \in S \land tu \in R\}$$

Example Division operation

R

S

 $R \div S$

Α	В
а	1
a	3
a	
b	1
С	1
d	1
d	3 4
d	
d	6
е	1
е	2

1 1 A a e

Relation algebra as a query language

- Relational schema: supplies(sname, iname, price)
- "What is the names of the suppliers that supply cheese?" $\pi_{sname}(\sigma_{iname='CHEESE'}(SUPPLIES))$
- "What is the name and price of the items that cost less than 5 \$ and that are supplied by WALMART"

$$\pi_{iname,price}(\sigma_{sname='WALMART' \land price < 5} (SUPPLIES))$$

