
Kjell Orsborn 7/26/05

1UU - IT - UDBL

DATABASDESIGN FÖR INGENJÖRER - 1DL124

 Sommar 2005

En introduktionskurs i databassystem

http://user.it.uu.se/~udbl/dbt-sommar05/
alt. http://www.it.uu.se/edu/course/homepage/dbdesign/st05/

Kjell Orsborn
Uppsala Database Laboratory

Department of Information Technology, Uppsala University,
Uppsala, Sweden

Kjell Orsborn 7/26/05

2UU - IT - UDBL

Database Integrity Constraints

(Elmasri/Navathe ch. 5.2 and 9.1)

Kjell Orsborn

Department of Information Technology
Uppsala University, Uppsala, Sweden

Kjell Orsborn 7/26/05

3UU - IT - UDBL

Domain constraints

• Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the database
do not result in a loss of data consistency.

• Domain constraints are the most elementary form of integrity
constraint.

• They test values inserted in the database, and test queries to
ensure that the comparisons make sense.

Kjell Orsborn 7/26/05

4UU - IT - UDBL

Domain constraints cont…

• The check clause in SQL-92 permits domains to be restricted:
– Use check clause to ensure that an hourly-wage domain allows only

values greater than a specified value.
create domain hourly-wage numeric(5,2) constraint value-test
check(value >= 4.00)

– The domain hourly-wage is declared to be a decimal number with 5
digits, 2 of which are after the decimal point

– The domain has a constraint that ensures that the hourly-wage is greater
than 4.00.

– The clause constraint value-test is optional; useful to indicate which
constraint an update violated.

Kjell Orsborn 7/26/05

5UU - IT - UDBL

Referential integrity
• Ensures that a value that appears in one relation for a given set

of attributes also appears for a certain set of attributes in
another relation.
– Example: if “Perryridge” is a branch name appearing in one of the tuples

in the account relation, then there exists a tuple in the branch relation for
branch “Perryridge”.

• Formal definition
– Let r1(R1) and r2(R2) be relations with primary keys K1 and K2

respectively.
– The subset α of R2 is a foreign key referencing K1 in relation r1 , if for

every t2 in r2 there must be a tuple t1 in r1 such that t1[K1] = t2[α].
– Referential integrity constraint: Πα(r2) ⊆ ΠK (r1)

Kjell Orsborn 7/26/05

6UU - IT - UDBL

Referential integrity in the E-R model

• Consider relationship set R between entity sets E1 and E2.
• The relational schema for R includes the primary keys K1 of E1

and K2 of E2.
• Then K1 and K2 form foreign keys on the relational schemas for

E1 and E2 respectively.
• Weak entity sets are also a source of referential integrity

constraints. The relation schema for a weak entity set must
include the primary key of the entity set on which it depends.

Kjell Orsborn 7/26/05

7UU - IT - UDBL

Database modification

• The following tests must be made in order to preserve the
referential integrity constraint: Πα(r2) ⊆ ΠK1(r1)

• Insert. If a tuple t2 is inserted into r2, the system must ensure
that there is a tuple t1 in r1 such that t1[K1] = t2[α]. That is t2[α]
∈ ΠK1(r1)

• Delete. If a tuple t1 is deleted from r1, the system must compute
the set of tuples in r2 that reference t1:

σα = t1[K1](r2)
If this set is not empty, either the delete command is rejected as
an error, or the tuples that reference t1 must themselves be
deleted (cascading deletions are possible).

Kjell Orsborn 7/26/05

8UU - IT - UDBL

Database modification cont’d

• Update. There are two cases:
– Case 1: If a tuple t2 is updated in relation r2 and the update modifies

values for the foreign key α, then a test similar to the insert case is made.
Let t2’ denote the new value of tuple t2. The system must ensure that:
t2’[α] ∈ ΠK1(r1)

– Case 2: If a tuple t1 is updated in r1, and the update modifies values for
the primary key (K1), then a test similar to the delete case is made. The
system must compute σα = t1[K1](r2) using the old value of t1 (the value
before the update is applied). If this set is not empty, the update may be
rejected as an error, or the update may be cascaded to the tuples in the
set (cascading update), or the tuples in the set may be deleted
(cascading delete).

Kjell Orsborn 7/26/05

9UU - IT - UDBL

Referential integrity in SQL

• Primary and candidate keys and foreign keys can be specified
as part of the SQL create table statement:
– The primary key clause of the create table statement includes a list of

the attributes that comprise the primary key.
– The unique key clause of the create table statement includes a list of the

attributes that comprise a candidate key.
– The foreign key clause of the create table statement includes both a list

of the attributes that comprise the foreign key and the name of the
relation referenced by the foreign key.

Kjell Orsborn 7/26/05

10UU - IT - UDBL

Referential integrity in SQL - example

create table customer
(customer-name char(20) not null,
customer-street char(30),
customer-city char(30),
primary key (customer-name))

create table branch
(branch-name char(15) not null,
branch-city char(30),
assets integer,
primary key (branch-name))

Kjell Orsborn 7/26/05

11UU - IT - UDBL

Referential integrity in SQL - example cont’d

create table account
(account-number char(10) not null,
branch-name char(15),
balance integer,
primary key (account-number),
foreign key (branch-name) references branch)

create table depositor
(customer-name char(20) not null,
account-number char(10) not null,
primary key (customer-name,account-number),
foreign key (account-number) references account,
foreign key (customer-name) references customer)

Kjell Orsborn 7/26/05

12UU - IT - UDBL

Cascading actions in SQL

create table account
...
foreign key (branch-name) references branch

on delete cascade
on update cascade,

...)
• If a tuple in branch is deleted (updated), there is a tuple in

account that will also be deleted (updated), i.e. the delete
(update) cascades.

Kjell Orsborn 7/26/05

13UU - IT - UDBL

Cascading actions in SQL cont’d

• If there is a chain of foreign-key dependencies across multiple
relations, with on delete cascade specified for each
dependency, a deletion or update at one end of the chain can
propagate across the entire chain.

• If a cascading update or delete causes a constraint violation that
cannot be handled by a further cascading operation, the system
aborts the transaction. As a result, all the changes caused by the
transaction and its cascading actions are undone.

Kjell Orsborn 7/26/05

14UU - IT - UDBL

Assertions

• An assertion is a predicate expressing a condition that we wish
the database always to satisfy.

• An assertion in SQL-92 takes the form:
 create assertion <assertion-name> check <predicate>

• When an modification (insert/delete/update)of the db is made,
the system tests it for validity. This testing may introduce a
significant amount of overhead; hence assertions should be
used with great care.

Kjell Orsborn 7/26/05

15UU - IT - UDBL

Assertion example
• The sum of all loan amounts for each branch must be less than the sum of all

account balances at the branch.
create assertion sum-constraint check

(not exists
(select *
from branch
where (select sum(amount)

from loan
where loan.branch-name =

branch.branch-name) >=
(select sum(amount)

 from account
where loan.branch-name =

branch.branch-name)))

Kjell Orsborn 7/26/05

16UU - IT - UDBL

Another assertion example
• Every loan has at least one borrower who maintains an account with a

minimum balance of $1000.00.
create assertion balance-constraint check

(not exists
(select *
from loan
where not exists

(select *
from borrower, depositor, account
where loan.loan-number = borrower.loan-number and
 borrower.customer-name = depositor.customer-name and
 depositor.account-number = account.account-number and
 account.balance >= 1000)))

Kjell Orsborn 7/26/05

17UU - IT - UDBL

Triggers

• A trigger is a statement that is executed automatically by the
system as a side effect of a modification to the database.

• To design a trigger mechanism, we must:
– Specify the conditions under which the trigger is to be executed.
– Specify the actions to be taken when the trigger executes.

• The SQL-92 standard does not include triggers, but many
implementations support triggers. SQL:99 has specified triggers.

Kjell Orsborn 7/26/05

18UU - IT - UDBL

Trigger example
• Suppose that instead of allowing negative account balances, the

bank deals with overdrafts by
– setting the account balance to zero
– creating a loan in the amount of the overdraft
– giving this loan a loan number identical to the account number of the

overdrawn account
• New values after an update are represented by the keyword new

and old values by the keyword old.
• The condition for executing the trigger is a check to see if the

balance after an update to the account relation (represented by
new.balance) results in a negative balance.

Kjell Orsborn 7/26/05

19UU - IT - UDBL

Trigger example cont’d
create trigger overdraft for account before update as

begin
 if (new.balance < 0) then
 begin
 insert into loan values

 (branch-name, old.account-number, new.balance);
 insert into borrower

 (select customer-name, account-number
 from depositor
 where old.account-number = depositor.account-number);
update account S set S.balance = 0
 where S.account-number = old.account-number;

 end
end

Kjell Orsborn 7/26/05

20UU - IT - UDBL

Stored procedures

• A stored procedure makes it possible to store procedural code
for applications in the database.

• A stored procedure can perfor complex operations and act as an
interface to an application.

• Procedures are executed in the database and can more easily
and efficiently retrieve data since they can include SQL queries
directly.

• Stored procedures can perform certain error handling using
exceptions (comp. exeptions i programming languages)

Kjell Orsborn 7/26/05

21UU - IT - UDBL

Stored procedure example
• The following procedure, SUB_TOT_BUDGET, takes a department number as its input

parameter, and returns the total, average, minimum, and maximum budgets of departments
with the specified HEAD_DEPT. It computes total, average, smallest, and largest
department budget.

CREATE PROCEDURE SUB_TOT_BUDGET (head_dept CHAR(25))
 RETURNS (tot_budget DECIMAL(12, 2), avg_budget DECIMAL(12, 2),

 min_budget DECIMAL(12, 2), max_budget DECIMAL(12, 2)) AS
 BEGIN

SELECT SUM(BUDGET), AVG(BUDGET), MIN(BUDGET), MAX(BUDGET)
FROM DEPARTMENT
WHERE HEAD_DEPT = :head_dept
INTO :tot_budget, :avg_budget, :min_budget, :max_budget;

 END;
END

• The procedure is executed by:
EXECUTE PROCEDURE SUB_TOT_BUDGET(“Sales and Marketing”);

Kjell Orsborn 7/26/05

22UU - IT - UDBL

Stored proc. vs. triggers

• Triggers are used when one should monitor updates of tables
where one do not who, or how, the table will be updated.
Should be used with carefulness!!!

• Stored procedures are used to update tables where one knows
that the table update will allways be done through the
procedure instead of through a direct update.

• Stored procedures are precompiled and can be used as efficient
views (views are normally not optimized before they are
refererenced), but are usually used for updates.

