Introduction to

Standard Query Language

Erik Zeitler
UDBL

erik.zeitler(@it.uu.se

Why a query language?

O Given some data,
how should users

@ and computer programs

communicate with it?

we need an interface to the data

SQL does the job

* Data Definition Language (DDL)

* Define/re-define database structure

* Data Manipulation Language (DML)
* Updates
* Queries
* Additional facilities
* Views
* Security, authorization
* Integrity constraints
* Transaction constraints

* Rules for embedding SQL statements into other
languages

Outline

Overview
* What can SQL do for you?

Background

* and a simple example
SQL and the relational data model

* Example queries

NULL values and 3-valued logic

* Example queries

Background

* History
* SEQUEL (Structures English QUery Language) — early
70’s, IBM Research
* SQL (ANSI 1986), SQL1 or SQL86
* SQL2 or SQL92
* SQL3 or SQL99

Core specification and optional specialized packages

* SQL consists of ~20 basic commands
* A lot of research money for each SQL command...

* Standard language for all commercial DBMS
 Each DBMS has features outside standard

Terminology

Theoretical foundation: -

The relational data

o PoPP

* relation — table column, column,
* tuple -

up! row <row 2>
* attribute — column

<row n>

Example database

EMPLOYEE

FNAME MINIT LNAME SSN ADDRESS SUPERSSN

DEPARTMENT

DNAME DNUMBER MGRSSN MGRSTARTDATE

DEPT_LOCATIONS

DNUMBER DLOCATION

PROJECT
PNAME | PNUMBER | PLOCATION

WORKS_ON

ESSN PNO | HOURS

DEPENDENT

ESSN | DEPENDENT_NAME RELATIONSHIP

Schema diagram, datbase state (E/N ch 5, p 136-137)

(¢c) Addison Wesley Longman Inc

IEMPUDYEE

BDATE

ADDRLESS

SUPERSSM

155501408

731 Fondren, Hewsion, TX

JdAnRRES

1855-1208

38 Voss, Houston, TX

EHasnNG

18580118

3521 Caste, Spring, TX

BG5S

1841 D520

201 Benry, Bellaie, TX

BHARERLES

18620815

S5 Fre Oak, Humble, TX

18720731

56531 Rice, Housion, TX

150320

250 Calas, Howston, TX

1937-11-10

450 Bone, Housion, TX

DEPT_LOCATIONS

DHNUMBER

DLOCATION

sy

DEPARTMENT

MERSTARTDATE

Sadteyn

Bl

DNUMBER

1568-05-22

Sugadan

18850101

1681 -06-19

HOURS

1256760

25

123456780

75

BEEERAd44

400

453450450

200

453450450

)40

JM45555

1040

FXMA550

1010

HA5555

10,0

233445555

100

COOERTTET

00

COOERTTTT

0.0

B6EEEET

350

B EEEET

50

SEEHE2

200

2

150

rll

PROJECT

PHNUMBER

1

2

1]
20
X0

DEFEMDENT

LSSM

DEPEMDENT_WNAME

EBDATE

RELATIONSHIP

1966-04-05

DALKGHTER

3465

Hlem
Theodors

1983-10-25

SON

23465

19580503

SPOLUISE

SHGHSE]

Jowy
Abwar

19420228

SPOLESE

123455780

MNichand

19880104

SON

123456708

Alice

| 9B8-12-30

DALGHTER

12756760

1987505

SEOLSE

EMPLOYEE

CREATE TABLE employee (
fname wvarchar (100),
minit char(1l),
lname wvarchar (100),
ssn int(10) unsigned NOT NULL,
bdate date,
address wvarchar (100),
sex char(l),
salary int (10),
superssn int(10),
dno int(10),

PRIMARY KEY (ssn)

)

unix$ mysgl —-u root -p
> CREATE DATABASE comp;
> CONNECT comp;

> CREATE TABLE emp (
fname wvarchar (100),
lname wvarchar (100),
ssn bigint unsigned NOT NULL
PRIMARY KEY (ssn)

) ;

> INSERT INTO emp VALUES (
"Erik’, ’'Zeitler’, 197510061111

) ;

> SELECT * FROM emp;
> SELECT fname FROM emp;

E:3

Recommendation

www.mysql.com

wWww.mimer.com

Download & 1install on your PC

Excellent reference manuals on the web
sites

Basic query statement: select — from — where

SELECT 4, 4,, ..., 4
FROMr, r,, ..., 1,
WHERE P;

* A4, A, .., A — list of attribute names to be retrieved

n

* r, r, .., r, — List of tables required to process the query

- P — Conditional expression identifying the tuples to be
retrieved

AND, OR, NOT, <, <=, =, >=, >
* Result of the query 1s a table

SQL and the relational data model

* Projection * Assignment operator
e Cartesian product * Rename relations
e Selection * Join
* Set operations * 0 join
e Union * Equijoin
* Difference e Natural join

* Intersection

Relation algebra projection

* Projection 1s done 1n the SELECT clause:

The star (*) denotes
all attributes”™

Ex 1, Look at interesting fields
> select * from employee;
> select fname from employee;
> select fname, bdate from employee;

Ex 2, projection!
> select x,y,z from wvectors;

> select x,y from vectors;

The SQL SELECT clause

* Projection

* Remove duplicates: distinct

> select plocation from project;
> select distinct plocation from project;

* Arithmetic expressions
> select x/10, (y*z)/2, z+3 from vectors;

> select ssn, salary, salary*.327 from employee; i

Relational algebra selection

SELECT 4, A, ..., 4,
FROMr, r,, ..., 1,
WHERE P;

* P 1s the selection predicate

* operates on attributes 1n relations », r,, ..., r,,

* Selects tuples to be returned

* selection = filtering

Selection in SQL: The WHERE clause —» —

The SQL WHERE clause

 Ex 1, Look for employee info
> select * from employee

where fname=’ John’ ;

* Ex 2, Look for employee info
> select * from employee
where bdate > "1955-01-01’
and salary between 30000 and 50000;

* EXx 3, vector length!
> select x,y,z from vectors

where x > 10 and x*x+y*y+z*z < 200;

Rel. algebra Cartesian product

Similar to Cartesian product of two vectors

The Cartesian product forms

all possible pairs
of the elements

of the operands

The SQL FROM clause

Similarly, given two

database tables

persons cars
Alex Audi
John X | BM@W

Mike Mercedes

, this SQL query generates
all possible persons-cars
combinations.

select *

from persons, cars;
Alex Audi
John Audi
Mike Audi
Alex BMW

John BMW
Mike BMW
Alex Mercedes
John Mercedes
Mike Mercedes

\Y (1)

#

Select ... from .. where
revisited

Basic SQL query: three clauses
select <projection—predicatei
from <table list> K

where <selection-predicate> X\

Relational algebra
Cartesian product
Selection

s Projection

Select — from — where

Ex 1: Find all employees working at research dept

SELECT EMPLOYEE . LNAME, ADDRESS

FROM EMPL.OYEE, DEPARTMENT

WHERE DEPARTMENT . NAME= ‘Research’
AND DNUMBER=DNO ;

Ex 2: All employees and their managers

SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.SUPERSSN=S.SSN;

SQL and the relational data model

SELECT ... FROM ... WHERE ... o Agsionment operator
& * Rename relations
projection, S T
cartesian product, .
. * 0 join
selection
* Set operations * Equijoin

» Union * Natural join

e Difference

 Intersection } \

Operands must be union
compatible

Examples of set operations

e Retrieve all first names in the database
> select fname from employee

union

select dependent name from dependent;

* Are there any projects in a town without
departments?
> select plocation FROM project p
except
select dlocation FROM dept locations;

3=

SQL and the relational data model

SELECT ... FROM ... WHERE ... * Assignment operator
& * Rename relations
rojection, :
pro) Join
cartesian product, I
. * 0 join
selection
* Equyjoin

* Set operations * Natural join

e Union —union
* Difference — except

* Intersection — intersect

Rename, assignment

e Rename: as

> select distinct superssn
as ’'manager social security number’
from employee;

* Assignment: create table .. as select ..

> create table names as
select fname from employee

union

select dependent name from dependent;

SQL and the relational data model

SELECT ... FROM ... WHERE ... * Assignment operator
& * Rename relations
rojection, :
pro) Join
cartesian product, ..
. * 0 join
selection
* Equyjoin

* Set operations * Natural join

e Union —union
* Difference — except

* Intersection — intersect

Join

* Relational algebra notation: R><| S
* (' — join condition
* Ci1son the form 4, 0 4
0 1s one of {=, <, >, <, >, #}
 Several terms can be connected as C; C,...Cy.
* Special cases
* Equijoin: O 1s =
* Natural join: All identically named attributes in
relations R and S have matching values

SQL join

* Recall this query

SELECT EMPLOYEE . LNAME, ADDRESS
FROM EMPIL.OYEE, DEPARTMENT
WHERE DEPARTMENT . NAME= ‘Research’

AND DNUMBER=DNO;

* Equijoin
* of employee and department tables
* w.r.t. employee.dnumber and department.dno.

* Joins are cartesian products
with some selection criteria

SQL join

* Another way:

* alter table project change pnumber pno int(10);

One more example

* Show the resulting salaries 1f every
employee working on the ‘ProductX’
project is given a 10 percent raise

SELECT FNAME, LNAME,
1.1*SALARY AS INC SAL

FROM EMPLOYEE, WORKS ON, PROJECT

WHERE SSN=ESSN

AND PNO=PNUMBER
AND PNAME=‘'ProductX’ ;

Special comparison

* Matching string patterns
* Use LIKE
* % for any number of arbitrary symbol
e _ for any symbol
select * from employee
where address like ’%Houston%’;
* Approx math equality
* Use abs(x-x,) < &

select * from employee
where abs (salary-30000) < 8000;

e Use BETWEEN:

select * from employee
where salary between 22000 and 38000;

NULL values

* Sometimes an attribute 1s
* Unknown (date of birth unknown)
* Unavailable/withheld (refuses to list home phone #)
* Not applicaple (last college degree)

* Need to represent these cases in a DB!

e Solution: NULL.

* What about logical operations involving NULL?
Need to extend logic...

3-valued logic

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE

FALSE FALSE FALSE FALSE
UNKNOWN FALSE

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN
NOT TRUE FALSE UNKNOWN

FALSE TRUE

Comparison of NULL values

o=, ¥, >, <, LIKE,
e won’t work. NULL 1s UNDEFINED!

* SQL check for NULL
IS NULL
« IS NOT NULL

* JOIN operations
* Tuples with NULL values 1n the join columns

—> Not included in result
* Exception: OUTER JOIN (E/N 8.5.6)

NULL

* Find out who is The Big Boss
select fname, lname
from employee

where superssn is NULL;

Aggregate functions

Avg — average value
Min — minimum value
Max — maximum value
Sum — sum of values

Count -— number of values

Aggregate functions — group by

* Average salary
select avg(salary)

from employee;

* Average salary at each department
select dname, avg(salary)
from employee, department

where dno=dnumber group by dno;

Aggregate functions —- HAVING

* Find the projects that more than two employees are
assigned to:
* retrieve the project number,
* its name,
* and the number of its employees

SELECT project.pnumber, pname , count(¥*)
FROM project, works on

WHERE project.pnumber = works on.pno
GROUP BY project.pnumber, pname

HAVING count(*)>2;

* (Clauses:
SELECT
FROM
[WHERE
[GROUP BY
[HAVING
[ORDER BY

Summary

<attribute 1list>
<table 1list>
<condition>]
<grouplng attributes>
<group condition>]
<attribute list>]

* More Than One Way To Do It™, .

Views

* Frequently posed queries should be
expressed as views.

> create view tax_yiew as

select ssn, salary, salary*.327
from employee;

> select * from.tax_view;

Views

* Creating a view will not result in a new table. Views
are not tables themselves

— they are views of the underlying tables.

* A view query will return the state of the underlying
tables.

* Consequence:
underlying tables are changed
—
the view will change

Views

e Ex 1:
> update table employee

set salary = 1000000
where ssn = 123456;

> select * from tax_view;

e Ex 2:

We are removing one column!
> alter table employee drop salary;

The view will not work any more
> select * from tax view;

