
Introduction to

Standard Query Language

Erik Zeitler
UDBL

erik.zeitler@it.uu.se

Why a query language?
Given some data,

how should users

and computer programs

communicate with it?

?

we need an interface to the data

SQL does the job

• Data Definition Language (DDL)
• Define/re-define database structure

• Data Manipulation Language (DML)
• Updates
• Queries

• Additional facilities
• Views
• Security, authorization
• Integrity constraints
• Transaction constraints
• Rules for embedding SQL statements into other

languages

Outline

• Overview
• What can SQL do for you?

• Background
• and a simple example

• SQL and the relational data model
• Example queries

• NULL values and 3-valued logic
• Example queries

Background
• History

• SEQUEL (Structures English QUery Language) – early
70’s, IBM Research

• SQL (ANSI 1986), SQL1 or SQL86
• SQL2 or SQL92
• SQL3 or SQL99

• Core specification and optional specialized packages

• SQL consists of ~20 basic commands
• A lot of research money for each SQL command…

• Standard language for all commercial DBMS
• Each DBMS has features outside standard

Terminology

Theoretical foundation:

The relational data
model

• relation – table
• tuple – row
• attribute – column

<row n>

…

<row 2>
columnn…column1

Example database

Schema diagram, datbase state (E/N ch 5, p 136-137)

(c) Addison Wesley Longman Inc

CREATE TABLE employee (
fname varchar(100),
minit char(1),
lname varchar(100),
ssn int(10) unsigned NOT NULL,
bdate date,
address varchar(100),
sex char(1),
salary int(10),
superssn int(10),
dno int(10),
PRIMARY KEY (ssn)

) ;

unix$ mysql –u root –p
> CREATE DATABASE comp;
> CONNECT comp;

> CREATE TABLE emp (
fname varchar(100),
lname varchar(100),
ssn bigint unsigned NOT NULL
PRIMARY KEY (ssn)

);

> INSERT INTO emp VALUES(
’Erik’, ’Zeitler’, 197510061111

);

> SELECT * FROM emp;
> SELECT fname FROM emp; #

Recommendation

• www.mysql.com
• www.mimer.com

• Download & install on your PC
• Excellent reference manuals on the web

sites

Basic query statement: select – from – where

SELECT A1, A2, …, An

FROM r1, r2, …, rm

WHERE P;
• A1, A2, …, An – list of attribute names to be retrieved
• r1, r2, …, rm – List of tables required to process the query
• P – Conditional expression identifying the tuples to be

retrieved
• AND, OR, NOT, <, <=, =, >=, >

• Result of the query is a table

SQL and the relational data model

• Projection
• Cartesian product
• Selection
• Set operations

• Union
• Difference
• Intersection

• Assignment operator
• Rename relations

• Join
• θ join
• Equijoin
• Natural join

Relation algebra projection

• Projection is done in the SELECT clause:

Ex 1, Look at interesting fields
> select * from employee;
> select fname from employee;
> select fname, bdate from employee;

The star (*) denotes
”all attributes”

Ex 2, projection!

> select x,y,z from vectors;

> select x,y from vectors;

The SQL SELECT clause

• Projection

• Remove duplicates: distinct
> select plocation from project;
> select distinct plocation from project;

• Arithmetic expressions
> select x/10, (y*z)/2, z+3 from vectors;

> select ssn, salary, salary*.327 from employee; #

Relational algebra selection

SELECT A1, A2, …, An

FROM r1, r2, …, rm

WHERE P;
• P is the selection predicate

• operates on attributes in relations r1, r2, …, rm

• Selects tuples to be returned
• selection ≈ filtering

Selection in SQL: The WHERE clause →→

The SQL WHERE clause
• Ex 1, Look for employee info

> select * from employee
where fname=’John’;

• Ex 3, vector length!
> select x,y,z from vectors

where x > 10 and x*x+y*y+z*z < 200;

• Ex 2, Look for employee info
> select * from employee
where bdate > ’1955-01-01’
and salary between 30000 and 50000;

Rel. algebra Cartesian product
Similar to Cartesian product of two vectors

() ()

=×

nnn

n

nn

wvwv

wvwv
wwwvvv

1

111

2121 OMKK

The Cartesian product forms
all possible pairs
of the elements
of the operands

The SQL FROM clause
Similarly, given two
database tables

persons

Mike

John

Alex

cars

Mercedes

BMW

Audi

select *
from persons, cars;

MercedesAlex

MercedesJohn

MercedesMike

BMWAlex

BMWJohn

BMWMike

AudiAlex

AudiJohn

AudiMike

, this SQL query generates
all possible persons-cars
combinations.

x =

More… #

Select … from … where

revisited

Relational algebra
• Cartesian product
• Selection
• Projection

Basic SQL query: three clauses
select <projection-predicate>
from <table list>
where <selection-predicate>

Select – from – where
Ex 1: Find all employees working at research dept

SELECT EMPLOYEE.LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.NAME=‘Research’

AND DNUMBER=DNO;

Ex 2:

SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E, EMPLOYEE S
WHERE E.SUPERSSN=S.SSN;

All employees and their managers

SQL and the relational data model

SELECT … FROM … WHERE …

⇔
projection,

cartesian product,
selection

• Set operations
• Union
• Difference
• Intersection

• Assignment operator
• Rename relations

• Join
• θ join
• Equijoin
• Natural join

Operands must be union
compatible

Examples of set operations

• Retrieve all first names in the database
> select fname from employee

union
select dependent_name from dependent;

• Are there any projects in a town without
departments?
> select plocation FROM project p

except
select dlocation FROM dept_locations;

#

SQL and the relational data model

• Assignment operator
• Rename relations

• Join
• θ join
• Equijoin
• Natural join

SELECT … FROM … WHERE …

⇔
projection,

cartesian product,
selection

• Set operations
• Union – union
• Difference – except
• Intersection – intersect

Rename, assignment

• Rename: as

> select distinct superssn
as ’manager social security number’
from employee;

• Assignment: create table … as select …

> create table names as
select fname from employee

union
select dependent_name from dependent;

SQL and the relational data model

• Assignment operator
• Rename relations

• Join
• θ join
• Equijoin
• Natural join

SELECT … FROM … WHERE …

⇔
projection,

cartesian product,
selection

• Set operations
• Union – union
• Difference – except
• Intersection – intersect

Join

• Relational algebra notation: R C S
• C – join condition

• C is on the form AR θ AS

θ is one of {=, <, >, ≤, ≥, ≠}
• Several terms can be connected as C1 C2…CK.

• Special cases
• Equijoin: θ is =
• Natural join: All identically named attributes in

relations R and S have matching values

SQL join

• Recall this query
SELECT EMPLOYEE.LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DEPARTMENT.NAME=‘Research’

AND DNUMBER=DNO;

• Equijoin
• of employee and department tables
• w.r.t. employee.dnumber and department.dno.

• Joins are cartesian products
with some selection criteria

SQL join

• Another way:
• alter table project change pnumber pno int(10);

One more example

• Show the resulting salaries if every
employee working on the ‘ProductX’
project is given a 10 percent raise

SELECT FNAME, LNAME,
1.1*SALARY AS INC_SAL

FROM EMPLOYEE, WORKS_ON, PROJECT
WHERE SSN=ESSN

AND PNO=PNUMBER
AND PNAME=‘ProductX’;

Special comparison
• Matching string patterns

• Use LIKE
• % for any number of arbitrary symbol
• _ for any symbol

select * from employee
where address like ’%Houston%’;

• Approx math equality
• Use abs(x-x1) < ε:

select * from employee
where abs(salary-30000) < 8000;

• Use BETWEEN:
select * from employee
where salary between 22000 and 38000;

NULL values

• Sometimes an attribute is
• Unknown (date of birth unknown)
• Unavailable/withheld (refuses to list home phone #)
• Not applicaple (last college degree)

• Need to represent these cases in a DB!

• Solution: NULL.
• What about logical operations involving NULL?

⇒ Need to extend logic…

3-valued logic

UNKNOWNTRUEFALSE

UNKNOWNFALSETRUENOT

UNKNOWNUNKNOWNTRUEUNKNOWN

UNKNOWNFALSETRUEFALSE

TRUETRUETRUETRUE

UNKNOWNFALSETRUEOR

UNKNOWNFALSEUNKNOWNUNKNOWN

FALSEFALSEFALSEFALSE

UNKNOWNFALSETRUETRUE

UNKNOWNFALSETRUEAND

Comparison of NULL values
• =, ≠, >, <, LIKE, …

• won’t work. NULL is UNDEFINED!

• SQL check for NULL
•IS NULL
•IS NOT NULL

• JOIN operations
• Tuples with NULL values in the join columns
⇒ Not included in result

• Exception: OUTER JOIN (E/N 8.5.6)

NULL

• Find out who is The Big Boss
select fname, lname
from employee
where superssn is NULL;

Aggregate functions

• Avg – average value
• Min – minimum value
• Max – maximum value
• Sum – sum of values
• Count – number of values

Aggregate functions – group by

• Average salary
select avg(salary)
from employee;

• Average salary at each department
select dname, avg(salary)
from employee, department
where dno=dnumber group by dno;

Aggregate functions – HAVING
• Find the projects that more than two employees are

assigned to:
• retrieve the project number,
• its name,
• and the number of its employees

SELECT project.pnumber, pname , count(*)
FROM project, works_on
WHERE project.pnumber = works_on.pno
GROUP BY project.pnumber, pname
HAVING count(*)>2;

Summary

• Clauses:
SELECT <attribute list>
FROM <table list>
[WHERE <condition>]
[GROUP BY <grouping attributes>
[HAVING <group condition>]
[ORDER BY <attribute list>]

• More Than One Way To Do It™…

Views

• Frequently posed queries should be
expressed as views.

> create view tax_view as
select ssn, salary, salary*.327
from employee;

> select * from tax_view;

Views
• Creating a view will not result in a new table. Views

are not tables themselves
– they are views of the underlying tables.

• A view query will return the state of the underlying
tables.

• Consequence:
underlying tables are changed

⇒
the view will change

Views
• Ex 1:
> update table employee

set salary = 1000000
where ssn = 123456;

> select * from tax_view;

• Ex 2:
We are removing one column!
> alter table employee drop salary;

The view will not work any more
> select * from tax_view;

