
Mimer SQL
Programmer’s Manual

Version 8.2

Copyright © 2000 Mimer Information Technology AB

Mimer Information Technology AB
Editor's Note:
There are some blank pages between chapters in this document. This is to produce the correct layout when printed in Duplex (double-sided) format using A4 paper.

The syntax diagrams in this manual may not appear correctly at certain zoom percentages, depending on screen and window size. If lines are missing from the syntax diagrams, adjust the zoom percentage until you find the optimal view settings for your screen and window size.

http://www.mimer.com

Mimer SQL version 8.2 Programmer’s Manual
Second revised edition

December, 2000

Copyright © 2000 Mimer Information Technology AB.

Published by Mimer Information Technology AB,
P.O. Box 1713,
SE-751 47 Uppsala, Sweden.
Tel +46(0)18-18 50 00.
Fax +46(0)18-18 51 00.
Internet: http://www.mimer.com

Produced by Mimer Information Technology AB, Uppsala, Sweden.

All rights reserved under international copyright conventions.

The contents of this manual may be printed in limited quantities for use at a
Mimer SQL installation site. No parts of the manual may be reproduced for
sale to a third party.

http://www.mimer.com

Foreword i

Mimer SQL version 8.2
Programmer’s Manual

FOREWORD

Documentation objectives
This manual describes how SQL statements may be embedded in application
programs written in conventional host languages. It also describes how to
create and use Stored Procedures and Functions (see Chapter 8) as well as
Triggers (see Chapter 9).

Intended audience
The manual is intended for application developers working with Mimer SQL.

Prerequisites
Application developers using this manual are assumed to have a working
acquaintance with the principles of the relational database model in general and
of Mimer SQL in particular.

It is also assumed that programmers writing embedded SQL applications are
familiar with the principles of the SQL database management language.
Knowledge of Mimer SQL is of course an advantage, although experience with
other standard-compliant SQL implementations will suffice. Experience of
Mimer SQL is best gained through interactive use of the BSQL facility (see the
Mimer SQL User’s Manual).

Competence in at least one of the host programming languages supporting
embedded Mimer SQL (i.e. C/C++, COBOL or FORTRAN) is assumed.

ii Foreword

Mimer SQL version 8.2
Programmer’s Manual

Organization of this manual
The organization of the material in this manual reflects the general
requirements for writing application programs using embedded SQL:

Chapter 1 introduces embedded SQL in relation to the other Mimer SQL
products.

Chapter 2 presents the basic principles of embedding SQL in application
programs and describes features of preprocessing and
compiling embedded SQL programs.

Chapter 3 describes the way in which embedded SQL communicates
with the host program through host variables.

Chapter 4 describes how to log in to the database from application
programs and how to make use of program idents.

Chapter 5 describes how to access data in the database tables; how to
retrieve data and how to change table contents.

Chapter 6 describes the essential features of transaction handling.

Chapter 7 describes the special features of dynamic SQL, which allow
an application program to process SQL statements entered by
the user at run-time.

Chapter 8 describes stored functions, modules and procedures.

Chapter 9 describes triggers, which define a set of procedural SQL
statements that are to be executed when a specified data
manipulation operation occurs on a named table or view.

Chapter 10 describes how to handle errors and exception conditions.

Appendix A-D describe host language dependent aspects of embedded SQL
and preprocessors, SQL return codes and program examples.

Related Mimer SQL publications
• Mimer SQL Reference Manual contains a complete description of the

syntax and usage of all statements in Mimer SQL and is a necessary
complement to this manual.

• Mimer SQL User’s Manual contains a description of the BSQL facilities.
A user-oriented guide to the SQL statements is also included, which may
provide help for less experienced users in formulating statements correctly
(particularly the SELECT statement, which can be quite complex).

• Mimer SQL System Management Handbook describes system
administration functions, including export/import, backup/restore,
databank shadowing and the statistics functionality. The information in this
manual is used primarily by the system administrator, and is not required
by application program developers. The SQL statements which are part of
the System Management API are described in the Mimer SQL Reference
Manual.

Foreword iii

Mimer SQL version 8.2
Programmer’s Manual

• Mimer SQL platform-specific documents containing platform-specific
information. A set of one or more documents is provided, where required,
for each platform on which Mimer SQL is supplied.

• Mimer SQL Release Notes contain general and platform-specific
information relating to the Mimer SQL release for which they are supplied.

Suggestions for further reading
We can recommend to users of Mimer SQL the many works of C. J. Date. His
insight into the potential and limitations of SQL, coupled with his pedagogical
talents, makes his books invaluable sources of study material in the field of
SQL theory and usage. In particular, we can mention:

A Guide to the SQL Standard (Fourth Edition, 1997).
ISBN: 0-201-96426-0. This work contains much constructive criticism and
discussion of the SQL standard, including SQL99.

For JDBC users:

JDBC information can be found on the internet at the following web addresses:
http://java.sun.com/products/jdbc/ and http://www.mimer.com/jdbc/.

For information on specific JDBC methods, please see the online
documentation for the java.sql package. This documentation is normally
included in the Java development environment.

JDBC™ API Tutorial and Reference, 2nd edition. ISBN: 0-201-43328-1. A
useful book published by JavaSoft.

For ODBC users:

Microsoft ODBC 3.0 Programmer’s Reference and SDK Guide for
Microsoft Windows and Windows NT. ISBN: 1-57231-516-4. This manual
contains information about the Microsoft Open Database Connectivity (ODBC)
interface, including a complete API reference.

Official documentation of the accepted SQL standards may be found in:

ISO/IEC 9075:1999(E) Information technology - Database languages -
SQL. This document contains the standard referred to as SQL99.

ISO/IEC 9075:1992(E) Information technology - Database languages -
SQL. This document contains the standard referred to as SQL92.

ISO/IEC 9075-4:1996(E) Database Language SQL - Part 4: Persistent
Stored Modules (SQL/PSM). This document contains the standard which
specifies the syntax and semantics of a database language for managing and
using persistent routines.

CAE Specification, Data Management: Structured Query Language
(SQL), Version 2. X/Open document number: C449. ISBN: 1-85912-151-9.
This document contains the X/Open-95 SQL specification.

http://java.sun.com/products/jdbc/
http://www.mimer.com/jdbc/

iv Foreword

Mimer SQL version 8.2
Programmer’s Manual

Definitions, terms and trademarks
ANSI American National Standards Institute, Inc

API Application Programming Interface

BSQL The Mimer SQL facility for using SQL interactively or by
running a command file

ESQL The preprocessor for embedded Mimer SQL

IEC International Electrotechnical Commission

ISO International Standards Organization

JDBC The Java database API specified by Sun Microsystems, Inc

ODBC Microsoft’s Open Database Connectivity

PSM Persistent Stored Modules, the term used by ISO/ANSI for
Stored Procedures

SQL Structured Query Language

X/Open X/Open is a trademark of the X/Open Company

(All other trademarks are the property of their respective holders.)

Contents v

Mimer SQL version 8.2
Programmer’s Manual

CONTENTS

1 INTRODUCTION

2 CREATING MIMER SQL APPLICATIONS
2.1 Using the ODBC database API..2-1
2.2 Using the JDBC database API ...2-1
2.3 Using embedded Mimer SQL ..2-2
2.3.1 The scope of embedded Mimer SQL..2-2
2.3.2 General principles for embedding SQL statements2-2
2.3.2.1 Host languages..2-2
2.3.2.2 Identifying SQL statements ..2-3
2.3.2.3 Included code..2-3
2.3.2.4 Comments ...2-4
2.3.2.5 Recommendations...2-4
2.3.3 Processing embedded SQL...2-4
2.3.3.1 Preprocessing - the ESQL command ..2-4
2.3.3.2 Processing embedded SQL - the compiler ..2-7
2.3.4 Essential program structure ..2-7
2.4 Linking applications...2-9

3 COMMUNICATING WITH THE APPLICATION PROGRAM
3.1 Host variable usage ..3-1
3.1.1 Declaring host variables ...3-1
3.1.2 Using variables in statements ...3-2
3.1.3 Indicator variables ..3-2
3.2 The SQLSTATE variable ..3-3
3.3 The diagnostics area...3-4
3.4 The SQL Descriptor Area ..3-4

4 IDENTS AND DATABASE CONNECTIONS
4.1 Mimer SQL idents..4-1
4.2 Access to the database ...4-2
4.3 Connecting to a database ...4-3
4.3.1 Connecting ...4-3
4.3.2 Changing connection ..4-4
4.3.3 Disconnecting...4-4
4.3.4 Program idents - ENTER and LEAVE...4-5

5 ACCESSING DATABASE OBJECTS
5.1 Retrieving data using cursors ...5-1
5.1.1 Declaring host variables ...5-2
5.1.2 Declaring the cursor ...5-2
5.1.3 Opening the cursor ...5-3
5.1.4 Retrieving data ...5-3
5.1.5 Closing the cursor...5-4
5.2 Retrieving single rows..5-5
5.3 Retrieving data from multiple tables ..5-6

vi Contents

Mimer SQL version 8.2
Programmer’s Manual

5.3.1 The 'Parts explosion' problem ..5-7
5.4 Entering data into tables ..5-8
5.4.1 Cursor-independent operations ..5-8
5.4.2 Updating and deleting through cursors...5-9

6 TRANSACTION HANDLING AND DATABASE SECURITY
6.1 Transaction principles..6-1
6.1.1 Concurrency control...6-1
6.1.2 Locking ..6-3
6.2 Transaction control statements ..6-3
6.2.1 Starting transactions ...6-3
6.2.2 Ending transactions ..6-4
6.2.3 Optimizing transactions..6-5
6.2.4 Consistency within transactions ...6-5
6.2.5 Exception diagnostics within transactions..6-6
6.2.6 Setting default transaction options ...6-6
6.2.7 Statements in transactions ..6-7
6.2.8 Cursors in transactions ...6-8
6.2.9 Error handling in transactions ..6-9
6.3 Transactions and logging ...6-10
6.4 Protection against data loss..6-11
6.4.1 System interruptions...6-11
6.4.2 Hardware failure...6-11

7 DYNAMIC SQL
7.1 Principles of dynamic SQL..7-1
7.2 General summary of dynamic SQL processing..7-3
7.3 SQL descriptor area ...7-4
7.3.1 The structure of the SQL descriptor area ...7-4
7.4 Preparing statements ..7-5
7.5 Extended dynamic cursors ...7-5
7.6 Describing prepared statements ...7-6
7.6.1 Describing output variables..7-7
7.6.2 Describing input variables..7-7
7.7 Handling prepared statements..7-8
7.7.1 Executable statements ..7-8
7.7.2 Result set statements ..7-9
7.8 Example framework for dynamic SQL programs ..7-10

8 PERSISTENT STORED MODULES
8.1 Routines ...8-1
8.1.1 Functions..8-2
8.1.2 Procedures..8-3
8.2 Syntactic components of a routine definition...8-5
8.2.1 Routine parameters...8-5
8.2.2 Routine language indicator...8-6
8.2.3 Routine deterministic clause ..8-6
8.2.4 Routine access clause...8-6
8.2.5 Scope in routines - the compound SQL statement......................................8-6
8.2.5.1 The ATOMIC compound SQL statement...8-7
8.2.6 Declaring variables...8-9
8.2.7 The ROW data type..8-10
8.2.7.1 ROW data type syntax..8-10
8.2.7.2 Using the ROW data type...8-11
8.2.8 Row value expression...8-12
8.3 Modules ...8-12
8.4 SQL constructs in routines...8-13
8.4.1 Assignment using SET ...8-13

Contents vii

Mimer SQL version 8.2
Programmer’s Manual

8.4.2 Conditional execution using IF...8-13
8.4.3 Conditional execution - the CASE statement ...8-14
8.4.4 Iteration using LOOP ...8-16
8.4.5 Iteration using WHILE...8-16
8.4.6 Iteration using REPEAT...8-16
8.4.7 Invoking procedures - CALL ...8-17
8.4.8 Invoking functions - use as a value expression...8-17
8.4.9 Comments in routines...8-18
8.4.10 Restrictions...8-18
8.5 Data manipulation..8-19
8.5.1 Write operations ...8-19
8.5.2 Using cursors..8-19
8.5.3 SELECT INTO ..8-21
8.5.4 Transactions ...8-21
8.6 Result set procedures ...8-21
8.7 Managing exception conditions ...8-23
8.7.1 Declaring condition names ...8-25
8.7.2 Declaring exception handlers ...8-25
8.8 Access rights ..8-28
8.9 Using DROP and REVOKE ..8-29

9 TRIGGERS
9.1 Creating a trigger ...9-1
9.2 Trigger time ...9-2
9.3 Trigger event..9-2
9.4 Trigger action...9-3
9.4.1 New and old table aliases ...9-4
9.4.2 Altered table rows ..9-4
9.4.3 Recursion..9-5
9.5 Comments on triggers ..9-5
9.6 Using DROP and REVOKE ..9-5

10 HANDLING ERRORS AND EXCEPTION CONDITIONS
10.1 Syntax errors ..10-1
10.2 Semantic errors ..10-1
10.3 Run-time errors ..10-2
10.3.1 Testing for run-time errors and exception conditions...............................10-2

A HOST LANGUAGE DEPENDENT ASPECTS
A.1 Embedded SQL in C/C++ programs ...A-2
A.1.1 SQL statement format..A-2
A.1.2 Host variables..A-2
A.1.3 Preprocessor output format ...A-5
A.1.4 Scope rules ..A-6
A.2 Embedded SQL in COBOL programs ..A-7
A.2.1 SQL statement format..A-7
A.2.2 Restrictions..A-8
A.2.3 Host variables..A-8
A.2.4 Preprocessor output format ...A-10
A.2.5 Scope rules ..A-10
A.3 Embedded SQL in FORTRAN programs ...A-11
A.3.1 SQL statement format..A-11
A.3.2 Host variables..A-12
A.3.3 Preprocessor output format ...A-14
A.3.4 Scope rules ..A-14

B RETURN CODES
B.1 SQLSTATE return codes.. B-2

viii Contents

Mimer SQL version 8.2
Programmer’s Manual

B.2 Internal Mimer SQL return codes ... B-4
B.2.1 Warnings and messages... B-4
B.2.2 ODBC errors ... B-5
B.2.3 Data-dependent errors ... B-7
B.2.4 Limits exceeded .. B-9
B.2.5 SQL statement errors... B-10
B.2.6 Program-dependent errors ... B-19
B.2.7 Databank and table errors.. B-22
B.2.8 Miscellaneous errors ... B-24
B.2.9 Internal errors.. B-27
B.2.10 Communication errors... B-31
B.2.11 JDBC errors .. B-34

C DEPRECATED FEATURES
C.1 INCLUDE SQLCA... C-1
C.2 SQLCODE.. C-1
C.3 SQLDA... C-1
C.4 Parameter marker representation .. C-2
C.5 VARCHAR(size) .. C-2
C.6 SET TRANSACTION.. C-2
C.7 DBERM4.. C-2

D APPLICATION PROGRAM EXAMPLES
D.1 EXAMPLE program...D-2
D.1.1 Building the EXAMPLE program...D-2
D.1.2 C source code for the EXAMPLE program ..D-3
D.1.3 COBOL source code for the EXAMPLE program....................................D-5
D.1.4 FORTRAN source code for the EXAMPLE program...............................D-7
D.2 DSQLSAMP program using dynamic SQL ..D-9
D.2.1 Building the DSQLSAMP program ..D-9
D.2.2 Source code for the DSQLSAMP program (in C)...................................D-10
D.3 FREQCALL program using dynamic SQL and a stored procedure..............D-29
D.3.1 Building the FREQCALL program ...D-29
D.3.2 C source code for the FREQCALL program...D-30
D.3.3 COBOL source code for the FREQCALL programD-32
D.3.4 FORTRAN source code for the FREQCALL program...........................D-35
D.4 WAKECALL program using dynamic SQL and a result-set procedureD-37
D.4.1 Building the WAKECALL program ...D-37
D.4.2 C source code for the WAKECALL program ...D-38
D.4.3 COBOL source code for the WAKECALL programD-40
D.4.4 FORTRAN source code for the WAKECALL programD-42
D.5 BLOBSAMP program using Dynamic SQL for handling binary dataD-45
D.5.1 Building the BLOBSAMP program ..D-46
D.5.2 Source code for the BLOBSAMP program (in C)D-47
D.6 OSQLSAMP program using dynamic SQL ..D-55
D.6.1 Building the OSQLSAMP program ..D-56
D.6.2 Source code for the OSQLSAMP program (in C)...................................D-58

Introduction 1-1

Mimer SQL version 8.2
Programmer’s Manual

1 INTRODUCTION

Mimer SQL is an advanced relational database management system developed
by Mimer Information Technology AB. The database management language
Mimer SQL is compatible in all essential features with the established SQL
standards (see the Mimer SQL Reference Manual for details).

The information contained in this handbook generally applies to all the
platforms supported by Mimer SQL.

From time to time platform-specific notes appear in the general description,
presented as follows:

Unix Denotes information that applies specifically to Unix platforms.

 VMS Denotes information that applies specifically to VMS platforms.

 Win Denotes information that applies specifically to Windows platforms.

Mimer SQL is accessed through the following user interfaces:

• Embedded SQL is used through a host programming language (C/C++,
COBOL or FORTRAN as available on the host computer). SQL statements
are included as part of the source code for an application program, which is
compiled and linked with the appropriate language-specific facilities. The
SQL statements are executed in the context of the application program.

• BSQL is a line-oriented interface designed for interactive use or running
command files.

• ODBC is a database independent interface specified by Microsoft.
Through ODBC, Mimer SQL can support many of the tools available on
the platforms supporting ODBC (e.g. Windows, Unix).

• JDBC is the Java database API specified by Sun Microsystems Inc.

This manual describes the usage of SQL embedded in application programs,
and provides, together with the Mimer SQL Reference Manual, the complete
reference material for Mimer SQL. The BSQL facilities are described in the
Mimer SQL User’s Manual.

For details on how to read the syntax diagrams which appear in this manual see
Section 1.1 of the Mimer SQL Reference Manual.

1-2 Introduction

Mimer SQL version 8.2
Programmer’s Manual

Note: To simplify the description in this manual, pseudo code is used in all
examples. Details pertinent to real host programming languages may be found
in Appendix A. The structure of the pseudo code is largely self-explanatory.
No distinction is made between integers of different lengths. Only statements
essential to the illustration at hand are shown in the examples: many statements
required in actual application programs are omitted.

Creating Mimer SQL applications 2-1

Mimer SQL version 8.2
Programmer’s Manual

2 CREATING MIMER SQL
APPLICATIONS

An application that accesses a Mimer SQL database server can be created by:

• Using the ODBC database API with the C/C++ host language

• Using the JDBC database API with the Java language

• Embedding Mimer SQL in one of the supported host programming
languages.

2.1 Using the ODBC database API

Unix Information on the availability and use of Driver Managers for ODBC on Unix
platforms can be provided by your Mimer SQL distributor. The library to specify
as the ODBC driver when defining a Mimer ODBC data source is libmimer. An
ODBC SDK (various versions available) is also required in order to develop
applications.

 VMS An ODBC driver is supplied with Mimer SQL on VMS and client applications
can link with it to use ODBC on VMS platforms. The Driver Manager for ODBC
on VMS is not yet available. For further assistance, contact your Mimer SQL
representative.

A Mimer SQL database server running on a VMS node can always be accessed
remotely by a client application using ODBC from another type of platform via
the client/server interface.

 Win When a Mimer SQL client is installed on a Windows platform, the ODBC driver
manager and other resources needed to use ODBC are also installed. The ODBC
SDK (available from Microsoft) is also required in order to develop applications.

2.2 Using the JDBC database API

The Mimer JDBC Driver is required in order to access a Mimer SQL database
over TCP/IP from a Java application.

The JDBC driver can be used on any client computer which has the Java
runtime environment is installed. Note that only Mimer SQL servers of version
8.2 or later support JDBC clients.

2-2 Creating Mimer SQL applications

Mimer SQL version 8.2
Programmer’s Manual

2.3 Using embedded Mimer SQL

2.3.1 The scope of embedded Mimer SQL
The following groups of SQL statements are common to embedded SQL and
interactive SQL:

• Data manipulation statements for reading or changing the content of the
database and invoking stored routines. These are basically similar between
interactive SQL and embedded SQL, but differ in certain details as a result
of the different environments in which the statements are used.

• Procedure control statements for performing operations that occur
specifically within stored routines and triggers.

• Transaction control statements for grouping database operations in
transactions (indivisible units of work).

• Access control statements for allocating privileges and access rights to
users of the system. These are identical between interactive SQL and
embedded SQL.

• Data definition statements for creating and altering objects in the database.
These are identical between interactive SQL and embedded SQL.

• Connection statements for identifying the current user of the system.

• System administration statements for controlling the availability of the
database and its physical components, managing backups and updating
database statistics.

• Declarations for variables, conditions, cursors and handlers occurring
within stored routines or triggers.

There are a number of commands provided for use with BSQL which are not
included in the Mimer SQL interface, these are described in Chapter 9 of the
Mimer SQL User’s Manual.

Note: In the Mimer SQL Reference Manual, Mimer SQL statements are
identified as valid for use in embedded SQL, for interactive use or both (this is
specified in the “Usage” section of the statement description).

2.3.2 General principles for embedding SQL statements

2.3.2.1 Host languages
Statements in Mimer SQL may be embedded in application programs written in
C/C++, COBOL or FORTRAN. The basic principles for writing embedded
SQL programs are the same in all languages and all embedded SQL statements
are embedded in the same way.

Information given in this manual applies to all languages unless otherwise
explicitly stated. Language-specific information is detailed in Appendix A.

Creating Mimer SQL applications 2-3

Mimer SQL version 8.2
Programmer’s Manual

The ESQL preprocessor is used to process SQL statements embedded in a host
language.

Unix Mimer SQL supports an ESQL preprocessor for the C/C++ host language on
Unix platforms.

 VMS Mimer SQL supports an ESQL preprocessor for the COBOL, FORTRAN and
C/C++ host languages on VMS platforms.

 Win Mimer SQL supports an ESQL preprocessor for the C/C++ host language on
Windows platforms.

2.3.2.2 Identifying SQL statements
SQL statements are included in the host language source code exactly as
though they were ordinary host language statements (i.e. they follow the same
rules of conditional execution, etc., which apply to the host language).

SQL statements are identified by the leading keywords EXEC SQL (in all host
languages) and are terminated by a language-specific delimiter. Every separate
SQL statement must be delimited in this way. Blocks of several statements may
not be written together within one set of delimiters. For instance, two
consecutive DELETE statements must be written (in COBOL) as:

EXEC SQL DELETE FROM HOTEL END-EXEC.
EXEC SQL DELETE FROM ROOMS END-EXEC.

and not

EXEC SQL DELETE FROM HOTEL
 DELETE FROM ROOMS END-EXEC.

Single SQL statements can however be split over several lines, following the
host language rules for line continuation. The following embedded statement is
thus acceptable in a FORTRAN program (the continuation mark is a “+” in
column 6 on the second line):

EXEC SQL DELETE FROM HOTEL
 + WHERE CITY = 'SAN FRANCISCO'

The keywords “EXEC SQL” may not be split over more than one line.

2.3.2.3 Included code
Any code which is included in the program by the host language compiler (as
directed by host language INCLUDE statements) is not recognized by the SQL
preprocessor. If external source code modules containing SQL statements are
to be included in the program, the non-standard SQL INCLUDE statement
must be used:

 EXEC SQL INCLUDE filename

Files included in this way are physically integrated into the output from the
preprocessor.

Note: The file name must be enclosed in SQL string delimiters if it contains
any non-alphanumeric characters.

2-4 Creating Mimer SQL applications

Mimer SQL version 8.2
Programmer’s Manual

2.3.2.4 Comments
Comments may be written in the embedded SQL program according to the
rules for writing comments in the host language. Thus comments may be
written within an SQL statement if the host language accepts comments within
host language statements. The following statement is valid in C/C++:

exec sql DELETE FROM HOTEL /* Hotel was closed */
 WHERE CITY = 'SAN FRANCISCO';

The keywords “EXEC” and “SQL” may not be separated by a comment.

2.3.2.5 Recommendations
The following recommendations are imposed by the use of embedded SQL:

• Variable names beginning with the letters “SQL” should be avoided
(except for SQLSTATE and SQLCODE, which should be used when
appropriate).

• Subroutine or subprogram names ending with a number should be avoided.

Language-specific restrictions are described in Appendix A.

2.3.3 Processing embedded SQL

2.3.3.1 Preprocessing - the ESQL command
An application program using embedded SQL statements must first be
preprocessed using the ESQL command before it can be passed through the
host language compiler, since the host language itself does not recognize the
embedded SQL syntax. Preprocessors are available for the host languages
supported on each platform (see Section 2.3.2.1).

The input to the preprocessor is thus a source code file containing host
language statements and embedded SQL statements. The output from the
preprocessor is a source code file in the same host language, with the
embedded SQL statements converted to source code data assignment
statements and subroutine calls which pass the SQL statements to the Mimer
SQL database manager. The original embedded SQL statements are retained as
comments in the output file, to help in understanding the program if a source
code debugger is used.

The output from the preprocessor is human-readable source code, still retaining
a large part of the structure and layout of the original program, which is used as
input to the appropriate host language compiler to produce object code.

The default file extensions for preprocessor input and output files depend on
the host language used and are shown in the table below:

Creating Mimer SQL applications 2-5

Mimer SQL version 8.2
Programmer’s Manual

Language Input file extension Output file extension

C .ec .c

COBOL .eco .cob

FORTRAN .efo .for

The preprocessor is invoked by the following command:

$ esql language [flagger] [options] input-file [output-file]

language flags

Unix-style VMS-style Function

-c /C Indicates that the input file is written using the
C/C++ host language.

-cob(ol) /COBOL Indicates that the input file is written using the
COBOL host language.

-for(tran) /FORTRAN Indicates that the input file is written using the
FORTRAN host language.

flagger flags

Unix-style VMS-style Function

-e(ntry) /ENTRY Ensures that all SQL statements which are
beyond the bounds of the entry level SQL2
standard will generate a preprocessor warning
and will be flagged with a warning comment in
the output file.

-t(ransitional) /TRANSITIONAL Ensures that all SQL statements which are
beyond the bounds of the transitional SQL2
standard will generate a preprocessor warning
and will be flagged with a warning comment in
the output file.

-i(ntermediate) /INTERMEDIATE Ensures that all SQL statements which are
beyond the bounds of the intermediate level
SQL2 standard will generate a preprocessor
warning and will be flagged with a warning
comment in the output file.

-f(ull) /FULL Ensures that all SQL statements which are
beyond the bounds of the full level SQL2
standard will generate a preprocessor warning
and will be flagged with a warning comment in
the output file.

2-6 Creating Mimer SQL applications

Mimer SQL version 8.2
Programmer’s Manual

options flags

Unix-style VMS-style Function

-s(ilent) /SILENT Suppresses the display of the copyright
message and input file name on the screen
(warnings and errors are always displayed on
the screen).

-l(ine) /LINE Generates #line preprocessing directives for
source written in the C language. These force
the C compiler to produce diagnostic messages
with line numbers relating to the input C
source code rather than the code generated by
the preprocessor (and thus compiled by the C
compiler).

input-file and output-file flags

Unix-style VMS-style Function

filename filename The input-file containing the source code to be
preprocessed. If no file extension is specified,
the appropriate file extension for the source
language is assumed (previously described in
this section).

filename /OUTPUT=filename The output-file which will contain the
compiler source code generated by the
preprocessor. If not specified, the output file
will have the same name as the input file, but
with the appropriate default output file
extension (previously described in this
section).

Note: The application programmer should never attempt to directly modify the
output from the preprocessor. Any changes which may be required in a
program should be introduced into the original embedded SQL source code.
Mimer Information Technology AB cannot accept any responsibility for the
consequences of modifications to the preprocessed code.

The preprocessor checks the syntax and to some extent the semantics of the
embedded SQL statements (see Chapter 10 for a more detailed discussion of
how errors are handled). Syntactically invalid statements cannot be
preprocessed and the source code must be corrected.

The preprocessor also places comments in the generated output to indicate the
SQL2 standard conformance level for each SQL statement (entry-level,
transitional, intermediate or full). If a flagger option (see preceding table) has
been specified, then an SQL statement that is beyond the bounds of the
specified conformance level is flagged with a warning comment in the
preprocessor output and a warning on the screen. Mimer SQL extensions are
always flagged with a warning comment and generate a preprocessor warning.

Creating Mimer SQL applications 2-7

Mimer SQL version 8.2
Programmer’s Manual

2.3.3.2 Processing embedded SQL - the compiler
The output from the ESQL preprocessor is compiled in the usual way using the
appropriate host language compiler, and linked with the appropriate routine
libraries.

Unix On Unix platforms, the C compiler defined for the MIM_CC symbol in the
makeopt file found in the installation examples directory is supported.

 VMS The following compilers (all sold by Compaq) are supported on the VMS
platform:

• DEC C

• DEC FORTRAN

• DEC COBOL

Note: For COBOL, the source program must be formatted according to the ANSI
rules. Use the /ANSI option when compiling the resulting COBOL program.

 Win On Windows platforms, the C compiler identified by the cc symbol in the file
.\dev\makefile.mak below the installation directory is supported.

Other compilers, from other software distributors, may or may not be able to
compile the ESQL preprocessor output. Mimer SQL cannot guarantee the
result of using a compiler that is not supported.

At run-time, database management requests are passed to the SQL compiler
responsible for implementing the SQL functions in the application program.

The SQL compiler performs two functions:

• SQL statements are checked semantically against the data dictionary.

• Operations performed against the database are optimized (i.e. internal
routines determine the most efficient way to execute the SQL request, with
regard to the existence of secondary indexes and the number of rows in the
tables addressed by the statement). The programmer does not need to
worry, for instance, about the order in which tables are addressed in a
complex selection condition. This optimization process is completely
transparent.

Note: Since all SQL statements are compiled at run-time, there can be no
conflict between the state of the database at the times of compilation and
execution. Moreover, the execution of SQL statements is always optimized
with reference to the current state of the database.

2.3.4 Essential program structure
All application programs using embedded Mimer SQL must include certain
basic components, summarized below in the order in which they appear in a
program.

• Host variable declarations. Any host variables used in SQL statements
must be declared inside a so-called SQL DECLARE SECTION. This is
described in more detail in Chapter 3.

2-8 Creating Mimer SQL applications

Mimer SQL version 8.2
Programmer’s Manual

• The status information variable SQLSTATE, if used, must be declared
inside the SQL DECLARE SECTION. This variable provides the
application with status information for the most recently executed SQL
statement.

• Executable SQL statements. This is the “body” of the program, and
performs the required operations on the database. Normally, these begin
with connecting to Mimer SQL and performing the required transactions
before finally disconnecting from Mimer SQL.

The following table summarizes the functions for data manipulation in
interactive SQL and embedded SQL.

Operation Interactive SQL Embedded SQL

Retrieve data SELECT generates a result table
directly

SELECT is used to declare a
cursor. The cursor must be opened
and positioned. Data is retrieved
into host variables one row at a
time with FETCH.

Alternative: SELECT INTO
retrieves a single-row result set
directly into host variables

Update data UPDATE operates on a set of rows
or columns

UPDATE operates on a set of rows
or columns

UPDATE CURRENT operates on a
single row through a cursor

Insert data INSERT inserts one or many rows
at a time

INSERT inserts one or many rows
at a time

Delete data DELETE operates on a set of rows DELETE operates on a set of rows

DELETE CURRENT operates on a
single row through a cursor

Operation Interactive SQL Embedded SQL

Invoke routine CALL is used to execute all stored
procedures, i.e. both result set and
non-result set procedures are
handled the same way

Functions can be specified where
an expression could be used and are
invoked when an expression used
in the same context would be
evaluated

Result set procedures are called by
using the CALL clause in a cursor
declaration and then using FETCH.
The CALL statement is used
directly for non-result set
procedures

Functions can be specified where
an expression could be used and are
invoked when an expression used
in the same context would be
evaluated

Creating Mimer SQL applications 2-9

Mimer SQL version 8.2
Programmer’s Manual

Many SQL statements (e.g. data definition statements) are simply embedded in
their logical place in the application program and are executed without direct
reference to other parts of the program. Some features of embedded SQL
however require special consideration, and are dealt with in detail in the
chapters that follow:

• Access authorization through the use of user and program idents.

• Data manipulation statements which require the use of cursors (FETCH,
UPDATE CURRENT, DELETE CURRENT). These together with cursor
handling statements are probably the most commonly used statements in
embedded SQL.

• Transaction control, which is essential for a consistent database.

• Dynamic SQL, which is a special set of statements allowing an application
program to process SQL statements entered by the user at run-time.

• Exception handling, which controls the action taken when, for instance, the
end of a result set is reached.

2.4 Linking applications

Unix The makefile called ex_makefile, found in the installation examples directory,
provides a verified example of the recommended way to build applications on
Unix platforms. Applications built using the procedure contained in this makefile
will reference the Mimer SQL shared library called libmimer.

 VMS All Mimer SQL applications should be linked with the options file MIMER.OPT,
as shown in the following example:

 $ LINK main,MIMLIB8:MIMER/OPT

The MIMER.OPT file includes the following:

• MIMLIB8:LR.OLB (object library)

• MIMLIB8:MDR.OLB (object library)

• MIMLIB8:MIMDB8.EXE (shareable library)

If an image linked in this fashion is activated, it will translate the logical name
MIMDB8 to get the name of the Mimer SQL shareable library to be used. The
logical name will have been defined by the MIMSETUP8 command procedure.

 Win The example makefile .\dev\makefile.mak below the installation directory
should be copied and used in the recommended way to build applications on
Windows platforms.

If applications are linked as recommended above to reference the Mimer SQL
shared library, they will automatically use a new version of Mimer SQL when
it is installed, without having to be re-linked.

Communicating with the application program 3-1

Mimer SQL version 8.2
Programmer’s Manual

3 COMMUNICATING WITH THE
APPLICATION PROGRAM

Information is transferred between the embedded SQL application program and
the Mimer SQL database manager in four ways:

• through host variables used in SQL statements

• through the status variable SQLSTATE

• through the diagnostics area, accessed by the SQL statement GET
DIAGNOSTICS

• through an SQL descriptor area (dynamic area).

3.1 Host variable usage

Host variables are used in SQL statements to pass values between the database
and the application program.

3.1.1 Declaring host variables
All variables used in SQL statements must be declared for the preprocessor, by
enclosing the variable declarations between the SQL statements BEGIN
DECLARE SECTION and END DECLARE SECTION. Any variables
declared outside the SQL DECLARE SECTION will not be recognized by the
preprocessor. Variables are declared within the section using the normal host
language syntax; for instance the following example in C declares only the
character variables user and passw for use in SQL statements:

int rc,
 pf,
 count;
exec sql BEGIN DECLARE SECTION;
char user[129],
 passw[19];
exec sql END DECLARE SECTION;

Variables which are not used in SQL statements may also be declared in the
SQL DECLARE SECTION. This will however extend the symbol table
established by the preprocessor more than is necessary.

The use of array variables is currently not supported in embedded Mimer SQL
(except for character string variables).

3-2 Communicating with the application program

Mimer SQL version 8.2
Programmer’s Manual

3.1.2 Using variables in statements
Host variables may be used:

• to receive information from the database (SELECT INTO, FETCH, CALL
and SET statements)

• to assign values to columns in the database (CALL, INSERT and UPDATE
statements)

• to manipulate information taken from the database or contained in other
variables (in expressions)

• to get descriptor and diagnostics information (GET DESCRIPTOR, SET
DESCRIPTOR and GET DIAGNOSTICS)

• in dynamic SQL statements

In all these contexts, the data type of the host variable or database column must
be compatible with the data type of the corresponding database value or host
variable. General considerations of data type compatibility may be found in
Chapter 4 of the Mimer SQL Reference Manual. Host language specific
aspects are described in Appendix A of this manual.

If you have an INTEGER column containing values that do not fit into the
largest integer variable allowed on your machine (remember that Mimer SQL
supports INTEGER values with a precision of up to 45 digits), you can, for
example, use a character string or float host variable for that column. In this
case, Mimer SQL automatically performs the necessary conversions.

Host variable names are preceded by a colon when used in SQL statements (see
the Mimer SQL Reference Manual).

Note: The colon is not part of the host variable name, and should not be used
when the variable is referenced in host language statements.

Example:

exec sql SELECT column
 INTO :var
 FROM table
 WHERE condition;
IF var < limit THEN ...

3.1.3 Indicator variables
In embedded SQL, indicator variables associated with main variables are used
to handle NULL values in database tables. Indicator variables should be an
exact numeric data type with scale zero and are declared in the same way as
main variables in the SQL DECLARE SECTION. See Appendix A, under
“Host variables” - “Declaration”, for a description of how main and indicator
variables should be declared in the specific host languages.

Communicating with the application program 3-3

Mimer SQL version 8.2
Programmer’s Manual

Indicator variables are used in SQL statements by either specifying the name of
the indicator variable, preceded by a colon, after the main variable name or by
using the keyword INDICATOR

:main_variable :indicator_variable

or
:main_variable INDICATOR :indicator_variable

Transfer from tables to host variables
When a NULL value is retrieved into a host variable by a FETCH, SELECT
INTO, EXECUTE or CALL statement, the value of the main variable is
undefined and the value of the indicator variable is set to -1. An error occurs if
the main variable is not associated with an indicator variable in the SQL
statement. It is therefore recommended as a precaution that indicator variables
are used for all columns which are not defined as NOT NULL in the database.

An indicator variable should always be used when a host variable is used for a
routine parameter with mode OUT or INOUT because a NULL value can
always be returned via a routine parameter.

When a non-null value is assigned to a main variable associated with an
indicator variable, the indicator variable is set to zero or a positive value. A
positive value indicates that the value assigned to a main character variable was
truncated, and gives the length of the original value before truncation.

Transfer from host variables to tables
When the host variable associated with an indicator variable is used to assign a
value to a column, the value assigned is NULL if the value of the indicator
variable is set to -1. In such a case the value of the main variable is irrelevant.
If the indicator variable has a value of zero or a positive value, or if the main
variable is not associated with an indicator variable, the value of the main
variable itself is assigned to the column.

3.2 The SQLSTATE variable

The SQLSTATE variable provides the application, in a standardized way, with
return code information about the most recently executed SQL statement.
SQLSTATE must be declared between the BEGIN DECLARE SECTION and
the END DECLARE SECTION (i.e. in the SQL declare section), as a 5
character long string (excluding any terminating null byte). The return codes
provided by SQLSTATE can contain digits and capital letters.

SQLSTATE consists of two fields. The first two characters of SQLSTATE
indicates a class, and the following three characters indicates a subclass. Class
codes are unique, but subclass codes are not. The meaning of a subclass code
depends on the associated class code. To determine the category of the result of
an SQL statement, the application can test the class of SQLSTATE according
to the following:

3-4 Communicating with the application program

Mimer SQL version 8.2
Programmer’s Manual

SQLSTATE class Result category

'00' Success

'01' Success with warning

'02' No data

Other Error

For a list of SQLSTATE values see Appendix B.

3.3 The diagnostics area

The diagnostics area holds status information for the most recently executed
SQL statement. There is always one diagnostics area for an application, no
matter how many connections the application holds. Information from the
diagnostics area is selected and retrieved by the GET DIAGNOSTICS
statement. The syntax for GET DIAGNOSTICS (including a description of the
diagnostics area) is in the Mimer SQL Reference Manual. The GET
DIAGNOSTICS statement does not change the contents of the diagnostics area,
although it does set SQLSTATE.

3.4 The SQL Descriptor Area

An SQL descriptor area is used to hold descriptive information required for
execution of dynamic SQL statements. SQL descriptor areas are allocated and
maintained by embedded SQL statements, described in the Mimer SQL
Reference Manual.

The SQL descriptor area is discussed in detail in Section 7.3.

Idents and database connections 4-1

Mimer SQL version 8.2
Programmer’s Manual

4 IDENTS AND DATABASE
CONNECTIONS

An ident is an authorization-id used to identify users, program idents and group
idents in a Mimer SQL database. User idents are authorized to connect to the
database, program idents provide specific privileges required when executing
certain operations and a group ident is a collective identity which provides
common privileges to its members.

Idents connect to a database through the CONNECT statement and the ENTER
statement is used to take up the privileges provided by a program ident (see
below).

A database in Mimer SQL refers to the complete collection of databanks which
may be accessed from one Mimer SQL system. Mimer SQL supports the ability
to change between different connections (i.e. access different databases) from
within the same application program. An application program may have several
database connections open simultaneously, although only one is active at any
one time.

4.1 Mimer SQL idents

There are four kinds of ident in Mimer SQL:

USER idents are authorized to connect to a Mimer SQL database, by
using the CONNECT statement in an application program or
by entering the correct ident name and password in an
interactive environment. Any privileges a user ident holds
may be exercised once the ident has logged on. User idents
are generally associated with specific physical individuals
authorized to connect to the database.

OS_USER is an ident type which allows the user currently logged in to
the operating system to connect to a Mimer SQL database
without providing a username or password. If an OS_USER
ident is defined with a password in Mimer SQL, the ident may
connect to Mimer SQL in the same way as any other user
ident (i.e. by providing a username and password). An
OS_USER ident is subject to the same access restrictions as
any other user ident.

4-2 Idents and database connections

Mimer SQL version 8.2
Programmer’s Manual

PROGRAM idents may not initiate a connection to a Mimer SQL database,
but may be entered from within an application program or
interactive environment by using the ENTER statement. A
connection should have been established before the ENTER
statement is used (see Section 4.3.1). Entering a program ident
is analogous to logging on as a user ident, in that the program
ident gains access to the system and any privileges the ident
holds become applicable. Program idents are generally
associated with specific functions within the system, not with
physical individuals.

GROUP idents are collective identities for groups of user or program
idents. Any privileges granted to or revoked from a group
ident automatically apply to all members of the group. Any
ident can be a member of as many groups as required, and one
group can include any number of members. Group idents
provide a facility for organizing the privilege structure in the
database system.

USER, OS_USER and PROGRAM idents are authorized users of the system.
Every USER and PROGRAM ident has a unique ident name and a private
password which must be correctly supplied to the CONNECT or ENTER
statement in application programs. An OS_USER may access the database
without explicitly providing a username or password on condition that the
username for the user currently logged in to the operating system correspond to
the definition of an OS_USER in the Mimer SQL database.

4.2 Access to the database

The access of each ident to the database is defined by privileges granted within
the system. The privileges are grouped as follows:

System privileges
BACKUP gives the right to perform databank backup and restore

operations
DATABANK gives the right to create databanks
IDENT gives the right to create idents
SCHEMA gives the right to create schemas
SHADOW gives the right to create and manage databank shadows
STATISTICS gives the right to execute the UPDATE STATISTICS

statement

Object privileges
TABLE gives the right to create tables in a specified databank
EXECUTE gives the right to call a routine or to enter (connect to) a

specified program ident
MEMBER grants membership in a specified group ident
USAGE gives the right to specify the named domain where a data type

would normally be specified (in contexts where use of
domains is allowed) or the right to use a specified sequence

Idents and database connections 4-3

Mimer SQL version 8.2
Programmer’s Manual

Access privileges
SELECT gives the right to read the table contents
INSERT gives the right to add new rows to the table
DELETE gives the right to remove rows from the table
UPDATE gives the right to update the contents of the table
REFERENCES gives the right to use the primary key or unique keys of the

table as a foreign key from another table

System privileges are automatically granted to the system administrator at
installation, and may be passed on to other idents. Object and access privileges
are initially granted only to the creator of an object. The creator may however
grant the privileges on to other idents.

All privileges may be granted with or without GRANT OPTION, which
controls the right of the receiving ident to grant the privilege on to another
ident.

Certain operations are not controlled by explicit privileges, but may only be
performed by the creator of the object involved. These operations include
ALTER (with the exception of ALTER IDENT, which may be performed by
either the ident himself or by the creator of the ident), DROP, and
COMMENT. Similarly, privileges may only be revoked by their grantor.

4.3 Connecting to a database

4.3.1 Connecting
Only idents of type USER or OS_USER are allowed to log on to Mimer SQL.
Logging on is requested from an application program with the CONNECT
statement (see the Mimer SQL Reference Manual for the syntax description).

The CONNECT statement establishes a connection between a user and a
database. The user may be a USER ident (in which case the password must be
provided) or an OS_USER (if such an ident has been created in the Mimer SQL
database). To connect as the OS_USER ident with the same name as the
current operating system user, provide an empty ident name string.

A connection may be established to any local or remote database, which has
been made accessible from the current machine (see the Mimer SQL System
Management Handbook for details), by specifying the database by name or by
using the keyword DEFAULT.

If the keyword DEFAULT is used, the OS_USER ident is used for the
connection attempt. If the database name is given as an empty string, the
DEFAULT database is used.

The database may be given an explicit connection name for use in
DISCONNECT and SET CONNECTION statements. If no explicit name is
given, the database name is used as the connection name.

4-4 Idents and database connections

Mimer SQL version 8.2
Programmer’s Manual

Normally, CONNECT should be the first executable SQL statement in an
application program using embedded SQL. However, if an executable
statement is issued before any connection has been established in the current
application, an implicit connection will be attempted. An implicit connection
is made to the DEFAULT database using the current operating system user.
In order for the connect attempt to be successful, the current operating system
user must be defined as an OS_USER ident in Mimer SQL and the DEFAULT
database must be defined as a local database on the machine on which the
current operating system user is defined. If an implicit connection has
previously been established in the application and there is no current
connection, issuing an executable statement will result in a new attempt to
make the same implicit connection. However, if an explicit connection has
previously been established in the application and there is no current
connection, issuing an executable statement will cause an error.

4.3.2 Changing connection
A connection established by a successful CONNECT statement is
automatically active. An application program may make multiple connections
to the same or different databases using the same or different idents, provided
that each connection is identified by a unique connection name. Only the most
recent connection is active. Other connections are dormant, and may be made
active by the SET CONNECTION statement. Resources such as cursors used
by a connection are saved when the connection becomes dormant, and are
restored by the appropriate SET CONNECTION statement.

The statement sequence below connects to a user-specific database as a
specified ident name and to the DEFAULT database as OS_USER. The user-
specific connection is initially active. Then the DEFAULT connection is
activated. Finally the user-specific connection is activated again using SET
CONNECTION.

exec sql CONNECT TO 'db' AS 'common' USER 'ident' USING 'pswd';
...
exec sql CONNECT TO DEFAULT;
...
-- Set activate connection to COMMON
exec sql SET CONNECTION 'common';

Note: If different connections are made with different idents, the apparent
access rights of the application program may change when the current
connection is changed.

4.3.3 Disconnecting
The DISCONNECT statement breaks the connection between a user and a
database and frees all resources allocated to that user for the specified
connection (all cursors are closed and all compiled statements are dropped).
The connection to be broken is specified as the connection name or as one of
the keywords ALL, CURRENT or DEFAULT. (If a transaction is active when
the DISCONNECT is executed, a ROLLBACK is performed).

Idents and database connections 4-5

Mimer SQL version 8.2
Programmer’s Manual

A connection does not have to be active in order to be disconnected. If an
inactive connection is broken, the application still has uninterrupted access to
the database through the current (active) connection, but the broken connection
is no longer available for activation with SET CONNECTION.

If the active connection is broken, the application program cannot access the
database until a new CONNECT or SET CONNECTION statement is issued.

Note: The distinction between breaking a connection with DISCONNECT and
making a connection inactive by issuing a CONNECT or SET CONNECTION
for a different connection is, a broken connection has no saved resources and
cannot be reactivated by SET CONNECTION.

The table below summarizes the effect on the connection “con1” of
CONNECT, DISCONNECT and SET CONNECTION statements depending
on the state of the connection.

Statement con1 non-existent con1 current con1 inactive

CONNECT TO db1 AS con1 con1 current error - connection
already exists

error - connection
already exists

DISCONNECT con1 error - connection
does not exist

con1 disconnected con1 disconnected

SET CONNECTION con1 error - connection
does not exist

ignored con1 made current

CONNECT TO db2 AS con2 - con1 made inactive con1 unaffected

Statement con1 non-existent con1 current con1 inactive

DISCONNECT con2 - con1 unaffected con1 unaffected

SET CONNECTION con2 - con1 made inactive con1 unaffected

4.3.4 Program idents - ENTER and LEAVE
Program idents may be entered from within an application program by using
the ENTER statement (see the Mimer SQL Reference Manual for the syntax
description). This statement must be issued in a context where a user is already
connected as program idents cannot connect directly to the system.

When a program ident is entered, any privileges granted to that ident become
current and privileges belonging to the previous ident (i.e. the ident issuing the
ENTER statement) are suspended. However, any cursors opened by the
previous ident remain open.

Program idents are disconnected with the LEAVE statement. If LEAVE is
requested with the optional keyword RETAIN, the full environment of the
program ident being left is kept. Cursors left open by the program ident are
deactivated but not closed, and retain their positions in the respective result
tables. The environment is restored if the program ident is re-entered.

4-6 Idents and database connections

Mimer SQL version 8.2
Programmer’s Manual

If LEAVE is requested without RETAIN, the environment of the program ident
being left is dropped. This means that all cursors and compiled statements are
destroyed.

Note: The distinction between leaving a program ident with the option
RETAIN and entering a new program ident is, while both operations save the
environment of the program ident, cursors left open at ENTER may still be
used but those left open at LEAVE RETAIN are inaccessible until the program
ident is re-entered.

The statements ENTER and LEAVE may not be issued within transactions (see
Chapter 6).

Accessing database objects 5-1

Mimer SQL version 8.2
Programmer’s Manual

5 ACCESSING DATABASE OBJECTS

5.1 Retrieving data using cursors

Data is retrieved from database tables with the FETCH statement, which
fetches the values from an individual row in a result set into host variables. The
result set is defined by a SELECT construction or a result set procedure CALL
(see Section 8.5) used in a cursor declaration. The cursor may be thought of as
a pointer which moves through the rows of the result set as successive FETCH
statements are issued. An exception is raised to indicate when the FETCH has
reached the end of the result set. Data retrieval involves several steps in the
application program code, which are as follows:

• declaration of host variables to hold data

• declaration of a cursor with the appropriate SELECT conditions or result
set procedure CALL

• opening the cursor

• performing the FETCH

• closing the cursor

These steps are built into the application program as shown in the general
frameworks below (only SQL statements are shown in the frameworks).

For a SELECT:

exec sql BEGIN DECLARE SECTION;
... var1, var2, ... varn ...
exec sql END DECLARE SECTION;

exec sql DECLARE cursor-name CURSOR FOR select-statement;

exec sql OPEN cursor-name;

loop as required
 exec sql FETCH cursor-name INTO :var1,:var2,...,:varn;
end loop

exec sql CLOSE cursor-name;

5-2 Accessing database objects

Mimer SQL version 8.2
Programmer’s Manual

For a result set procedure CALL:

exec sql BEGIN DECLARE SECTION;
... var1, var2, ... varn ...
exec sql END DECLARE SECTION;

exec sql DECLARE cursor-name CURSOR FOR CALL routine-invocation;

exec sql OPEN cursor-name;

loop as required
 exec sql FETCH cursor-name INTO :var1,:var2,...,:varn;
end loop

exec sql CLOSE cursor-name;

5.1.1 Declaring host variables
All host variables used to hold data fetched from the database and used in
selection conditions or as result set procedure parameters must be declared
within an SQL DECLARE SECTION (see Chapter 3). Indicator variables for
columns that may contain NULL values must also be declared. The same
indicator variable may be associated with different main variables at different
times, but declaration of a dedicated indicator variable for each main variable
is recommended for clarity.

5.1.2 Declaring the cursor
A cursor operates as a row pointer associated with a result set. A cursor is
defined by the DECLARE CURSOR statement and the set of rows addressed
by the cursor is defined by the SELECT statement in the cursor declaration.
Cursors are local to the program in which they are declared. A cursor is given
an identifying name when it is declared.

DECLARE CURSOR is a declarative statement which does not result in any
implicit connection to a database (see Chapter 4 for details on connecting to a
database). Preprocessing the statement generates a series of parameters used by
the SQL compiler but does not generate any executable code; the query-
expression or result set procedure call in the cursor declaration is not executed
until the cursor is opened.

If the cursor declaration contains a CALL to a result set procedure, it is
FETCH that actually executes the procedure. The RETURN statement is used
from within the result set procedure to return a row of the result set. Each
FETCH causes statements in the result set procedure to execute until a
RETURN statement is executed, which will return the row data defined by it.
Execution of the procedure is suspended at that point until the next FETCH. If,
during execution, the end of the procedure is encountered instead of a
RETURN statement, the FETCH result is end-of-set. See Section 8.6 for a
detailed description of result set procedures.

It is advisable always to use an explicit list of items in the SELECT statement
of the cursor declaration. The shorthand notations “SELECT *” and “SELECT
table.*” are useful in interactive SQL, but can cause conflicts in the variable
lists of FETCH statements if the table definition is changed.

Accessing database objects 5-3

Mimer SQL version 8.2
Programmer’s Manual

The cursor declaration can use host variables in the WHERE or HAVING
clause of the SELECT statement. The result set addressed by the cursor is then
determined by the values of these host variables at the time when the cursor is
opened.

The same cursor declaration can thus address different result sets depending on
when the cursor is opened, for example:

exec sql DECLARE C1 CURSOR..; -- cursor with host variables
set variables
exec sql OPEN C1; -- open one result set
...
exec sql CLOSE C1;
change variables
exec sql OPEN C1; -- open different result set

Scrollable cursors can be declared using the SCROLL keyword. When a cursor
is declared as scrollable, records can be fetched using an orientation
specification. This makes it possible to scroll through the result set with the
cursor.

Cursors which are to be used only for retrieving data may be declared with a
FOR READ ONLY clause in the SELECT statement. This can improve
performance slightly in comparison with cursors which permit update and
delete operations.

5.1.3 Opening the cursor
A declared cursor must be opened with the OPEN statement before data can be
retrieved from the database. The OPEN statement evaluates the cursor
declaration in terms of

• the privileges the current user holds on any tables and views accessed by
the cursor

• the values of any host variables used in the SELECT clause

• for a cursor calling a result set procedure, whether the current user has the
required EXECUTE privilege on the procedure and also the values of any
IN parameters

When the OPEN statement has been executed, the cursor is positioned before
the first row in the result set.

5.1.4 Retrieving data
Once a cursor has been opened, data may be retrieved from the result set with
FETCH statements (see the Mimer SQL Reference Manual for the syntax
description).

Host variables in the variable list correspond in order to the column names
specified in the SELECT clause of the cursor declaration. The number of
variables in the FETCH statement may not be more than the number of
columns selected. The number of variables may be less than the number of
columns selected, but a “success with warning”-code is then returned in
SQLSTATE.

5-4 Accessing database objects

Mimer SQL version 8.2
Programmer’s Manual

A suitably declared record structure may be used in place of a variable list in
host languages where this is supported (see Appendix A).

Each FETCH statement moves the cursor to the specified row in the result set
before retrieving data. In strict relational algebra, the ordering of tuples in a
relation (the formal equivalent of rows in a table) is undefined. The SELECT
statement in the cursor declaration may include an ORDER BY clause if the
ordering of rows in the result set is important to the application.

Note: A cursor declared with an ORDER BY clause cannot be used for
updating table contents.

If no ORDER BY clause is specified, the ordering of rows in the result set is
unpredictable.

Note: The variables into which data is fetched are specified in the FETCH
statement, not in the cursor declaration. In other words, data from different
rows in the result set may be fetched into different variables.

When there are no more rows to fetch, the exception condition NOT FOUND
will be raised. The following construction thus fetches rows successively until
the result set is exhausted:

exec sql DECLARE C1 CURSOR FOR select-statement;
exec sql OPEN C1;

exec sql WHENEVER NOT FOUND GOTO done;
loop
 exec sql FETCH C1 INTO :var1,:var2,...,:varn;
end loop

done:
exec sql CLOSE C1;

The access rights for a user are checked when the cursor is opened and they
remain unchanged for that cursor until the cursor is closed. For example, if an
application program declares and opens a cursor, then SELECT access on the
table is revoked from the user running the program, data can still be fetched
from the result set as long as the cursor remains open. Any subsequent attempt
to open the same cursor will, however, fail.

5.1.5 Closing the cursor
An opened cursor remains open until it is closed with the CLOSE statement, a
COMMIT or ROLLBACK is performed or until the current connection is
disconnected. Once a cursor is closed, the result set is no longer accessible.
The cursor declaration remains valid, however, and a new cursor may be
opened with the same declaration.

Note: The result set addressed by the new cursor may not be the same if the
contents of the database or the values of variables used in the declaration have
changed.

Accessing database objects 5-5

Mimer SQL version 8.2
Programmer’s Manual

Normally, resources used by the cursor remain allocated when the cursor is
closed and will be used again if the cursor is re-opened. The optional form
“CLOSE cursor-name RELEASE” deallocates cursor resources. Use of
CLOSE with the RELEASE option is recommended in application programs
which open a large number of cursors, particularly where system resources are
limited.

Note: The use of CLOSE with the RELEASE option may slow down
performance if there is a following OPEN, since it requires that new resources
are allocated at the next OPEN for that cursor. For this reason it should only be
used when necessary.

Cursors are local to a connection and remain open but dormant when the
connection is made dormant. The state of dormant cursors is fully restored
(including result set addressed and position in the result set) when the
connection is reactivated. Cursors are, however, closed and cursor resources
are deallocated, when a connection is disconnected.

Note: Cursors opened in a program ident context are closed and resources
deallocated when LEAVE is executed within the same connection, unless
LEAVE RETAIN is specified.

5.2 Retrieving single rows

If the result of a SELECT statement is known to be a single row, the SELECT
INTO statement may be used as an alternative to fetching data through a
cursor. This is a much simpler programming construction, since cursors are not
used and the only requirement is that host variables used in the SELECT INTO
statement are declared in the DECLARE SECTION. However, there are two
disadvantages associated with SELECT INTO:

• An error occurs if the result set addressed by the search condition contains
more than one row. In other words, SELECT INTO can only be reliably
used when there is no possibility of a multi-row result set (essentially
when the search condition includes a UNIQUE or PRIMARY KEY column
or returns just the result of a set function, e.g. COUNT(*)).

• Execution of the SELECT INTO statement involves a check that the result
set contains a single row, which may incur unnecessary overhead. Even if
it is known that the result row is unique, a single FETCH operation
through a cursor may be a more efficient implementation.

Use of a SELECT INTO statement is justified when the result set may contain
several rows, but it is a condition for continued execution of the application
program that the result row is unique. With a cursor, this would require a
construction which checked that one and only one FETCH operation could be
performed (alternatively, use a separate SELECT COUNT with the same
search condition as the cursor). In such a case, a SELECT INTO statement with
a check on the return code (see Chapter 10) is probably the preferred solution.

A CALL statement can be used to return information to the one or more host
variables associated with the output parameter(s) of the procedure.

5-6 Accessing database objects

Mimer SQL version 8.2
Programmer’s Manual

A SET statement can be used with a function invocation to return information
to one host variable.

5.3 Retrieving data from multiple tables

Data can be retrieved from multiple tables in embedded SQL by addressing
several tables in the SELECT statement of the cursor declaration, in the same
way as in interactive SQL. The preprocessor generates a SELECT statement
addressing multiple tables, which is optimized by the SQL compiler when the
cursor is opened. For example:

exec sql DECLARE C1 CURSOR FOR SELECT ... FROM A, B
 WHERE A.X=B.Y;
exec sql OPEN C1;
...

An alternative way to link information between tables could be to define the
search condition for one cursor in terms of a variable fetched through another
cursor:

exec sql DECLARE C1 CURSOR FOR SELECT X FROM A;
exec sql DECLARE C2 CURSOR FOR SELECT ... FROM B WHERE Y=:hostx;

exec sql OPEN C1;
exec sql FETCH C1 INTO :hostx;
exec sql CLOSE C1;

exec sql OPEN C2;
exec sql FETCH C2;
...

When considering the two alternatives, the first one is preferred. The reason for
this is:

• The SQL optimizer gets the full information about the query that it is
supposed to return a result set for. In this way the optimizer can make more
use of statistical information and it can thereby optimize the query to
execute in a more efficient way.

• The application will require less resources in form of open cursors.

• If the application is run in a client/server environment, the second
alternative will cause more communication over the network, since it will
send data over the net which is only used to determine which data from the
second cursor that will be selected and is of no real interest to the
application.

• The application will be more compact as well as easier to understand and
maintain.

Accessing database objects 5-7

Mimer SQL version 8.2
Programmer’s Manual

5.3.1 The 'Parts explosion' problem
A special case of data retrieval from multiple tables is the use of stacked
cursors to fetch data from logical copies of the same table, in a manner that
provides a solution to the so called “Parts explosion” problem. A cursor can be
defined as REOPENABLE and the same cursor may be opened several times in
succession in the same application program, each previous instance of the
cursor being saved on a stack and restored when the following instance is
closed. A FETCH statement refers to the most recently opened instance of a
cursor. Each instance of the cursor addresses an independent result set and the
position of each cursor in its own result set is saved on the stack.

Note: Result sets addressed by different instances of a cursor may differ
according to the conditions prevailing when the cursor instance was opened.

The state of the cursor stack needs to be controlled by the application. A
counter can be used to indicate if there are more instances of the cursor
remaining on the stack. See the example that follows.

Stacked cursors are typically used in application programs which traverse a tree
structure stored in the database.

For example (this is a simplified variant of the “parts explosion” problem),
traverse a tree structure and print out the leaf nodes:

Tree Relational table

 1 •ÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞé
 ¦ ¦ Parent ¦ Child ¦
 ¦ ðÞÞÞÞÞÞÞÞÞÞÞÞßÞÞÞÞÞÞÞÞÞÞ¶
 •ÞÞÞÞÞÅÞÞÞÞÞé ¦ 1 ¦ 2 ¦
 ¦ ¦ ¦ 1 ¦ 3 ¦
 2 3 ¦ 2 ¦ 4 ¦
 ¦ ¦ ¦ 2 ¦ 5 ¦
 •ÞÞÅÞÞé •ÞÞÞÞßÞÞÞÞé ¦ 3 ¦ 6 ¦
 ¦ ¦ ¦ ¦ ¦ ¦ 3 ¦ 7 ¦
 4 5 6 7 8 ¦ 3 ¦ 8 ¦
 ÷ÞÞÞÞÞÞÞÞÞÞÞÞÅÞÞÞÞÞÞÞÞÞÞç

5-8 Accessing database objects

Mimer SQL version 8.2
Programmer’s Manual

 procedure TRAVERSE;

 integer CSTACK,LASTC;
 exec sql BEGIN DECLARE SECTION;
 integer PARENT,CHILD;
 string SQLSTATE(5);
 exec sql END DECLARE SECTION;
 begin
 exec sql DECLARE CTREE REOPENABLE CURSOR FOR
 SELECT PARENT,CHILD
 FROM TREE
 WHERE PARENT = :PARENT;
 CSTACK := 1;
 LASTC := 1;
 PARENT := 1; -- start at root node
 exec sql OPEN CTREE;
 loop
 exec sql FETCH CTREE INTO :PARENT,:CHILD;
 if SQLSTATE = "02000" then -- no more children
 exec sql CLOSE CTREE; -- pop the parent
 CSTACK := CSTACK-1;
 exit when CSTACK = 0;
 if CSTACK >= LASTC then
 print(PARENT); -- write leaf node
 end if;
 LASTC := CSTACK;
 else -- step to next level
 PARENT := CHILD;
 exec sql OPEN CTREE; -- stack the current parent
 and open new level
 CSTACK := CSTACK+1;
 end if;
 end loop;
 end TRAVERSE;

The counters CSTACK and LASTC keep track of the number of stacked cursor
levels and the latest level in the tree hierarchy respectively.

5.4 Entering data into tables

5.4.1 Cursor-independent operations
The SQL statements CALL, INSERT, DELETE and UPDATE, as well user-
defined function invocations, embedded in application programs operate on a
set of rows in a table or view in exactly the same way as in interactive SQL.
Host variables may be used in the statements to supply values or set search
conditions. Host variables may be used as routine parameters.

Examples:

exec sql UPDATE BOOKADM.FREEROOMS
 SET FREECOUNT = FREECOUNT-1
 WHERE HOTELCODE = :HOTCOD
 AND ROOMTYPE = :BOOK_ROOMT
 AND ON_DATE >= :BOOK_ARRIVE
 AND ON_DATE < :BOOK_DEPART;

Accessing database objects 5-9

Mimer SQL version 8.2
Programmer’s Manual

exec sql CALL ASK_FREEROOMS(:HOTCOD,
 :BOOK_ROOMT,
 CURRENT_DATE,
 CURRENT_DATE + INTERVAL '7' DAY,
 :FREEROOM_COUNT);

From the standpoint of the application program, each statement is a single
indivisible operation, regardless of how many columns and rows are affected.

5.4.2 Updating and deleting through cursors
The UPDATE CURRENT and DELETE CURRENT statements (see the
Mimer SQL Reference Manual for the syntax description) allow update and
delete operations respectively, to be controlled on a row-by-row basis from an
application program. These statements operate through cursors, which are
declared and opened as described above for FETCH.

These statements operate on the current row of the cursor referenced in the
statement. If there is no current row (e.g. the cursor has been opened but not
yet positioned with a FETCH statement), an error is raised.

UPDATE CURRENT changes the content of the current row according to the
SET clause in the statement, but does not change the position of the cursor.
Two consecutive UPDATE CURRENT statements will therefore update the
same row twice.

DELETE CURRENT deletes the current row and does not move the cursor;
after a DELETE CURRENT statement, the cursor is positioned “between
rows” and there is no current row. The cursor must be moved to the next row
with a FETCH statement before any other operation can be performed through
the cursor.

For both UPDATE CURRENT and DELETE CURRENT statements, the table
name as used in the statement must be exactly the same as the table name
addressed in the cursor declaration. The cursor must also address an updatable
result set.

If a FOR UPDATE OF clause is used to specify which fetched columns may be
updated, only the columns specified may appear in the corresponding UPDATE
statement.

Cursors are not updatable if the data retrieval statement in the cursor
declaration contains any of the following features at the top level (i.e. not in a
subselect) of the statement:

• reference to more than one table in the FROM clause

• reference to a read-only view in the FROM clause

• the keyword DISTINCT

• set-functions in the SELECT list (AVG, COUNT, MAX, MIN, SUM)

• arithmetic or string concatenation expressions in the SELECT list

• a GROUP BY clause

• an ORDER BY clause

• the UNION keyword

5-10 Accessing database objects

Mimer SQL version 8.2
Programmer’s Manual

• the result set of an explicit inner or outer JOIN

• a CALL to a result set procedure

When to use UPDATE CURRENT, DELETE CURRENT
UPDATE CURRENT and DELETE CURRENT statements are useful for
manipulating single rows in interactive applications where rows are displayed,
and the user decides which rows to delete or update. The example below
illustrates the program framework for such an operation (the construction is
similar for a DELETE CURRENT operation):

exec sql BEGIN DECLARE SECTION;
...
exec sql END DECLARE SECTION;
...
exec sql DECLARE C1 CURSOR FOR ... ;
...
exec sql OPEN C1;
exec sql WHENEVER NOT FOUND GOTO done;
loop
 exec sql FETCH C1 INTO :var1,:var2,...,:varn;
 display var1,var2,...,varn;
 prompt "Update this row?";
 if answer = "yes" then
 prompt "Give new values";
 exec sql UPDATE tab SET col1 = :newval1, col2 = :newval2, ...
 WHERE CURRENT OF C1;
 display "row updated";
 end if;
 prompt "Display next row?";
 if answer = "no" then
 exit;
 end if;
end loop;

done:
exec sql CLOSE C1;

In situations where there is no requirement to interactively choose rows and
where all the rows to be updated or deleted can be specified completely in
terms of a WHERE clause, it is more efficient to do so rather than use a cursor.
An operation completely specified as a WHERE clause is executed as a single
statement, rather than a series of statements (i.e. one for each FETCH etc.).

Transaction handling and database security 6-1

Mimer SQL version 8.2
Programmer’s Manual

6 TRANSACTION HANDLING AND
DATABASE SECURITY

6.1 Transaction principles

A transaction is an “atomic” operation which may not be divided into smaller
operations. Three transaction phases exist: build-up, during which the database
operations are requested; prepare, during which the transaction is validated;
commitment, during which the operations performed in the transaction are
written to disk.

Read-only transaction have only two phases: build-up and prepare.

Transaction build-up may be started explicitly or implicitly (see Section 6.2.1);
prepare and commitment are both initiated explicitly through a request to
commit the transaction (using COMMIT). In interactive application programs,
build-up takes place typically over a time period determined by the user, while
prepare and commitment are part of the internal process of committing a
transaction, which occurs on a time-scale determined by machine operations.

6.1.1 Concurrency control
Since Mimer SQL uses optimistic concurrency control, deadlocks never occur
(see Section 6.1.2 for a further discussion of deadlocks). How optimistic
concurrency control works in Mimer SQL is described below.

The transaction begins by taking a snapshot of the database in a consistent
state. During build-up, changes requested to the contents of the database are
kept in a write-set and are not visible to other users of the system. This allows
the database to remain fully accessible to all users. The application program in
which build-up occurs will see the database as though the changes had already
been applied. Changes requested during transaction build-up become visible to
other users when the transaction is successfully committed.

During build-up, a read-set records the state of the database as seen at the time
of each operation (including intended changes). If the state of the database at
commitment is inconsistent with the read-set, a conflict is reported and the
transaction is rolled back (i.e. the write-set is erased and no changes are made
to the database). This can happen if, for instance, a transaction updates a row
which gets deleted by another user after build-up has started but before the
transaction is committed. The application program is responsible for taking
appropriate action if a transaction conflict occurs.

6-2 Transaction handling and database security

Mimer SQL version 8.2
Programmer’s Manual

Concurrency control guidelines
Because of the nature of this concurrency control protocol, it is important that
some of the implications are understood.

A transaction that exists for a long elapsed time has a greater chance of
conflicting with changes made by other users than a transaction with a short
elapsed time.

At the other extreme, an application that immediately commits every executed
SQL statement will seldom meet any conflicts, but will incur unnecessary
overhead.

In general:

• keep transactions as short as is reasonably possible

• keep interactive user dialogs outside of transactions

A common situation that can generate unnecessarily large read-sets is the
following: An application program reads through the rows in a table in a loop
construct, with a conditional exit to update a row on user intervention. It is
tempting to simply place a COMMIT after the update statement:

loop
 exec sql FETCH C1 INTO :var1,:var2,...,:varn;
 display var1,var2,...,varn;
 prompt "Update row?";
 exit when answer = "yes";
end loop

exec sql UPDATE table SET ... WHERE CURRENT OF C1;
exec sql COMMIT;

However, the FETCH loop can create a large read-set while waiting for the
user update request, risking transaction conflict at the UPDATE. A tempting
solution for this problem might be:

loop
 exec sql FETCH C1 INTO :var1,:var2,...,:varn;
 display var1,var2,...,varn;
 prompt "Update row?";
 exit when answer = "yes";
 exec sql ROLLBACK;
end loop;

exec sql UPDATE table SET ... WHERE CURRENT OF C1;
exec sql COMMIT;

But since ROLLBACK closes all cursors, this will not work. Instead,
something like the following is a better approach:

exec sql SET TRANSACTION START EXPLICIT

loop
 exec sql FETCH C1 INTO :var1,:var2,...,:varn;
 display var1,var2,...,varn;
 prompt "Update row?";
 exit when answer = "yes";
end loop

exec sql START;
exec sql UPDATE table SET ...
 WHERE col1 = :var1,
 col2 = :var2, ...
exec sql COMMIT;

Transaction handling and database security 6-3

Mimer SQL version 8.2
Programmer’s Manual

By using this mechanism, only the update statement is included in the
transaction, thus minimizing the risk of a transaction conflict.

6.1.2 Locking
Deadlock situations, which can be relatively common in some database
management systems where records are locked during transaction build-up, can
not occur in Mimer SQL. In Mimer SQL it is impossible for two processes to
be waiting for a record locked by the other process. In some other database
management systems this situation may require operator intervention to resolve
the problem.

In any database system, at some stage in a transaction, the data records must be
locked to prevent access by other processes and to ensure that the transaction is
not interrupted. In the Mimer SQL system, no change is made to the database
contents during the transaction build-up and no records are locked. This means
that the database can be freely accessed (and updated) by any other process; the
data accessed by the transaction is only locked during the commit phase. In this
way, locks are held only for a very short period of time. The problems
associated with locking are further reduced since only those records that are
actually to be updated are locked. Other data in the same table continues to be
accessible to other transactions.

6.2 Transaction control statements

6.2.1 Starting transactions
Transaction start may be set to EXPLICIT or IMPLICIT.

The default transaction start setting is IMPLICIT, which means a transaction
will be started automatically whenever one is needed.

To set the transaction start mode, use the statements:

SET TRANSACTION START EXPLICIT;
SET TRANSACTION START IMPLICIT;

Different database connections can use different transaction start options.

The START statement can always be used to explicitly start a transaction. This
is useful if a number of related updates are to be performed and it is desirable
that all the updates succeed or fail together to maintain consistency.

You cannot start a transaction while a transaction is already active.

Explicit transaction start
With this setting, transactions are never automatically started. All transactions
must be explicitly started by executing the START statement.

Any update operation (insert, update, delete) involving a table in a databank
with the TRANS or LOG option must occur within a transaction. An error will
be raised if such an update is attempted without first starting a transaction.

6-4 Transaction handling and database security

Mimer SQL version 8.2
Programmer’s Manual

All the statements issued after the START statement and before the transaction
is concluded are grouped together within that single transaction.

A transaction is concluded by executing a COMMIT or ROLLBACK
statement.

Implicit transaction start
With this setting, a transaction is started automatically (if one is not already
active) by an update involving a reference to an object stored in a databank
with the TRANS or LOG option (i.e. if none of the objects referenced in the
update are stored in a databank with the TRANS or LOG option, no transaction
is required and therefore one is not started).

The START statement may be used to explicitly start a transaction if required,
typically to allow several updates to be grouped together within a single
transaction for consistency, as already described.

An automatically started transaction is concluded by executing a COMMIT or
ROLLBACK statement.

All the statements issued after the initiating update and before the concluding
COMMIT or ROLLBACK statement are grouped together within that single
transaction.

6.2.2 Ending transactions
Transactions must be ended with the COMMIT or ROLLBACK statement.

COMMIT This statement requests that the operations in the write-set are
executed on the database, making the changes permanent and
visible to other users. The SQLSTATE value returned when a
COMMIT statement is executed indicates either that the
transaction commitment was successful (SQLSTATE =
'00000') or that a transaction conflict occurred (SQLSTATE
<> '00000').

ROLLBACK This statement abandons the transaction. The read-set and
write-set are dropped and no changes are made to the
database. ROLLBACK is always successful.

Note: The keyword ROLLBACK is used in Mimer SQL for compatibility with
SQL standards. A transaction in Mimer SQL is never physically “rolled back”
in the sense of undoing changes made to the database, since changes are not
actually effected until a successful COMMIT is performed.

Transactions which are not successfully committed due to a transaction conflict
do not have to be explicitly rolled back. The ROLLBACK statement is most
commonly used in exception routines for handling error situations which are
detected by the application during transaction build-up.

If a connection or program is terminated without requesting a COMMIT or
ROLLBACK for the current transaction, the system will abort the transaction.
None of the changes requested during the transaction build-up will be made to
the database.

Transaction handling and database security 6-5

Mimer SQL version 8.2
Programmer’s Manual

Transaction handling in BSQL differs slightly from that described here - see
Section 6.3.1 of the Mimer SQL User’s Manual for details.

6.2.3 Optimizing transactions
The following SET TRANSACTION options are used to optimize transaction
performance:

READ ONLY this setting should always be used for transactions that do not
require update access to the database. Significant performance
gains can be achieved, especially for queries retrieving large
numbers of rows, when this setting is used in queries when
there is no need for update access to the database.

READ WRITE this setting should only be used for transactions that require
update access to the database. This is the default setting for a
transaction.

The default option is READ WRITE, or the option defined to be the default for
the current session by using the SET SESSION statement (see Section 6.2.6).

The SET TRANSACTION READ command only affects the single next
transaction started after it is used.

6.2.4 Consistency within transactions
The SET TRANSACTION ISOLATION LEVEL options can be used to
control the degree to which the changes occurring within one transaction are
affected by the changes occurring within other concurrently executing
transactions.

The default option is REPEATABLE READ, or the option defined to be the
default for the current session by using the SET SESSION statement (see
Section 6.2.6).

The SET TRANSACTION ISOLATION LEVEL command only affects the
single next transaction started after it is used.

The following options are available:

SERIALIZABLE this setting guarantees that the end result of the
operations performed by two or more concurrent
transactions will be the same as if the transactions
had been executed in a serial fashion, where one
executes to completion before the other starts.

REPEATABLE READ this setting offers the same consistency guarantee as
serializable, except that the concurrency effect
known as “phantoms” may be encountered (see
below for a reference to the definition of this
concurrency effect).

6-6 Transaction handling and database security

Mimer SQL version 8.2
Programmer’s Manual

READ COMMITTED this setting offers the same consistency guarantee as
repeatable read, except that the concurrency effect
known as “non-repeatable read” may also be
encountered (see below for a reference to the
definition of this concurrency effect).

READ UNCOMMITTED this setting offers the same consistency guarantee as
read committed, except that the concurrency effect
known as “dirty read” may also be encountered (see
below for a reference to the definition of this
concurrency effect).

For a definition of the concurrency effects mentioned above (“phantoms”,
“non-repeatable read” and “dirty read”) refer to the description of SET
TRANSACTION in Chapter 6 of the Mimer SQL Reference Manual.

All of the isolation level settings guarantee that each transaction will be
executed completely or not at all and that no updates will be lost.

6.2.5 Exception diagnostics within transactions
The SET TRANSACTION DIAGNOSTICS SIZE option allows the size of the
diagnostics area to be defined. An unsigned integer value specifies how many
exceptions can be stacked in the diagnostics area, and examined by GET
DIAGNOSTICS (see the Mimer SQL Reference Manual), in situations where
repeated RESIGNAL operations have effectively been performed.

The SET TRANSACTION DIAGNOSTICS SIZE setting only affects the
single next transaction to be started.

The default SET TRANSACTION DIAGNOSTICS SIZE setting (5 or
whatever has been defined to be the default by using SET SESSION) applies
unless an alternative is explicitly set before each transaction.

6.2.6 Setting default transaction options
The SET SESSION statement can be used to define the default settings for the
transaction options set by SET TRANSACTION READ,
SET TRANSACTION ISOLATION LEVEL and SET TRANSACTION
DIAGNOSTICS SIZE.

As these SET TRANSACTION commands only affect the single next
transaction started after they are used, it is often convenient to define the
desired default options for each of them.

A detailed description of the SET SESSION statement can be found in
Chapter 6 of the Mimer SQL Reference Manual.

Transaction handling and database security 6-7

Mimer SQL version 8.2
Programmer’s Manual

6.2.7 Statements in transactions
The table below summarizes whether statements may or may not be used inside
transactions.

Statement Allowed in
transactions

Comments

Access control statements

GRANT, REVOKE Yes

Connection statements

CONNECT, SET CONNECTION Yes

DISCONNECT Yes A ROLLBACK is performed on
any active transaction.

ENTER, LEAVE (program ident) No

Data definition statements

ALTER, COMMENT Yes

CREATE, DROP Yes

Statement Allowed in
transactions

Comments

Data manipulation statements

SELECT EXPRESSION,
SELECT INTO, FETCH, INSERT,
DELETE, DELETE CURRENT,
UPDATE, UPDATE CURRENT

Yes

OPEN, CLOSE Yes COMMIT and ROLLBACK close
any open cursors

Declarative statements

DECLARE CONDITION,
DECLARE CURSOR,
DECLARE HANDLER,
DECLARE VARIABLE

Not applicable Declarative statement

Diagnostic statements

GET DIAGNOSTICS, RESIGNAL,
SIGNAL

Yes

Dynamic SQL statements

6-8 Transaction handling and database security

Mimer SQL version 8.2
Programmer’s Manual

PREPARE, DESCRIBE, EXECUTE,
EXECUTE IMMEDIATE,
ALLOCATE CURSOR,
ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR,
DEALLOCATE PREPARE,
GET DESCRIPTOR,
SET DESCRIPTOR

Yes See Chapter 7.

Embedded SQL control statements

DECLARE SECTION,
WHENEVER

Not applicable Declarative statement

Procedure control statements

CALL, CASE,
COMPOUND STATEMENT,
IF, LEAVE, LOOP, REPEAT,
RETURN, SET, WHILE

Yes

System administration statements

ALTER DATABANK RESTORE,
CREATE BACKUP,
CREATE INCREMENTAL
BACKUP,
SET DATABANK,
SET DATABASE,
SET SHADOW,
UPDATE STATISTICS

No These statements create internal
transactions to ensure data
dictionary consistency

Statement Allowed in
transactions

Comments

Transaction control statements

SET SESSION,
SET TRANSACTION, START

No These statements control
transaction behavior

COMMIT, ROLLBACK Yes

6.2.8 Cursors in transactions
The transaction terminating statements COMMIT and ROLLBACK
automatically close any cursors opened by the current connection, regardless of
whether they were opened before or after the transaction was started. If a
cursor is stacked, all instances of the cursor are closed. Any cursors which may
be retained in dormant connections are not affected. Cursors are also closed
automatically by LEAVE and DISCONNECT.

Transaction handling and database security 6-9

Mimer SQL version 8.2
Programmer’s Manual

In SET TRANSACTION START EXPLICIT mode, cursors may be opened
and used outside transactions. Such cursors remain open when an ENTER or
LEAVE statement is issued. This is illustrated in the following statement
sequence:

...
exec sql SET TRANSACTION START EXPLICIT;
exec sql DECLARE C1 CURSOR FOR SELECT col1 FROM tab1;
exec sql DECLARE C2 CURSOR FOR SELECT col2 FROM tab2
 WHERE checkcol = :var1;
exec sql OPEN C1;
loop
 exec sql FETCH C1 INTO :var1; -- fetch value from tab1
 exec sql ENTER ... ; -- change current ident
 exec sql OPEN C2;
 exec sql FETCH C2 INTO ...; -- fetch row for C2
 exec sql CLOSE C2;
 exec sql LEAVE;
end loop;
...

In the above example, the value fetched for the cursor C1 is used to determine
the set of rows addressed by cursor C2. Cursor C1 remains open and positioned
during the ENTER...LEAVE sequence. Each time the loop is executed, a new
value is fetched by C1 and a new set of is rows addressed by C2. The same
behavior applies when LEAVE RETAIN is used to leave a program ident but
keep the environment for the ident.

A cursor opened and used outside a transaction may however not be used
within a transaction. If the same cursor is required outside and inside a
transaction, separate instances must be opened. Remember that separate
instances of a cursor address separate result sets:

...
exec sql SET TRANSACTION START EXPLICIT;
exec sql DECLARE C1 REOPENABLE CURSOR FOR SELECT col1 FROM tab1;
exec sql OPEN C1;
exec sql FETCH C1 INTO ...; -- first row (outside transaction)
...
exec sql START;
exec sql OPEN C1; -- new instance of cursor
exec sql FETCH C1 INTO ...; -- first row again
...

6.2.9 Error handling in transactions
In general, errors and exception conditions are reported in SQLSTATE after
each executable SQL statement. The value of SQLSTATE indicates the
outcome of the preceding statement (see Appendix B for a list of SQLSTATE
values). GET DIAGNOSTICS can be used to get detailed status information
after an SQL statement.

The value of SQLSTATE after a COMMIT statement indicates the success or
failure of the request to commit the transaction, not the outcome of any data
manipulations performed within the transaction.

6-10 Transaction handling and database security

Mimer SQL version 8.2
Programmer’s Manual

Use of the general error handling statement WHENEVER (see Chapter 6 of the
Mimer SQL Reference Manual for a description of WHENEVER) in
transactions requires some care:

• Program control can be transferred to an exception routine in the event of
an error. Make sure that the exception routine is designed to take care of
uncompleted transactions. Most commonly, the first SQL statement in the
exception routine should be GET DIAGNOSTICS. The exception routine
should normally also execute a ROLLBACK statement. Remember that if
the exception routine is used from a statement outside a transaction, any
open cursors belonging to the current ident will be closed by the
ROLLBACK statement. GET DIAGNOSTICS can be used to determine
whether or not a transaction is active.

• For transaction conflict, the SQLSTATE value returned from the
COMMIT statement falls into the SQLERROR class. If the transaction is
to be retried in the event of conflict, make sure that no “WHENEVER
SQLERROR GOTO exception” statement is operative. If WHENEVER
error handling is used in an application program, a suitable program
structure for COMMIT statements is:

 exec sql WHENEVER SQLERROR GOTO exception;
 ...
 exec sql WHENEVER SQLERROR GOTO retry;
 exec sql COMMIT;
 exec sql WHENEVER SQLERROR GOTO exception;
 ...

6.3 Transactions and logging

Changes made to a database may be logged, to provide back-up protection in
the event of hardware failure, provided that the changes occur within a
transaction and that the databanks involved have the LOG option. Transaction
handling is, therefore, important even in standalone environments where
concurrency control issues do not arise.

Transaction control and logging is determined at the databank level by options
set when the databank is defined. The options are:

LOG All operations on the databank are performed under
transaction control. All transactions are logged.

TRANS All operations on the databank are performed under
transaction control. No transactions are logged.

NULL All operations on the databank are performed without
transaction control (even if they are requested within a
transaction), and are not logged. Sets of operations (DELETE,
UPDATE or INSERT on several rows) which are interrupted
will not be rolled back.

Note: All important databanks should be defined with LOG option, so that
valuable data is not lost by any system failure.

Transaction handling and database security 6-11

Mimer SQL version 8.2
Programmer’s Manual

6.4 Protection against data loss

6.4.1 System interruptions
If a transaction build-up is interrupted by a system failure or a program
termination (deliberate or otherwise) the transaction is aborted and none of the
requested changes are made to the database.

Transactions which are interrupted after the request to commit, but before all
operations in the transaction have been executed on the database, are
completed by the automatic recovery functionality when the databank involved
is next accessed. There is no possibility of transaction conflict in such an
automatic completion, since no other process can access the affected data as
long as an incomplete transaction is pending.

In the event of a system failure which interrupts one or more application
programs, it may be necessary to examine the database contents “by hand” to
determine which transactions failed to commit before the interruption.

6.4.2 Hardware failure
A databank which is damaged by hardware failure (e.g. a disk crash) may be
recovered using back-up copies and the transaction log (LOGDB), provided
that all write operations on the databank have been logged (and that the back-
up copies and the LOGDB databank are intact). The backup and restore
facilities are described in the Mimer SQL System Management Handbook.

Dynamic SQL 7-1

Mimer SQL version 8.2
Programmer’s Manual

7 DYNAMIC SQL

7.1 Principles of dynamic SQL

Dynamic SQL allows you to execute SQL statements placed in a string variable
instead of explicitly writing the statements inside a program. This allows SQL
statements to be constructed within an application program. These facilities are
typically used in interactive environments, where SQL statements are
submitted to the application program from the terminal.

An example of when dynamic SQL is needed would be a program for
interactive SQL, where any correct SQL statement may be entered at the
terminal and processed by the application. Limited dynamic facilities may
however be provided by relatively simple application programs.

The following classes of SQL statements may be submitted to programs using
dynamic SQL. Statements excluded from dynamic applications are
declarations, diagnostic statements and dynamic SQL statements themselves.

Access control statements:

ENTER
LEAVE

Data definition statements:

CREATE
ALTER
COMMENT
DROP

Security control statements:

GRANT
REVOKE

Transaction control statements:

SET SESSION
SET TRANSACTION
START
COMMIT
ROLLBACK

7-2 Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

Data manipulation statements:

CALL
SELECT
SELECT INTO
INSERT
UPDATE
UPDATE CURRENT
DELETE
DELETE CURRENT

System administration statements:

CREATE BACKUP
CREATE INCREMENTAL BACKUP
ALTER DATABANK RESTORE
SET DATABASE
SET DATABANK
SET SHADOW
UPDATE STATISTICS

Statements may be submitted to dynamic SQL applications in two forms:

• Fully defined statements, written exactly as they would be submitted to
interactive SQL. For example:

GRANT ALL ON HOTEL TO CHARLIE

UPDATE ROOM_STATUS SET STATUS = 'KEY OUT'
WHERE ROOMNO = 'SKY112'

SELECT * FROM HOTEL

SELECT RESERVATION,SUM(AMOUNT)
FROM BILL
GROUP BY RESERVATION

• Statements with “parameter markers”, which identify positions where the
value of a host variable will be inserted when the statement is executed or
the cursor is opened. A parameter marker is represented by a question
mark. For example:

UPDATE ROOM_STATUS SET STATUS = ? WHERE ROOMNO = ?

DELETE FROM BOOK_GUEST WHERE RESERVATION = ?

SELECT HOTELCODE,ON_DATE,FREECOUNT*?
FROM FREEROOMS
WHERE ROOMTYPE = ?
 AND HOTELCODE IN (SELECT HOTELCODE
 FROM HOTEL
 WHERE CITY = ?)

Statements submitted with parameter markers are equivalent to normal
embedded statements using host variables, except that the statements are
defined at run-time.

Dynamic SQL 7-3

Mimer SQL version 8.2
Programmer’s Manual

7.2 General summary of dynamic SQL processing

The following statements are used when SQL statements are dynamically
submitted:

Statement Description

ALLOCATE CURSOR Allocate extended cursor.

ALLOCATE DESCRIPTOR Allocate SQL descriptor area.

CLOSE Close an open cursor.

DEALLOCATE
DESCRIPTOR

Deallocate SQL descriptor area.

DEALLOCATE PREPARE Deallocate prepared SQL statement.

DECLARE CURSOR Declare a cursor for a statement which
will be dynamically submitted.

DESCRIBE Examine the object form of the statement
and assign values to the appropriate
parameters in the SQL descriptor area.

EXECUTE Execute a prepared statement (except
result set generating statements).

EXECUTE IMMEDIATE Shorthand form for PREPARE followed
by EXECUTE. This form can only be
used for fully-defined non-result set
statements with no parameter markers.

FETCH Fetch rows for a dynamic cursor.

GET DESCRIPTOR Get values from the SQL descriptor area.

OPEN Open a prepared cursor.

PREPARE Compile an SQL source statement into
an internal object form.

SET DESCRIPTOR Set values in the SQL descriptor area.

All statements submitted to dynamic SQL programs must be prepared.

All prepared statements except SELECT statements and result set procedure
calls are executed with the EXECUTE statement. SELECT statements and calls
to result set procedures are “executed” by the use of OPEN and FETCH for a
cursor declared with the prepared statement.

The declaration of a cursor for a statement (DECLARE CURSOR) must always
precede the PREPARE operation for the same statement in an application using
dynamic SQL.

7-4 Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

7.3 SQL descriptor area

The SQL descriptor area is used for managing input and output data in
dynamically submitted SQL statements where the number and/or data type of
the host variables required is not known at the time the program is written. An
SQL descriptor area is allocated with the embedded SQL statement
ALLOCATE DESCRIPTOR and deallocated with DEALLOCATE
DESCRIPTOR. See Chapter 6 of the Mimer SQL Reference Manual for a
description of these SQL statements. A program may allocate several separate
descriptor areas, identified by different descriptor names. SQL descriptor areas
are used for both result set list items, routine parameters and input host
variables.

The following statement types can use information from SQL descriptor areas:

• all SELECT statements and calls to result set procedures

• INSERT, DELETE, UPDATE and CALL statements using parameter
markers

• ENTER statements

The following statement types do not use SQL descriptor areas:

• all data definition statements, security control statements, access control
statements (except ENTER) and transaction control statements

• INSERT, DELETE, UPDATE and CALL statements using only constant
expressions

In practice, programs using dynamically submitted SQL statements are usually
written as though all submitted statements use SQL descriptor areas (since the
nature of the submitted statement is not known until run-time). SQL descriptor
areas can be left out of a program only if it is known in advance that they will
not be needed (for instance in an application program which will handle only
submitted data definition statements).

7.3.1 The structure of the SQL descriptor area
The SQL descriptor area is a storage area holding information about the
described statement. It is allocated and maintained with embedded SQL
statements. It consists of one COUNT field and one or more item descriptor
areas, each one describing either a selected column or an input/output value:

COUNT

item descriptor area 1

item descriptor area 2

...

item descriptor area n

The COUNT field specifies how many of the item descriptor areas contain
data.

Dynamic SQL 7-5

Mimer SQL version 8.2
Programmer’s Manual

The individual fields of the item descriptor area can be accessed with the GET
DESCRIPTOR and SET DESCRIPTOR statements. See the Mimer SQL
Reference Manual for a description of these statements.

7.4 Preparing statements

All statements submitted to dynamic SQL programs must be prepared. The
simplest form of the operation uses a PREPARE statement (see the Mimer SQL
Reference Manual for the syntax description). The operation may also be
combined with EXECUTE as a simple statement in the shorthand form
EXECUTE IMMEDIATE.

The source form of the statement must be contained in a host variable,
containing the statement string. The statement string itself is not preceded by
EXEC SQL nor terminated by the language-specific embedded delimiter.

The prepared form of the statement is named by an SQL-identifier or a host
variable (for extended statements, see Section 7.5).

In the following example the source form of the statement is given as a string
constant for illustrative purposes, however, the statement would usually be read
from some input source, e.g. the terminal, at run-time:

...
exec sql BEGIN DECLARE SECTION;
SQL_TXT CHARACTER(255);
...
exec sql END DECLARE SECTION;
...
SQL_TXT := "CREATE INDEX ROOMHOT ON ROOMS(HOTELCODE)";
exec sql PREPARE OBJECT FROM :SQL_TXT;
...

7.5 Extended dynamic cursors

A “normal” cursor is identified by an SQL identifier. An extended cursor
makes it possible to represent a dynamic cursor by a host variable or a literal.
An extended cursor is allocated by the application with the ALLOCATE
CURSOR statement (see the Mimer SQL Reference Manual for the syntax
description).

When the application is finished with the processing of the SQL statement, the
prepared statement may be destroyed by executing the DEALLOCATE
PREPARE statement (see the Mimer SQL Reference Manual for the syntax
description). DEALLOCATE PREPARE also destroys any extended cursor
that was associated with the statement.

7-6 Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

Example of how extended cursors are used:

...
exec sql BEGIN DECLARE SECTION;
SQL_TXT CHARACTER(255);
C1 CHARACTER(128);
STM1 CHARACTER(128);
HOSTVAR1 INTEGER;
HOSTVAR2 CHARACTER(10);
...
exec sql END DECLARE SECTION;
...
SQL_TXT := "SELECT COL1,COL2 FROM TAB1";
STM1 := "STATE_1";
exec sql PREPARE :STM1 FROM :SQL_TXT;
C1 := "CUR1";
exec sql ALLOCATE :C1 CURSOR FOR :STM1;
...
exec sql ALLOCATE DESCRIPTOR 'SQLA' WITH MAX 50;
exec sql DESCRIBE OUTPUT :STM1 USING SQL DESCRIPTOR 'SQLA';
...
exec sql OPEN :C1;
exec sql WHENEVER NOT FOUND GOTO done;
loop
 exec sql FETCH :C1 INTO SQL DESCRIPTOR 'SQLA';
 exec sql GET DESCRIPTOR 'SQLA' VALUE 1 :HOSTVAR1 = DATA;
 exec sql GET DESCRIPTOR 'SQLA' VALUE 2 :HOSTVAR2 = DATA;
 ...
 display HOSTVAR1,HOSTVAR2,...;
end loop;
done:
exec sql CLOSE :C1;
exec sql DEALLOCATE DESCRIPTOR 'SQLA';
exec sql DEALLOCATE PREPARE :STM1;
...

7.6 Describing prepared statements

Statements returning a result set and statements containing parameter markers
can be described to obtain information about the number and data types of the
parameters. There are two forms of DESCRIBE:

• DESCRIBE OUTPUT for result set values

• DESCRIBE INPUT for input and output parameters.

Both forms of DESCRIBE use the object (prepared) form of the statement as
an argument. The same statement may be described in both senses if necessary.

For example:

exec sql BEGIN DECLARE SECTION;
SQLA1 CHARACTER(128);
MAXOCC INTEGER;
SOURCE CHARACTER(255);
exec sql END DECLARE SECTION;
...
MAXOCC := 15;
SQLA1 := "SQL_AREA_1";
exec sql ALLOCATE DESCRIPTOR :SQLA1 WITH MAX 20;
exec sql ALLOCATE DESCRIPTOR 'SQLA2' WITH MAX :MAXOCC;
...
exec sql PREPARE OBJECT FROM :SOURCE;
exec sql DESCRIBE OUTPUT OBJECT USING SQL DESCRIPTOR :SQLA1;
exec sql DESCRIBE INPUT OBJECT USING SQL DESCRIPTOR 'SQLA2';
...

Dynamic SQL 7-7

Mimer SQL version 8.2
Programmer’s Manual

DESCRIBE places information about the prepared statement in the SQL
descriptor areas. See Section 7.3 for a description of the SQL descriptor area.
The contents of the SQL descriptor area is read with the GET DESCRIPTOR
statement and updated with the SET DESCRIPTOR statement.

7.6.1 Describing output variables
The items in the result set for a statement are described with the DESCRIBE
OUTPUT statement. The keyword OUTPUT may be omitted.

The DESCRIBE OUTPUT statement shows:

• whether the statement returns a result set or not. This is indicated by the
value of the COUNT field of the SQL descriptor area which is set to zero
for statements that do not return a result set. Statements that return a result
set are calls to result set procedures (see Section 8.6) and query-
expressions (refer to the Mimer SQL Reference Manual). Dynamic SQL
programs must test for this after each DESCRIBE operation because the
treatment of statements that return result sets differs from the treatment of
those that do not (see Section 7.7). If the statement returns a result set, the
DESCRIBE statement will place information about the items in the result
set in the fields of the descriptor area

• whether the current descriptor area allocation is sufficient or not.
Insufficient area is indicated by the SQLSTATE variable set to a warning
state and a value of COUNT (required number of items) greater than that
specified in the “WITH MAX ...”-clause of the ALLOCATE
DESCRIPTOR statement, or greater than 100 if no “WITH MAX...”-
clause was specified. If the area is insufficient, no items are described.

7.6.2 Describing input variables
The DESCRIBE INPUT statement is used to describe parameter markers.

The value of the COUNT field of the SQL descriptor area indicates the number
of parameter markers in the statement (a value of zero indicates no input
parameters). A value greater than that specified in “WITH MAX...” indicates
that the allocated SQL descriptor area is too small and the describe operation
will not be performed. This situation is handled as described above for
DESCRIBE OUTPUT.

Note: If the prepared statement is a call to a stored procedure that uses
parameter markers, these will be described by the DESCRIBE INPUT
statement. This is regardless of how the formal parameter is specified in the
procedure definition. Whether the parameter is IN, INOUT or OUT can be seen
from the PARAMETER_MODE field in the descriptor area.

7-8 Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

7.7 Handling prepared statements

After PREPARE and DESCRIBE, the way in which submitted statements are
handled differs according to whether the statement is executable or whether it
returns a result set.

Executable statements are executed using the EXECUTE statement, with
the object (prepared) form of the submitted statement as the
argument.

Result set a cursor is used for these statements, associated with the
object form of the prepared statement and are “executed” with
OPEN and FETCH.

7.7.1 Executable statements
Executable statements are identified by a value of zero in the COUNT field of
the SQL descriptor area after a DESCRIBE OUTPUT statement. If the
statement does not contain any parameter markers, it may be executed directly.
If on the other hand, the statement contains parameter markers, the statement
must be executed with SQL descriptor areas for input and output values. Input
values are specified in a USING clause while output values are specified in an
INTO clause.

A statement has output values if it is a call to a stored procedure with
parameters that are specified as INOUT or OUT.

Note: All parameter markers used in a call statement are described with the
DESCRIBE INPUT statement, regardless of the mode of the formal parameter.
A parameter marker with PARAMETER_MODE_INOUT must be present in
the descriptors specified in the INTO and the USING clause of the EXECUTE
statement but not necessarily with the same physical location in the host
program.

Parameter markers must be used for all INOUT or OUT parameters when a call
statement is prepared dynamically.

The pseudo code that follows uses the variables RESULT and MARKERS to
flag the type of statement and the presence of parameter markers respectively.

exec sql ALLOCATE DESCRIPTOR 'SQLRESULT' with max 30;
exec sql ALLOCATE DESCRIPTOR 'INVAL' with max 30;
exec sql ALLOCATE DESCRIPTOR 'OUTVAL' with max 30;

exec sql DESCRIBE OUTPUT OBJECT USING SQL DESCRIPTOR RESULT;
exec sql GET DESCRIPTOR 'SQLRESULT' :NO_OUT = COUNT;

if NO_OUT = 0 then
 RESULT := FALSE;
else
 RESULT := TRUE;
end if;

Dynamic SQL 7-9

Mimer SQL version 8.2
Programmer’s Manual

exec sql DESCRIBE INPUT OBJECT USING SQL DESCRIPTOR 'INVAL';
exec sql GET DESCRIPTOR 'INVAL' :NO_IN = COUNT;

if NO_IN > 0 then
 MARKERS := TRUE;
else
 MARKERS := FALSE;
end if;

if RESULT then
 ...
else
if MARKERS then
 --
 -- loop over inval
 -- if PARAMETER_MODE_INOUT then copy to OUTVAL
 -- if PARAMETER_MODE_OUT then move to OUTVAL, compact INVAL
 -- count number of input values and output values
 --
else
 NO_INVAL := 0;
 NO_OUTVAL := 0;
end if;

if NO_INVAL > 0 and NO_OUTVAL > 0 then
 exec sql EXECUTE OBJECT into OUTVAL using INVAL;
elsif NO_INVAL > 0 then
 exec sql EXECUTE OBJECT using INVAL;
elsif NO_OUTVAL > 0 then
 exec sql EXECUTE OBJECT into OUTVAL;
else
 exec sql EXECUTE OBJECT;
end if;

The descriptor areas referenced in the EXECUTE statement may be replaced
by an explicit list of host variables, provided that the number and data types of
the user variables in the source statement are known when the program is
written (so that variables can be declared and the appropriate variable list
written into the EXECUTE statement). This facility is of limited use, since the
occasions when the user constructs freely chosen SQL statements with a
predetermined number of user variables are rare.

The shorthand form EXECUTE IMMEDIATE combines the functions of
PREPARE and EXECUTE. This form may only be used for executable
statements with no parameter markers and is therefore of value only in contexts
where the user is restricted to this type of statement. (Data definition and
security control statements fall into this category, since user variables are not
permitted in the syntax of these statements. EXECUTE IMMEDIATE can
therefore be useful for application programs designed specifically to handle
database definition statements).

7.7.2 Result set statements
Statements returning a result set are identified by a non-zero value in the
COUNT field of the SQL descriptor area after DESCRIBE OUTPUT.

All dynamically submitted SELECT statements and calls to result set
procedures must be handled through cursors. Cursors are declared or allocated
for the object (prepared) form of submitted result set returning statements.

7-10 Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

Note: A DECLARE CURSOR statement must precede the PREPARE
statement in the program code. If ALLOCATE CURSOR is used instead of
DECLARE CURSOR, the statement must have been prepared before the cursor
can be allocated. The SQL statement must also be prepared before the cursor is
opened.

If the source form of the result set returning statement contains parameter
markers, these must be described before the cursor is opened and the OPEN
statement must reference the relevant descriptor area. In the rare case where the
number and data type of the user variables are known when the program is first
written, the OPEN statement may reference an explicit variable list instead of a
descriptor area.

The descriptor area used for the submitted result set returning statement is
referenced when data is retrieved with the FETCH statement.

Example:

...
exec sql ALLOCATE DESCRIPTOR 'SQLA1' WITH MAX 30;
exec sql ALLOCATE DESCRIPTOR 'SQLA2' WITH MAX 30;
...
exec sql PREPARE 'OBJECT' FROM :SOURCE;
...
exec sql DESCRIBE OUTPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA1';
exec sql GET DESCRIPTOR 'SQLA1' :NO_OUT = COUNT;
if NO_OUT = 0 then
 RESULT_SET := FALSE;
else
 exec sql ALLOCATE 'C1' CURSOR FOR 'OBJECT';
 RESULT_SET := TRUE;
end if;
...
exec sql DESCRIBE INPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA2';
exec sql GET DESCRIPTOR 'SQLA2' :NO_IN = COUNT;
if NO_IN = 0 then
 USERVAR := FALSE;
else
 USERVAR := TRUE;
end if;
...
if RESULT_SET then
 if USERVAR then
 exec sql OPEN 'C1' USING SQL DESCRIPTOR 'SQLA2';
 else
 exec sql OPEN 'C1';
 end if;
 ...
 exec sql FETCH 'C1' INTO SQL DESCRIPTOR 'SQLA1';
 ...
else
 ...
end if;

7.8 Example framework for dynamic SQL programs

This section gives a general framework (in pseudo code) for dynamic SQL
programs designed to handle any valid SQL statement as input. The framework
is largely a synthesis of the example fragments given earlier in this chapter.

The framework is written as a single sequential module to emphasize the order
of operations.

Dynamic SQL 7-11

Mimer SQL version 8.2
Programmer’s Manual

Host variable declarations are omitted. Handling of values returned by FETCH
is also omitted.

See Appendix D for a complete example of how to use dynamic SQL in the C
language.

Example framework (features that are specific to real host languages are
described in Appendix A):

--
-- Allocate two descriptor areas
--
exec sql ALLOCATE DESCRIPTOR 'SQLA1' WITH MAX 50;
exec sql ALLOCATE DESCRIPTOR 'SQLA2' WITH MAX 50;
--
-- read statement from terminal
--
read INPUT into SOURCE;
--
-- prepare statement
--
exec sql PREPARE 'OBJECT' FROM :SOURCE;
--
-- describe statement and set type/parameter usage flags
--
exec sql DESCRIBE OUTPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA1';
exec sql GET DESCRIPTOR 'SQLA1' :NO_OUT = COUNT;
if NO_OUT = 0 then
 RESULT_SET := FALSE;
else
 RESULT_SET:= TRUE;
 --
 -- allocate cursor for SELECT statements
 --
 exec sql ALLOCATE 'C1' CURSOR FOR 'OBJECT';
end if;
--
exec sql DESCRIBE INPUT 'OBJECT' USING SQL DESCRIPTOR 'SQLA2';
exec sql GET DESCRIPTOR 'SQLA2' :NO_IN = COUNT;
if NO_IN = 0 then
 USERVAR := FALSE;
else
 USERVAR := TRUE;
end if;
-- execute statement or open cursor and fetch after assigning
-- values to input variables
--
if RESULT_SET then
 if USERVAR then
 exec sql OPEN 'C1' USING SQL DESCRIPTOR 'SQLA2';
 else
 exec sql OPEN 'C1';
 end if;
 loop
 exec sql FETCH 'C1' INTO SQL DESCRIPTOR 'SQLA1';
 exit when NO_MORE_REQUIRED or SQLSTATE = "02000";
 ... -- process results of FETCH
 end loop;
 exec sql CLOSE 'C1';
else
 if USERVAR then
 exec sql EXECUTE 'OBJECT' USING SQL DESCRIPTOR 'SQLA2';
 else
 exec sql EXECUTE 'OBJECT';
 end if;
end if;
exec sql DEALLOCATE PREPARE 'OBJECT';
...

Persistent Stored Modules 8-1

Mimer SQL version 8.2
Programmer’s Manual

8 PERSISTENT STORED MODULES

It is possible to define and store routines in Mimer SQL. A number of routines
may be collected together into a module. This chapter describes stored routines
and modules, together referred to as Persistent Stored Modules (SQL/PSM).

SQL/PSM consists of syntax and semantics for variable and cursor
declarations, assignment of the results of expressions to variables and
parameters, conditional statements, control statements for looping and
branching, condition handling, get diagnostics for status information and
routine invocations.

8.1 Routines

In Mimer SQL, the term routine is used to collectively refer to functions and
procedures. Essentially the same constructs may be used in each.

A routine can be created by declaring it in a module definition (see
Section 8.3). or be created on its own by executing the CREATE FUNCTION
or CREATE PROCEDURE statement. A routine created on its own cannot be
subsequently added to a module.

A routine belongs to the schema in which it was created and the routine name
may be qualified in the normal way with the name of the schema. Only the
ident with the same name as the schema to which a routine belongs may refer
to it by its unqualified name, all other idents must use the fully qualified
routine name.

A given schema cannot contain more than one function or more than one
procedure with the same name, i.e. a function cannot have the same qualified
name (i.e. schema_name.function_name) as another function and a procedure
cannot have the same qualified name as another procedure.

It is possible for a function to have the same qualified name as a procedure,
because the invocation of a function is distinct from that of a procedure.

In order to invoke a routine, the ident invoking it must have been granted
EXECUTE privilege on the routine. Routines may be recursively invoked.

Note: When routines and modules are created using BSQL, the create
statement must be delimited by the “@” character (see Section 7.6 of the
Mimer SQL User’s Manual for details and examples).

8-2 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

The following points should be noted for procedures:

• they are invoked by using the CALL statement.

• any result from a procedure must be passed back via one of the output
parameters, except in the special case of a result set procedure, which can
return rows of a result set to a cursor (see Section 8.6).

The following points should be noted for functions:

• they are invoked from an SQL statement where a value is required (certain
restrictions apply, see Section 8.4.8). Example:
 SET :name = get_author('1-55860-461.8').

• the parameters of a function provide input only and the function result is
returned as the value of the function invocation.

A routine essentially consists of static SQL source which is stored in the data
dictionary and which may be invoked by name whenever it is to be executed.

The SQL source for a routine comprises a definition of various routine
components (see Section 8.2 for details) followed by the routine body.

The routine body consists of a single executable SQL statement, which may be
a compound SQL statement (see Section 8.2.5) containing local declarations
and a number of SQL statements, delimited by a BEGIN and END.

Note: It is recommended that a compound SQL statement always be used for
the body of a routine, as this offers the greatest flexibility and results in a
consistent structure for all routines.

It is possible to declare exception handlers within a compound SQL statement
to handle specific exceptions or classes of conditions (see Section 8.7.2).

8.1.1 Functions
A function is invoked by specifying the function invocation where a value
expression would normally be used. The parameters of a function are used to
provide input only, values cannot be passed back to the calling environment
through the parameters of a function.

A function always returns a single value and the data type of the return value is
defined in the returns clause, which is specified after the parameter definition
part of the function definition.

The function returns its value when a RETURN statement is executed within
the body of the function. The data type of the value expression in the RETURN
statement must be assignment-compatible with the data type specified in the
returns clause of the function.

A function can be created with the same name as a predefined function (e.g.
ABS, SIGN). If such a function also has the same number of parameters as the
predefined function and each parameter has a data type that is assignment-
compatible with the corresponding parameter of the predefined function, the
invocations of the two functions cannot be distinguished. In this situation, any
unqualified reference to the function name will be taken to be a reference to the
predefined function.

Persistent Stored Modules 8-3

Mimer SQL version 8.2
Programmer’s Manual

The SQL statements that apply to a function are:

CREATE FUNCTION create a function that exists on its own

DROP FUNCTION drop a function that exists on its own

GRANT EXECUTE grant the privilege to invoke a function

REVOKE EXECUTE revoke the privilege to invoke a function

COMMENT ON FUNCTION define a comment on a function

Refer to the Mimer SQL Reference Manual for a description of the SQL
statements mentioned above.

Examples:

CREATE FUNCTION SQUARE_ROOT(ROOT INTEGER)
RETURNS INTEGER
CONTAINS SQL
BEGIN
 RETURN ROOT*ROOT;
END

CREATE FUNCTION COUNT_BILL(RESERVATION_NUMBER INTEGER)
RETURNS INTEGER
READS SQL DATA
BEGIN
 DECLARE X INTEGER;
 SELECT COUNT(*) INTO X FROM BILL WHERE RESERVATION =
RESERVATION_NUMBER;
 RETURN X;
END

CREATE FUNCTION TWIST(IN_CURRENCY CHAR(3))
RETURNS DECIMAL(6,3)
READS SQL DATA
BEGIN
 DECLARE CNT INTEGER;
 DECLARE L_RATE DECIMAL(6,3);
 SELECT RATE INTO L_RATE FROM EXCHANGE_RATE
 WHERE CURRENCY = IN_CURRENCY;
 GET DIAGNOSTICS CNT = ROW_COUNT;
 IF CNT = 0 THEN
 SET L_RATE = 1.0;
 END IF;
 RETURN L_RATE;
END

CREATE FUNCTION TRANSLATE_DATE(OLD_DATE CHAR(8))
RETURNS DATE
BEGIN
 RETURN CAST(SUBSTRING(OLD_DATE FROM 1 FOR 4) || '-' ||
 SUBSTRING(OLD_DATE FROM 5 FOR 2) || '-' ||
 SUBSTRING(OLD_DATE FROM 7 FOR 2) AS DATE);
END

8.1.2 Procedures
A procedure is normally invoked explicitly by executing the CALL statement
and does not return a value. The parameters of a procedure can be used to
provide input and may be used to pass values back to the calling environment.

There is a special type of procedure, called a result set procedure, which
returns rows of a result set to a cursor when it is invoked by executing the
FETCH statement in that context.

8-4 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

A result set procedure is distinguished from a normal procedure by having a
values clause specified after the parameter definition part of the procedure
definition (see Section 8.6 for a detailed description of result set procedures).

The SQL statements that apply to a procedure are:

CREATE PROCEDURE create a procedure that exists on its own

DROP PROCEDURE drop a procedure that exists on its own

GRANT EXECUTE grant the privilege to invoke a procedure

REVOKE EXECUTE revoke the privilege to invoke a procedure

CALL invoke a procedure

COMMENT ON PROCEDURE define a comment on a procedure

Refer to the Mimer SQL Reference Manual for a description of the SQL
statements mentioned above.

Examples:

CREATE PROCEDURE MY_PROCEDURE (IN TEST CHAR(8))
NOT DETERMINISTIC
MODIFIES SQL DATA
BEGIN
 DECLARE SQLSTATUS CHAR(5) DEFAULT '?????';
 DECLARE ERRCNT INTEGER DEFAULT 0;
 DECLARE CASE_EXCEPTION CONDITION FOR SQLSTATE VALUE '20000';
 DECLARE TEST_SUCCESS CONDITION FOR SQLSTATE VALUE 'Z0000';
 DECLARE TEST_FAILURE CONDITION FOR SQLSTATE VALUE 'Z9999';

 CASE TEST
 WHEN '0414' THEN

 L0414:
 BEGIN
 DECLARE X CURSOR FOR SELECT EMPNUM, HOURS
 FROM WORKS
 WHERE PNUM = 'P2'
 ORDER BY EMPNUM DESC;
 SET CNT = 0;
 SET CNT2 = 0;
 BEGIN
 DECLARE LION CURSOR FOR SELECT EMPNUM
 FROM STAFF
 WHERE EMPNUM = 'E20';
 P200:
 LOOP
 SET CNT = CNT + 1;
 BEGIN
 DECLARE EXIT HANDLER FOR NOT FOUND
 BEGIN
 END;

 OPEN X;
 SET I = 0;
 WHILE I < 20 DO
 FETCH X INTO EMPNO1, HOURS1;
 SET I = I + 1;
 END WHILE;
 END;
 CLOSE X;
 IF CNT = 5 THEN LEAVE P200; END IF;
 ...
 END LOOP P200;
 ...

Persistent Stored Modules 8-5

Mimer SQL version 8.2
Programmer’s Manual

 END L0414;
 WHEN '0415' THEN
 ...
 END CASE;
...
END

CALL MY_PROCEDURE('0415')

COMMENT ON PROCEDURE MY_PROCEDURE IS 'This is my procedure'

DROP PROCEDURE MY_PROCEDURE

8.2 Syntactic components of a routine definition

8.2.1 Routine parameters
A routine may have zero or more parameters and each parameter must have a
name and a data type specified.

Each parameter of a procedure can have an optional mode specification (IN,
OUT or INOUT - see CREATE PROCEDURE in the Mimer SQL Reference
Manual for details). When the mode is not explicitly specified, IN is assumed
by default.

It is not possible to specify the mode for the parameters of a function (they
always have the default mode, IN).

A parameter name must be unique within the routine. A parameter can have the
same name as a routine name, however this is not generally recommended. The
parameter name can be up to 128 characters in length, see Section 4.2 of the
Mimer SQL Reference Manual for further details about naming SQL objects.

The parameter data type can be any data type supported by Mimer SQL (see
Section 4.3 in the Mimer SQL Reference Manual).

Note: A domain name cannot be specified for the data type of a routine
parameter.

A parameter name may be referenced in an unqualified manner throughout a
routine, at all scope levels - see Section 8.2.5 for a discussion of scope in
routines.

Examples:

CREATE FUNCTION MY_FUNCTION(A INTEGER, B DECIMAL(5,2))
RETURNS DECIMAL(5,2)
BEGIN
 ...
 ...
END

CREATE PROCEDURE LOOKUP(IN I INTEGER, OUT R_VAL VARCHAR(20))
BEGIN
 ...
 ...
END

8-6 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

8.2.2 Routine language indicator
The language indicator specifies the language of the routine. Currently, the
only language name supported is SQL.

If no language indicator is specified, LANGUAGE SQL is assumed by default.

8.2.3 Routine deterministic clause
The deterministic clause for a routine can specify NOT DETERMINISTIC or
DETERMINISTIC. If a deterministic clause is not specified, NOT
DETERMINISTIC is assumed by default.

A DETERMINISTIC routine is one that is guaranteed to produce the same
result every time it is invoked with the same set of input values.

Therefore, a DETERMINISTIC routine must not contain a reference to:
CURRENT_DATE, LOCALTIME or LOCALTIMESTAMP.

Specifying a routine to be DETERMINISTIC allows repeated invocations of it
to be optimized.

8.2.4 Routine access clause
The access clause for a routine specifies which SQL statements are permitted
within the routine.

The three different options for the routine access clause (CONTAINS SQL,
READS SQL DATA and MODIFIES SQL DATA) are described under
CREATE PROCEDURE in the Mimer SQL Reference Manual.

If no routine access clause is specified, then CONTAINS SQL is implied.

8.2.5 Scope in routines - the compound SQL statement
A compound SQL statement allows a sequence of procedural SQL statements
to be considered as a single SQL statement (see COMPOUND STATEMENT
in the Mimer SQL Reference Manual for a description of the syntax).

A routine body may contain only one executable SQL statement and the
compound SQL statement allows a routine to be defined which can actually
contain any number of SQL statements.

A compound SQL statement also defines a local scope in which variables,
exception handlers, and cursors can be declared. Compound SQL statements
may be nested, one within the other, and thus local scopes may be nested.

A compound SQL statement may be labeled, which effectively names the local
scope defined by it. The label name can be used whenever the scope
environment needs to be referred to explicitly, e.g. when qualifying the names
of objects which have been declared in the compound SQL statement. The
label name must not be the same as a routine name.

Persistent Stored Modules 8-7

Mimer SQL version 8.2
Programmer’s Manual

It is important to understand the effect of scoping on declared items,
particularly with respect to: out-of-scope references to variables (see
Section 8.2.6), the scope within which an exception handler remains in effect
and the flow of control effects following the use of different types of exception
handler (see Section 8.7.2).

The SQL statement LEAVE is specifically provided to give the programmer
the ability to force the flow of control to exit from a labeled scope.

Example:

CREATE PROCEDURE MY_PROCEDURE(INOUT Y INTEGER)
CONTAINS SQL
S0:
BEGIN
 ...
 S1:
 BEGIN
 IF Y < 0 THEN
 SET Y = 0;
 LEAVE S0;
 END IF;
 ...
 END S1;
 ...
END S0;

In the example above, the effect of the LEAVE statement is to pass flow of
control to the statement END S0, i.e. flow of control exits from the scope
labeled S0.

All open cursors declared in a compound SQL statement are closed whenever
flow of control leaves the compound SQL statement for any reason.

Note: A compound SQL statement may be preceded by a label which names
the scope delimited by the BEGIN and END (this is called the beginning label).
Specifying the label next to the END is optional. However, if a label is
specified next to the END, the beginning label must be specified.

8.2.5.1 The ATOMIC compound SQL statement
The execution of any SQL statement, other than a procedure-control-statement,
is atomic. (See the beginning of Chapter 6 of the Mimer SQL Reference
Manual for a definition of a procedure-control-statement.)

The execution of a compound SQL statement defined as ATOMIC is also
atomic.

When the execution of an SQL statement is atomic, an atomic execution
context becomes active while the statement, or any contained sub-query, is
executing. While an atomic execution context is active, it is possible for
another atomic execution context to become active within it.

8-8 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

While an atomic execution context is active the following is true:

• It is not possible to explicitly terminate a transaction, thus all changes made
within the atomic execution context occur within the same transaction.

• If an SQL statement within the atomic execution context fails and no
handler has been declared within it to handle the error, all the changes made
within the atomic execution context will be cancelled and the associated
exception will be propagated to the calling environment.

• If an SQL statement within the atomic execution context fails and an UNDO
handler has been declared within it to handle the error, all the changes made
within the atomic execution context will be cancelled and the handler will
be executed.

An atomic compound SQL statement is defined by specifying the keyword
ATOMIC next to the BEGIN delimiter. The COMMIT and ROLLBACK
statements cannot be used within an atomic compound SQL statement.

A compound SQL statement is explicitly defined as not being atomic by
specifying NOT ATOMIC next to the BEGIN delimiter. If nothing is specified
next to the BEGIN delimiter, NOT ATOMIC is assumed by default.

If the compound SQL statement contains a declaration for an UNDO exception
handler (see Section 8.7.2), the compound SQL statement must be ATOMIC.

Examples:

CREATE FUNCTION MY_ATOMIC_FUNCTION(I INTEGER)
RETURNS INTEGER
BEGIN ATOMIC
 ...
 -- All statements executed between this BEGIN
 -- and END execute within the same active atomic
 -- execution context.
 -- UNDO exception handlers are permitted.
 -- No COMMIT or ROLLBACK allowed!
 ...
END

CREATE PROCEDURE MY_NON_ATOMIC_PROCEDURE(I INTEGER)
BEGIN NOT ATOMIC
 ...
 -- This compound SQL statement is not atomic.
 -- COMMIT and ROLLBACK statements are permitted.
 -- No UNDO exception handlers allowed!
 ...
END

CREATE FUNCTION MY_DEFAULT_FUNCTION(I INTEGER)
RETURNS INTEGER
BEGIN
 ...
 -- This compound SQL statement is not atomic, by default.
 -- COMMIT and ROLLBACK statements are permitted.
 -- No UNDO exception handlers allowed!
 ...
END

Persistent Stored Modules 8-9

Mimer SQL version 8.2
Programmer’s Manual

8.2.6 Declaring variables
It is possible to declare variables, cursors, condition names and exception
handlers at the beginning of a compound SQL statement. These items can,
therefore, be declared in a routine when a compound SQL statement is used for
the routine body.

This section discusses the declaration of variables. Discussions about declaring
the other items mentioned above can be found in the following sections:

cursors see Section 8.5.2.

condition names see Section 8.7.1.

exception handlers see Section 8.7.2.

Variables of any data type supported by Mimer SQL may be declared. The
name of a variable must be unique within the scope of its declaration and must
not conflict with the name of any of the routine parameters. Variable names
can be a maximum of 128 characters in length and are case insensitive. See
Section 4.2 of the Mimer SQL Reference Manual for further details on naming
SQL objects.

Note: The data type for a variable must be specified explicitly, it is not
possible to specify a domain.

More than one variable of the same type can be declared in a single variable
declaration (see the examples below).

It is possible to specify an optional expression, which may be NULL, that
defines the default expression for a variable declaration. The variable(s)
created by the variable declaration are given the initial value derived from the
default expression. If a default expression is not specified, the value NULL is
assumed.

Examples:

DECLARE Z INTEGER;
DECLARE X, Y INTEGER DEFAULT 9;
DECLARE ABX VARCHAR(50);
DECLARE A INTEGER DEFAULT NULL;

Note: It is possible to declare a variable which has the same name as a column
name in a table. All ambiguous references will be interpreted as a reference to
a column name rather than a variable. It is therefore recommended that a
suitable naming convention be adhered to that clearly distinguishes between
the names of table columns and variables.

The name of a variable may be qualified in the normal way with the beginning
label of the scope in which it has been declared.

8-10 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

Example:

CREATE PROCEDURE MY_PROCEDURE(IN X INTEGER)
S0:
BEGIN
 DECLARE A, B INTEGER;
 S1:
 BEGIN
 DECLARE B, C INTEGER;
 ...
 END S1;
 S2:
 BEGIN
 DECLARE Y INTEGER;
 ...
 END S2;
END S0;

The qualified names for the variables in the preceding example are as follows:

S0.A S0.B S1.B S1.C and S2.Y.

8.2.7 The ROW data type
Mimer SQL supports a pseudo data type called the ROW data type. It can be
used in a compound SQL statement in place of the data type specified when a
variable is declared.

A variable which is declared as having the ROW data type implicitly defines a
row value, which is a single construct that has a value which effectively
represents a table row.

A row value is composed of a number of named values, each of which has its
own data type and represents a column value in the overall row value.

A ROW data type can be defined either by explicitly specifying a number of
field-name/data-type pairs or by specifying a number of table columns from
which the unqualified names and data types are inherited.

8.2.7.1 ROW data type syntax
The syntax for defining a ROW data type is:

 •ÞÞÞÞÞÞÞÞÞÞÞÞ , ÞÞÞÞÞÞÞÞÞÞÞÞé
 ‘ ¦
 ……Þ½Þ ROW ÞÞ (ÞÞ field-name ÞÞ data-type ÞÞÅÞ) ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½Þ……
 ¦ ¦
 ¦ ¦
 ¦ •ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ , ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞé ¦
 ¦ ‘ ¦ ¦
 ÷Þ ROW AS (ÞÞ table-name ÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÅÞ) ÞÇ
 ¦ ¦
 ¦ •ÞÞÞÞÞÞ , ÞÞÞÞÞÞé ¦
 ¦ ‘ ¦ ¦
 ÷Þ (ÞÞÞ column-name ÞÅÞ) ÞÇ

The following points apply to the specification of a ROW data type:

• A domain cannot be specified for data-type.

• The value specified for data-type can be a ROW data type specification.

Persistent Stored Modules 8-11

Mimer SQL version 8.2
Programmer’s Manual

• Two fields in the same ROW data type specification must not have the
same name (this restriction applies equally to fields named by specifying a
field-name value and those named by inheriting the unqualified name of a
table column).

• If table-name is specified without a list of column names, all the columns in
the table are used to define fields in the ROW data type.

8.2.7.2 Using the ROW data type
A ROW variable field is referenced like this: variable-name.field-name.

A value may be assigned to one of the fields in a ROW variable in the same
way as a value would be assigned to a variable declared with the same data
type as the field. The data type of the field must be assignment compatible with
the value being assigned to it.

If the declaration of a ROW variable does not include a DEFAULT clause,
each field in the ROW variable is set to NULL initially.

The value of a field in a ROW variable may be used in the same way as any
value of that type.

When a ROW data type is defined by specifying table columns, the names and
data types of its fields are inherited from the columns in the table(s).
Subsequently assigning values to the ROW variable will not affect the table(s)
used to define the ROW data type.

A row value, which may be the value of a ROW variable, may be assigned to a
ROW variable. The row value and the ROW variable are assignment-
compatible if, and only if, both contain the same number of values and each
value in the row value is assignment-compatible with the corresponding field in
the ROW variable.

Two row values, one or both of which may be the value of a ROW variable,
may be compared. The row values are comparison-compatible if, and only if,
both contain the same number of values and each value in one is comparison-
compatible with the corresponding value in the other.

A ROW variable may be used within a compound SQL statement in the
following contexts:

• As the only expression specified in a RETURN statement used in a result
set procedure. The ROW variable must be assignment-compatible with the
row value defined by the procedure VALUES clause.

• As the only target variable specified in the INTO clause of a SELECT
INTO statement. The row value selected must be assignment-compatible
with the ROW variable and will be assigned to it.

• As the only target variable specified in the INTO clause of a FETCH
statement. The row value fetched must be assignment-compatible with the
ROW variable and will be assigned to it.

8-12 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

• As the procedure-variable or expression in a SET assignment statement
(see the description above of assignment-compatibility involving ROW
variables).

• As an argument in a comparison (see the description above of comparison-
compatibility involving ROW variables).

8.2.8 Row value expression
A row value expression is an expression that specifies a row value. The values
that represent the column values of the row value expression are specified as
value expressions in a comma-separated list which is delimited by parentheses.

A row value expression can be used in the following contexts:

• As the only expression in a RETURN statement used in a result set
procedure.

• As the expression following the DEFAULT keyword in a DECLARE
VARIABLE statement for a variable declared to have the ROW data type.

• As a row value in a comparison or assignment operation.

Examples:

RETURN (24, 16, 'xyz', 11.3, X+4/9);

DECLARE RC ROW (A INTEGER, B INTEGER, S VARCHAR(10))
 DEFAULT (14, 27, 'hello');

IF RC = (14, 27, 'hello') THEN
 SET RC.S = 'bye';
END IF;

SET RC = (99, 105, 'new value');

8.3 Modules

A module is simply a collection of routines. All the routines in a module are
created by declaring them when the module is created. Routines cannot be
added to or removed from a module after the module has been created.

A module belongs to the schema in which it is created and all the routines
contained in a module must belong to the same schema as the module.

The name of a routine in a module may be qualified in the normal way by using
the name of the schema to which the routine belongs. The module name is
never used to qualify the name of a routine.

Note: It is not possible to grant EXECUTE privilege on a module. In order to
allow an ident to invoke a routine, whether it exists on its own or in a module,
EXECUTE privilege on the routine must be granted to the ident.

When a module is dropped, all the routines in the module will be dropped as
well. See Section 8.9 for a discussion of CASCADE effects on modules and
routines.

Persistent Stored Modules 8-13

Mimer SQL version 8.2
Programmer’s Manual

The operations that may be performed on a module are:

CREATE using CREATE MODULE

DROP using DROP MODULE

COMMENT using COMMENT ON MODULE

Refer to the Mimer SQL Reference Manual for a description of the SQL
statements mentioned above, brief examples follow.

Examples:

CREATE MODULE MY_MODULE
 DECLARE PROCEDURE P1 ... ;
 DECLARE PROCEDURE P2 ... ;
 DECLARE FUNCTION F1 ... ;
 ...
END MODULE

COMMENT ON MODULE MY_MODULE IS 'This is my example module'

DROP MODULE MY_MODULE CASCADE

8.4 SQL constructs in routines

The following SQL constructs are specifically provided for use in the body of a
routine.

8.4.1 Assignment using SET
The SET statement is used to assign a value to a variable declared in a routine
or an output parameter of a procedure (i.e. a parameter with mode OUT or
INOUT).

Examples:

SET A = 5;
SET X = NULL;
SET Y = 11 + A;
SET D = CURRENT_DATE;
SET Z = NEXT_VALUE OF Z_SEQUENCE;
SET X = CASE Y WHEN 1 THEN Y ELSE 0 END;

8.4.2 Conditional execution using IF
The IF statement provides a mechanism for conditional execution of SQL
statements based on the truth value of a conditional expression.

Note: If the conditional expression includes (or equals) NULL, the conditional
expression evaluates to false. Testing for the NULL value must be done by
using IS NULL (see Section 5.9.6 of the Mimer SQL Reference Manual).

A basic IF statement consists of a conditional expression followed by a list of
one or more SQL statements in a THEN clause, which are executed if the
conditional expression evaluates to true and, optionally, a list of one or more
SQL statements in an ELSE clause which are executed if the conditional
expression evaluates to false.

8-14 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

All of the predicates supported by Mimer SQL are allowed in the conditional
expression of an IF statement - see Section 5.9 of the Mimer SQL Reference
Manual.

One or more IF statements can be nested, one within the other, by using an
ELSEIF clause in place of the ELSE clause in the IF statement containing
another.

The IF statement does not in any sense define a local scope, it is simply a
mechanism for conditionally executing a sequence of SQL statements.

Once the SQL statements to be executed have been selected, they execute in
the same way as any ordinary sequence of SQL statements. This point is
particularly important when considering exception condition handling behavior
(see Section 8.7).

Examples:

IF X > 50 THEN
 SET X = 50;
 SET Y = 1;
ELSE
 SET Y = 0;
END IF;

IF Y IN (2,3,4) THEN
 ...
ELSE
 ...
END IF;

IF X > 50 THEN
 SET X = 50;
 SET Y = 2;
ELSEIF X > 25 THEN
SET Y = 1;

ELSE
 SET Y = 0;
END IF;

IF NOT EXISTS (SELECT * FROM TABLE_1) THEN
 ...
ELSE
 ...
END IF;

IF X > (SELECT C1 FROM T2 WHERE ...) THEN
 ...
ELSE
 ...
END IF;

8.4.3 Conditional execution - the CASE statement
The CASE statement provides another mechanism for conditional execution of
SQL statements. The CASE statement comes in two forms, a “simple case” and
a “searched case”.

A “simple case” works by evaluating equality between one value expression
and one or more alternatives of a second value expression.

Persistent Stored Modules 8-15

Mimer SQL version 8.2
Programmer’s Manual

Example:

DECLARE Y INTEGER;

CASE Y
 WHEN 1 THEN ...
 WHEN 2 THEN ...
 WHEN 3 THEN ...
 ELSE ...
END CASE;

A “searched case” works by evaluating, for truth, a number of alternative
search conditions.

Example:

CASE
 WHEN EXISTS (SELECT * FROM BILL) THEN ...
 WHEN X > 0 OR Y = 1 THEN ...
ELSE ...
END CASE;

For both forms of the CASE statement the following is true:

• A sequence of one or more SQL statements can follow the THEN clause for
each of the conditional alternatives, in the same way as for an IF statement,
even though only a single implied SQL statement is shown in the examples
above.

• Each alternative sequence of SQL statements in a CASE statement is treated
in the same way, with respect to the behavior of exception handlers etc., as
has already been described for sequences of SQL statements in an IF
statement (see Section 8.4.2).

• Like the IF statement, the CASE statement simply provides a mechanism for
selecting a sequence of SQL statements to execute. The CASE statement as
a whole is not considered, in any sense, to be a single statement.

• The conditional part of each WHEN clause is evaluated, working from the
top of the CASE statement down. The SQL statements that are actually
executed are those following the THEN clause of the first WHEN condition
to evaluate to true. If none of the WHEN conditions evaluate to true, the
SQL statements following the CASE statement ELSE clause are executed.

The presence of an ELSE clause in the CASE statement is optional and if it is
not present (and none of the WHEN conditions evaluate to true) an exception
condition is raised to indicate that a case was not found for the CASE
statement.

Note: If it is desired that there be no operation performed and no exception
condition raised if none of the WHEN conditions evaluate to true, then an
ELSE clause should be specified as an empty compound SQL statement.

Only the single selected sequence of SQL statements that follow a THEN or
the ELSE is executed before the CASE statement terminates. There is no
potential “fall through” to subsequent THEN sequences as is found in case
statements in some other programming environments.

Note: The CASE statement is distinct from the CASE expression - see
Section 5.6 of the Mimer SQL Reference Manual.

8-16 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

8.4.4 Iteration using LOOP
The LOOP statement may be preceded by a label that can be used as an
argument to LEAVE in order to terminate the loop. The LOOP statement can
contain a sequence of one or more SQL statements which are executed, in
order, repeatedly.

The iteration is terminated by executing the LEAVE statement, or if an
exception condition is raised.

Example:

L1:
LOOP
IF ... LEAVE L1;

 ...
END LOOP L1;

8.4.5 Iteration using WHILE
The WHILE statement may be preceded by a label that can be used as an
argument to LEAVE in order to terminate the while loop. The WHILE
statement can contain a sequence of one or more SQL statements which are
executed, in order, repeatedly.

The WHILE statement includes a conditional expression and iteration
continues as long as this expression evaluates to true. Iteration may also be
terminated by executing the LEAVE statement, or if an exception condition is
raised.

Example:

SET I = 0;
L1:
WHILE I <= 10 DO
 ...
 SET I = I + 1;
END WHILE L1;

8.4.6 Iteration using REPEAT
The REPEAT statement may be preceded by a label that can be used as an
argument to LEAVE in order to terminate the repeat loop. The REPEAT
statement can contain a sequence of one or more SQL statements which are
executed, in order, repeatedly.

The REPEAT statement includes an UNTIL clause, which specifies a
conditional expression, and iteration continues until this expression evaluates
to true. Iteration may also be terminated by executing the LEAVE statement, or
if an exception condition is raised.

Example:

SET I = 0;
L1:
REPEAT
 ...
 SET I = I + 1;
UNTIL I > 10
END REPEAT L1;

Persistent Stored Modules 8-17

Mimer SQL version 8.2
Programmer’s Manual

8.4.7 Invoking procedures - CALL
The CALL statement is used to invoke a procedure. The name of the procedure
may be qualified with the name of the schema to which it belongs. A value
expression or target variable must be specified for each of the procedure’s
parameters (see Section 4.2.6 of the Mimer SQL Reference Manual for the
definition of a target variable).

If the procedure parameter has mode OUT or INOUT, a target variable must be
specified. For procedure parameters with mode IN, a value expression may be
specified.

SQL/PSM is not strongly typed, so the expression specified for each procedure
parameter need not have exactly the same data type as the parameter, however
the expression must be assignment-compatible with the procedure parameter
for which it is supplied (see Section 4.5 of the Mimer SQL Reference Manual
for a discussion of assignment and implicit data type conversions).

Examples:

CALL PROC1();
CALL PROC2(X,Y);
CALL IDENT1.PROC7(CURRENT_DATE, X+3, Z);

8.4.8 Invoking functions - use as a value expression
Functions are not invoked by calling them explicitly. A function is invoked,
and it returns its value, when it is used in a procedure-control-statement or in
an assignment where a value-expression would normally be used.

The name of the function may be qualified with the name of the schema to
which it belongs.

For definition of procedure-control-statement, see the beginning of Chapter 6
of the Mimer SQL Reference Manual.

The following restrictions apply:

• If the function is defined as NOT DETERMINISTIC, it must not be used in
the expression that follows the CASE keyword or the WHEN keyword in
the simple case form of a CASE statement (see Section 8.4.3).

• If MODIFIES SQL DATA has been specified for the access-clause of the
function, it must not be used in the expression following the DEFAULT
keyword in a DECLARE VARIABLE statement.

8-18 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

Examples:

IF MY_FN(X) > 70 THEN
 ...
ELSE
 ...
END IF;

SET X = NEXT_AVAIL(TOP, LAST_ALLOC);

SELECT TRANSGRESS(ARRIVE,DEPART) FROM BOOK_GUEST WHERE ... ;

INSERT INTO ROOM_PRICES VALUES(CODE_MAP('LAPONIA'), ... ;

SELECT * FROM ROOM_STATUS WHERE BOOKADM.STATES(STATUS) = ... ;

CREATE TABLE OFFICES (OFFICE_NAME CHAR(20), CHECK
(CHECK_NAMES(OFFICE_NAME) = 0), ... ;

8.4.9 Comments in routines
Any text that occurs after “--” and before end-of-line in a routine is taken to be
a comment.

Example:

CREATE PROCEDURE MY_PROCEDURE(Y INTEGER)
-- This is a comment: Note that Y has mode IN (default)
READS SQL DATA
BEGIN
DECLARE B INTEGER;
-- Here is another comment
SET B = Y + 22; -- Y is input to the procedure
...
END

8.4.10 Restrictions
The following groups of SQL statement may not be used in a routine:

• Access Control statements

• Data Definition statements

• Embedded SQL Control statements

• Security Control statements

• Dynamic SQL statements

• System Administration statements.

Refer to beginning of Chapter 6 in the Mimer SQL Reference Manual for a
definition of the statement groups mentioned above.

Note: Any SQL statements used in a routine must be executable, so the usual
restriction on the use of SELECT versus SELECT INTO applies (only the
latter being considered executable - the former may, however, be used in a
conditional expression, e.g. in an IF statement or a cursor declaration).

The following restrictions apply to result set procedures:

• A COMMIT or ROLLBACK statement must not be executed in a result set
procedure because it will interfere with the open cursor that will exist in the
context from where the result set procedure is called.

Persistent Stored Modules 8-19

Mimer SQL version 8.2
Programmer’s Manual

• A function or procedure which executes a COMMIT or ROLLBACK
statement must not be invoked from within a result set procedure.

• A function or procedure which has MODIFIES SQL DATA specified for its
access clause must not be invoked from within a result set procedure.

8.5 Data manipulation

8.5.1 Write operations
INSERT, UPDATE and DELETE statements may be used in a routine provided
MODIFIES SQL DATA has been specified for the access clause (see
Section 8.2.4).

Routine parameters and variables may be used in these statements wherever an
expression can normally be used, as shown in the examples below.

Example:

CREATE PROCEDURE INSERT_HOTEL(IN I_NAME CHAR(15),
 I_CITY CHAR(20),
 I_OVERBOOK DEC(3,2))
MODIFIES SQL DATA
BEGIN
 INSERT INTO HOTEL VALUES(SUBSTRING(I_NAME FROM 1 FOR 4),
 I_NAME,I_CITY,I_OVERBOOK);
...

The ROW_COUNT option of the GET DIAGNOSTICS statement may be used
immediately after an INSERT, UPDATE, DELETE, SELECT INTO or
FETCH statement to determine the number of rows affected by the preceding
statement.

Example:

DECLARE ROWS INTEGER;
...
INSERT INTO ROOMS SELECT ...;
GET DIAGNOSTICS ROWS = ROW_COUNT;
IF ROWS > 0 THEN

Note: All SQL statements except GET DIAGNOSTICS will overwrite the
information in the diagnostics area.

8.5.2 Using cursors
Cursors may be declared and used in a compound SQL statement to receive a
result set from a query-expression or from a result set procedure. A cursor may
not have the same name as another cursor declared in the same scope.

Cursors in a procedural usage context are used in much the same way, in terms
of the SQL statements used, as cursors declared outside routines. It is possible
to open cursors, fetch data into variables and use the statements UPDATE and
DELETE where current of cursor.

8-20 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

Examples:

BEGIN
 DECLARE X CURSOR FOR SELECT CHARGE_CODE,AMOUNT
 FROM BILL FOR UPDATE;
 DECLARE I_CHARGE_CODE CHAR(3);
 DECLARE I_AMOUNT DEC(8,2);
 ...
 OPEN X;
L1:
 BEGIN
 DECLARE EXIT HANDLER FOR NOT FOUND
 BEGIN
 END;
 LOOP
 FETCH X INTO I_CHARGE_CODE,I_AMOUNT;
 IF I_CHARGE_CODE = '270' AND ... THEN
 UPDATE BILL SET AMOUNT = AMOUNT * 1.10 WHERE CURRENT OF X;
 END IF;
 END LOOP;
 END;
 CLOSE X;
END

DECLARE D DATE DEFAULT CURRENT_DATE;
DECLARE C1,C2 CHAR(5);
DECLARE Z SCROLL CURSOR FOR CALL MY_PROC(1,D);
DECLARE I INTEGER;
...
OPEN Z;
...
FETCH FIRST FROM Z INTO C1;
...
FETCH ABSOLUTE I FROM Z INTO C2;

The first example above demonstrates detection of the NOT FOUND exception
as a method of checking that a fetch statement does not return any data. If a
NOT FOUND exception occurs in the example, an exit handler is invoked.
After the exit handler has finished, the flow of control leaves the compound
SQL statement labeled L1.

Alternatively, the GET DIAGNOSTICS statement can be used to retrieve the
number of rows affected by the FETCH statement, as shown below.

Example:

DECLARE ROWS INTEGER;
L1:
LOOP
 FETCH X INTO I_CHARGE_CODE,I_AMOUNT;
 GET DIAGNOSTICS ROWS = ROW_COUNT;
 IF ROWS = 0 THEN
 LEAVE L1;
 END IF;
END LOOP;
CLOSE X;

The following specific restrictions apply to cursors used in routines:

• no dynamic functions can be used (i.e. extended cursor names and the use of
SQL descriptors)

• REOPENABLE cursors are not allowed

• the use of the keyword RELEASE with the CLOSE statement is not
permitted.

Persistent Stored Modules 8-21

Mimer SQL version 8.2
Programmer’s Manual

Using FETCH to get result set data from a result set procedure may cause parts
of the result set procedure to execute (see Section 8.6). The result set procedure
will be “in use” until the associated cursor is closed.

8.5.3 SELECT INTO
Another way of fetching data is by using a SELECT INTO statement. This can
only be used when a single record is fetched from the database. If more than
one record fulfills the search criteria, an exception condition is raised.

Example:

DECLARE TOTAL INTEGER;
SELECT SUM(AMOUNT) INTO TOTAL
 FROM BILL WHERE RESERVATION = IN_RESERVATION;

8.5.4 Transactions
It is possible to start and end transactions within a routine. A transaction is
implicitly started when a routine that accesses the database is invoked. It is also
possible to explicitly start a transaction by using the START statement. When a
transaction is ended, either by a COMMIT or ROLLBACK statement, all open
cursors in the routine are closed.

It is possible to affect the behavior of transactions by using the
SET TRANSACTION and SET SESSION statements.

Note: If a compound SQL statement is defined as ATOMIC, a transaction
cannot be terminated within it because execution of the COMMIT or
ROLLBACK statements is not permitted.

8.6 Result set procedures

A result set procedure is a special type of procedure that allows a result set to
be returned. A result set procedure is called by specifying it in a cursor
declaration and then using FETCH to get the result set data. In interactive SQL
a result set procedure is called by using the CALL statement and the result set
data is dealt with in the same way as a select.

Example (embedded SQL):

EXEC SQL DECLARE X CURSOR FOR CALL MY_RESULT_PROC(1, 5);

A result set procedure is distinguished when it is created or declared by a
VALUES clause which follows the parameter part of the procedure definition.
The VALUES clause defines the data types of the columns in the result set and
may contain an AS clause which names the columns.

8-22 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

Example:

CREATE PROCEDURE MY_RESULT_PROC(IN A INTEGER, IN B INTEGER)
 VALUES (VARCHAR(32), INTEGER(10))
 AS (CLIENT_NAME, CLIENT_ID)
READS SQL DATA
BEGIN
...
END;

All result set procedure parameters have mode IN, therefore any data returned
from a result set procedure is returned via the procedure’s result set.

The option MODIFIES SQL DATA must not be specified for the access clause
of a result set procedure (see Section 8.2.4).

Note: A function or procedure which has MODIFIES SQL DATA specified for
its access clause must not be invoked from within a result set procedure.

A result set procedure must not execute a COMMIT or ROLLBACK
statement. There is always at least one open cursor during the execution of a
result set procedure and these statements cause all open cursors to be closed.

Note: A function or procedure which executes a COMMIT or ROLLBACK
statement must not be invoked from within a result set procedure.

A row in the result set of a result set procedure is returned by executing the
RETURN statement. The arguments to a RETURN statement can be NULL, an
expression or a variable which has the ROW data type.

When a FETCH is executed, the SQL statements in the body of the result set
procedure are executed until a RETURN statement is executed.

The execution of the result set procedure is then suspended until the next
FETCH statement is executed for the calling cursor, then flow of control within
the result set procedure continues until the next RETURN statement is
encountered, or until the end of the procedure is reached.

After flow of control has exited from the scope of a result set procedure the
next attempt to FETCH more data into the calling cursor will flag end-of-set.

Thus, a result set procedure call can be used in place of the usual SELECT
when declaring a cursor.

The following example (using embedded SQL) is intended to demonstrate how
execution within the result set procedure proceeds, and is suspended, in
response to FETCH statements being executed for the calling cursor:

EXEC SQL CREATE PROCEDURE MY_RESULT_PROC(X INTEGER)
 VALUES (VARCHAR(10), INTEGER)
 AS (TX, XP)
CONTAINS SQL
BEGIN
 DECLARE XP INTEGER DEFAULT X;

 RETURN ('FIRST ROW', XP);
 SET XP = X*2;
 RETURN ('SECOND ROW', XP);
 SET XP = X*3;
 RETURN ('THIRD ROW', XP);
END;

Persistent Stored Modules 8-23

Mimer SQL version 8.2
Programmer’s Manual

EXEC SQL DECLARE Z CURSOR FOR CALL MY_RESULT_PROC(3);

EXEC SQL WHENEVER NOT FOUND GOTO done;

EXEC SQL FETCH Z INTO :T, :X;
(This will fetch 'FIRST ROW', 3)
Result set procedure flow of control suspended at XP=X*2

EXEC SQL FETCH Z INTO :T, :X;
(This will fetch 'SECOND ROW', 6)
Result set procedure flow of control suspended at XP=X*3

EXEC SQL FETCH Z INTO :T, :X;
(This will fetch 'THIRD ROW', 9)
Result set procedure flow of control suspended at END;

EXEC SQL FETCH Z INTO :T, :X;
Flow of control exits from procedure scope
 and the NOT FOUND exception is raised.

done:
EXEC SQL CLOSE Z;

More typically, a loop construct would be used in the result set procedure to
deal with RETURN statements. It is also permissible to use a cursor within the
result set procedure to get data to be returned via a SELECT.

Closing the cursor for a result set procedure will close any open cursors
declared within it and no further execution of the procedure will occur.
Reopening the cursor will start execution of the result set procedure afresh
from the beginning (i.e. no state information is saved between a close and
reopen).

8.7 Managing exception conditions

An exception is raised if an error occurs when executing an SQL statement.
Every exception is identified by an exception condition, expressed in terms of
its SQLSTATE value.

An SQLSTATE value is represented by the keyword SQLSTATE followed by
a 5-character string containing only uppercase alphanumeric characters. The
first two characters of the string identify the exception class and the last three
the exception sub-class.

In Mimer SQL, the range of possible SQLSTATE values is divided into
standard values and implementation-defined values. The implementation-
defined values are those beginning with the characters “J-R”, “T-Z”, “5-6” and
“8-9”.

Whenever an exception is raised, the exception condition is placed in the
diagnostics area and the SQLSTATE value can be retrieved by using the
RETURNED_SQLSTATE option of GET DIAGNOSTICS.

In addition to expressing an exception condition in terms of its SQLSTATE
value, it is possible (within a compound SQL statement) to declare a condition
name to represent it (see Section 8.7.1). Whenever a condition name is used, it
is immediately translated into the SQLSTATE value it represents.

8-24 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

It is possible to raise an exception without an error occurring by using the
SIGNAL statement. When the SIGNAL statement is used, the specified
exception condition is placed in the cleared diagnostics area (expressed as its
SQLSTATE value) and control proceeds as if an error had just occurred.

Example:

SIGNAL SQLSTATE 'UE456';

It is possible to declare exception handlers in a compound SQL statement that
perform some action when exceptions are raised. The action defined by the
exception handler is associated with one or more specific exception conditions,
or one or more exception class groups, specified when the exception handler is
declared (see Section 8.7.2).

If there is an exception handler action defined for an exception condition that is
raised, the exception handler action is performed and execution continues in
the manner defined by the type of the exception handler (see Section 8.7.2).

If no exception handler action has been defined for an exception condition that
is raised, the default error handling mechanism is invoked (which usually
makes the exception condition visible to the calling environment).

If the exception NOT FOUND or an SQLWARNING is raised in an unhandled
situation, execution will continue and the exception will be cleared by
execution of the next statement in the procedure. The GET DIAGNOSTICS
statement can be used to test for the NOT FOUND exception and an
SQLWARNING.

It may be necessary for an exception handler action to re-raise the current
exception condition or to raise an alternative exception condition. The
RESIGNAL statement is provided for this purpose and it may only be executed
from within an exception handler.

If RESIGNAL is executed without specifying an exception condition, the
current exception condition remains in the diagnostics area and the error
handling mechanism proceeds to deal with the error as if the current exception
handler action had not been found. If an exception condition is specified (in the
same way as for SIGNAL), this is pushed onto the top of the stack of
exceptions in the diagnostics area, becoming the current SQLSTATE value,
and the error handling mechanism proceeds as just described. The size of the
exceptions stack in the diagnostics area is set by using the SET
TRANSACTION DIAGNOSTICS SIZE statement (see Section 6.2.5).

Use of RESIGNAL is useful in situations where there are nested exception
handler actions defined and it is required that an enclosing exception handler
action be invoked from an inner one, or where the default error handling
mechanism is to be allowed to proceed from some point within a defined
exception handler action.

Examples:

RESIGNAL;

RESIGNAL SQLSTATE 'UE456';

Persistent Stored Modules 8-25

Mimer SQL version 8.2
Programmer’s Manual

8.7.1 Declaring condition names
As discussed above, exception conditions are identified by an SQLSTATE
value. Whenever an exception is raised, the exception condition that identifies
it is stored in the diagnostics area in the form of its SQLSTATE value.

It is always possible to specify an exception condition by using its SQLSTATE
value, e.g. SQLSTATE VALUE 'S0700', however it is often desirable to
declare a condition name that represents the SQLSTATE value in a way that
more meaningfully describes the exception.

Condition names may be declared in a compound SQL statement, see the
Mimer SQL Reference Manual for a detailed description of the compound SQL
statement.

Example:

DECLARE INVALID_PARAMETER CONDITION FOR SQLSTATE 'UE456';
...
SIGNAL INVALID_PARAMETER;

Following this declaration, the condition name “INVALID_PARAMETER”
can be used instead of the SQLSTATE value “SQLSTATE VALUE 'UE456'”
whenever there is a need to refer to this exception condition.

Whenever a condition name is used (in an exception handler declaration or
when signaling an exception condition) it is immediately translated into the
SQLSTATE value it represents, i.e. the condition name itself is never placed in
the diagnostics area or registered against an exception handler action.

All SQLSTATE values in Mimer SQL which lie outside the range of standard
values are treated as implementation-defined, so all SQLSTATE values are
handled in the same way and may be specified explicitly in all situations.

8.7.2 Declaring exception handlers
Exception handlers may be declared in a compound SQL statement in order to
define an action which will be executed if specified exceptions are raised
within the scope of the exception handler.

The structure of the handler action is the same as the body of a routine, i.e. a
single executable procedural SQL statement. The exceptions to which the
handler action will respond may be specified as a list of exception conditions
or by specifying one or more exception class groups.

The exception class groups are:

• SQLWARNING covers SQLSTATE values beginning with “01”.

• NOT FOUND covers SQLSTATE values beginning with “02”.

• SQLEXCEPTION covers all other SQLSTATE values (including those in
the implementation defined range), excluding those beginning with “00”.

An exception handler which is declared to respond to one or more exception
class groups is referred to as a general exception handler.

8-26 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

An exception condition may be specified by its SQLSTATE value or a
condition name declared to represent it. An exception handler which is
declared to respond to one or more specific exception conditions is referred to
as a specific exception handler.

The same exception condition must not be specified more than once in the
same exception handler declaration.

An exception handler can either be a general exception handler or a specific
exception handler, i.e. an exception handler declaration cannot contain both
exception class groups and specific exception conditions.

Exception handlers are declared in the local handler declaration list of a
compound SQL statement and the scope of an exception handler is that
compound SQL statement plus all the SQL statements contained within it,
including all other compound SQL statements nested within it.

The exception handler will be executed if one of the exceptions it is declared to
respond to is raised within the scope of the handler.

A local handler declaration list can only contain one exception handler
declared to respond to a particular exception condition or exception class
group.

It is possible to declare a general and a specific exception handler, both of
which cover the same scope, where an exception condition specified for the
specific handler is in one of the exception class groups specified for the general
handler. If the exception condition is raised in this situation, the specific
handler is executed in preference to the general handler.

It is possible for the scope of two specific exception handlers, which respond to
the same exception condition, to overlap. This will be the case if there are two
nested compound SQL statements and each declares a specific exception
handler for the same exception condition (this is permitted, provided the two
exception handlers are not declared in the same local handler declaration list).
In this situation the innermost exception handler action will be executed.

The same is true for two general exception handlers in this situation.

The RESIGNAL statement can be used in situations like this, in the inner
exception handler action, to get the outer exception handler action to execute
by propagating the exception out from the exception handler action which is
currently executing.

Exception handlers fall into the following types:

Exit Handler: This type of exception handler will execute when
the exception condition(s) that apply to it are raised.
After the handler has executed, flow of control exits
the scope of the compound SQL statement
containing the exception handler declaration, by
effectively performing a LEAVE (see
Section 8.2.5).

Persistent Stored Modules 8-27

Mimer SQL version 8.2
Programmer’s Manual

Continue Handler: This type of exception handler will execute when
the exception condition(s) that apply to it are raised.
After the handler has executed, flow of control
continues by executing the SQL statement
immediately following the SQL statement that
raised the exception.

Undo Handler: The execution of this type of handler will be
initiated when the exception condition(s) that apply
to it are raised. Before the handler action executes,
all changes made by the executed SQL statements in
the compound SQL statement, or by any SQL
statements triggered by them, are canceled. The
handler action is then executed and flow of control
exits the scope of the compound SQL statement
containing the exception handler declaration, by
effectively performing a LEAVE (see
Section 8.2.5).

Note: An UNDO exception handler can only be declared in a compound SQL
statement which has been defined as ATOMIC (see Section 8.2.5.1).

Examples:

S1:
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 ...
 ...
 END;
 ...
 ...
END S1;

S2:
BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE 'S0700'
 BEGIN
 ...
 ...
 END;
 ...
 ...
END S2;

S3:
BEGIN
 DECLARE EXIT HANDLER FOR SQLSTATE 'S0700'
 BEGIN
 ...
 END;
 ...
 S4:
 BEGIN ATOMIC
 DECLARE UNDO HANDLER FOR SQLSTATE 'S0700'
 BEGIN
 ...
 END;
 ...
 END S4;
 ...
END S3;

8-28 Persistent Stored Modules

Mimer SQL version 8.2
Programmer’s Manual

The GET DIAGNOSTICS statement can be used in a general exception handler
to get the specific SQLSTATE value that provoked execution of the exception
handler.

Example:

DECLARE STATE CHAR(5) DEFAULT '?????';
DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
BEGIN
 GET DIAGNOSTICS EXCEPTION 1 STATE = RETURNED_SQLSTATE;
 CASE STATE
 WHEN '22003' THEN ...
 WHEN '20000' THEN ...
 ELSE ...
 END CASE;
END;

When the GET DIAGNOSTICS statement is used inside a routine it is
important to keep in mind how exceptions are handled within routines, because
this affects how and where the statement can be used.

When an exception is raised inside a routine there are two possibilities:

1. An exception handler has been declared to respond to the exception, it is
invoked and the diagnostics area is cleared when the exception handler
finishes. In this situation the GET DIAGNOSTICS statement can be used as
the first statement in the exception handler to get the SQLSTATE value of
the exception (it must be the first statement, because executing any other
SQL statement will clear the diagnostics area).

2. If there is no exception handler declared to handle the exception, the default
error handling mechanism will immediately resignal the exception to the
calling environment (typically an enclosing compound SQL statement),
therefore there is no opportunity to execute GET DIAGNOSTICS directly
after the statement causing the error.

8.8 Access rights

The ident creating a routine must, as is usual, have the appropriate access rights
on the tables and other database objects referenced from the SQL statements in
the routine. The creating ident must also have the right to create objects in the
schema to which the routine is to belong (i.e. the ident must be the creator of
the schema).

The right of the creator to access referenced database objects is verified when
the CREATE FUNCTION, CREATE MODULE or the CREATE
PROCEDURE statement is executed.

If an ident wishes to invoke a routine, that ident must have EXECUTE
privilege on the routine.

Note: In order for the creator of a routine to grant EXECUTE privilege on the
routine to another ident, the creator must have the WITH GRANT option in
affect for all the access rights held on all the database objects referenced within
the routine.

Persistent Stored Modules 8-29

Mimer SQL version 8.2
Programmer’s Manual

The above note is an important security point, because granting EXECUTE
privilege on a routine is effectively granting appropriate access rights to the
given ident on all the database objects referenced in the routine, therefore all
those access rights must be held by the grantor with the WITH GRANT option.

An ident may be granted EXECUTE privilege on a routine with the WITH
GRANT option and if this option is in affect, the ident may grant EXECUTE
privilege on that routine to other idents.

Routines can be used as a security layer in the database. By having EXECUTE
privilege on a routine granted, an ident only gets the right to perform the
specific operations specified in the routine and not general access to the
referenced database objects.

Note: It is not possible to grant EXECUTE privilege on a module, only on
routines.

8.9 Using DROP and REVOKE

Care must be taken if database objects are dropped when the CASCADE option
is used and when REVOKE is used, particularly with respect to routines and
modules.

It is important to bear in mind the following points in connection with modules
and routines:

• Dropping an object referenced by an SQL statement in a routine will cause
the routine to be dropped.

• If the access rights on a database object are revoked from the creator of a
routine that contains an SQL statement referencing the object, the routine
will be dropped.

• If a routine belonging to a module is dropped because of the effects of a
cascade, the routine is effectively removed from the module (i.e. the module
is not dropped).

If an ident attempts to drop a routine for which there is a compiled version
currently being held by another ident, the DROP operation will fail because the
routine is “in use”.

When a routine is invoked, it is compiled and the compiled version of the
routine is held by the invoking ident. Any other idents invoking a routine while
a compiled version of it exists will use the existing compiled version and this
will be held by them as well.

A compiled version of a routine will generally be held by an ident until the
ident disconnects. If the routine invocation is contained in a dynamic SQL
statement, deallocating the statement will release the compiled version of the
routine immediately without the need for a disconnect.

Triggers 9-1

Mimer SQL version 8.2
Programmer’s Manual

9 TRIGGERS

A trigger defines an SQL statement that is to be executed before, after or
instead of a specified data manipulation operation on a named table or view.

The execution of the SQL statement can be made conditional on the evaluation
of a search condition.

The SQL statement is typically a compound SQL statement, thus allowing a
number of SQL statements to be executed by the trigger. The compound SQL
statement must be defined as ATOMIC.

Thus, the body of a trigger is similar to the body of a routine and the same
constructs may be used within it.

9.1 Creating a trigger

A trigger is created by using the CREATE TRIGGER statement (see Chapter 6
of the Mimer SQL Reference Manual).

Examples:

CREATE TRIGGER LOG_DATA BEFORE DELETE ON BOOK_GUEST
BEGIN ATOMIC
 ...
END;

CREATE TRIGGER LOG_DATA AFTER INSERT ON BOOK_GUEST
REFERENCING NEW TABLE AS GUESTS
BEGIN ATOMIC
 DECLARE GUEST_CURSOR CURSOR FOR SELECT * FROM GUESTS;
 ...
END;

CREATE TRIGGER JOIN_UPDATE INSTEAD OF UPDATE ON INVOICE
REFERENCING OLD TABLE AS OLD_INVOICE
 NEW TABLE AS NEW_INVOICE
 BEGIN ATOMIC
 DECLARE OLD_INVOICE CURSOR FOR SELECT * FROM OLD_INVOICE;
 DECLARE NEW_INVOICE CURSOR FOR SELECT * FROM NEW_INVOICE;
 ...
END;

A trigger is created on a named table or view and the trigger must be created in
the schema to which the table or view belongs. If the trigger is created on a
base table, the table must be stored in a databank with the TRANS or LOG
option.

9-2 Triggers

Mimer SQL version 8.2
Programmer’s Manual

The trigger name must follow the rules for naming private database objects
(see Section 4.2.2 of the Mimer SQL Reference Manual) and the name must be
unique within the schema in which the trigger is created.

It is possible to create any number of triggers on a named table, each of which
may have the same trigger time (see Section 9.2) and trigger event (see
Section 9.3) specified.

If two or more triggers exist on the same table with the same trigger time and
trigger event, they will be executed in an order determined by their internal
creation timestamp.

Note: When triggers are created using BSQL, the create statement must be
delimited by the “@” character.

9.2 Trigger time

The trigger time specifies when, in relation to the execution of the triggering
data manipulation statement, the trigger is executed.

The possible values for the trigger time are:

AFTER this specifies that the trigger will be executed following the
execution of the triggering data manipulation statement.

BEFORE this specifies that the trigger will be executed prior to the
execution of the triggering data manipulation statement.

INSTEAD OF this specifies that the trigger will execute when the triggering
data manipulation statement would normally be executed. In
this case the triggering data manipulation statement itself has
no direct effect, it only causes the trigger to execute.

If the trigger time specified is AFTER or BEFORE, the table name must
specify a base table which is located in a databank with the TRANS or LOG
option.

If the trigger time specified is INSTEAD OF, the table name must specify a
view.

9.3 Trigger event

The trigger event specifies the data manipulation statement that will cause the
trigger to execute. The possible values for the trigger event are: INSERT,
UPDATE and DELETE.

The trigger will be executed once each time the specified data manipulation
statement is executed on the table on which the trigger was created.

Triggers 9-3

Mimer SQL version 8.2
Programmer’s Manual

Note: If the trigger time is INSTEAD OF, the trigger event itself has no effect
on the table, it just causes the trigger to execute. The environment executing
the trigger event behaves as if the data manipulation statement is actually being
executed, even though no changes actually occur in the table(s) that would
normally be affected. The only data manipulations possible in this case are
those performed by the trigger action.

9.4 Trigger action

The trigger action, like the body of a routine, consists of a single procedural
SQL statement. In addition, the execution of the SQL statement can be made
conditional on the evaluation of a search condition.

The search condition is specified in the optional WHEN clause of the CREATE
TRIGGER statement.

As for routines, it is recommended that a compound SQL statement always be
used for the trigger action.

Note: The entire trigger action must be executed in a single atomic execution
context, therefore if a compound SQL statement is used, it must be defined as
ATOMIC (see Section 8.2.5.1).

The SQL statement(s) of the trigger action are always executed within the
transaction started for the trigger event. The normal restrictions on the use of
certain procedural SQL statements within a transaction apply.

In addition, because the trigger action must be atomic, a COMMIT or
ROLLBACK statement cannot be executed within it.

The creator of the trigger must hold the appropriate access rights, with grant
option, for all the operations performed within the trigger action. This is
checked when the CREATE TRIGGER statement is executed.

If the trigger time specified for the trigger is BEFORE, the following
restrictions apply to the trigger action:

• the trigger action must not contain any SQL statement that performs an
update (i.e. DELETE, INSERT and UPDATE statements are not permitted)

• a routine whose access clause is MODIFIES SQL DATA must not be
invoked from within the trigger action.

If an exception is raised from the trigger action, it can be handled within the
trigger by declaring a handler in the normal way for a compound SQL
statement (see Section 8.7.2).

If there is no handler declared in the trigger action to handle the exception, it
will propagate to the environment executing the trigger event and will be dealt
with appropriately there. The default behavior at that level will be to undo the
effect of the trigger event and all the operations performed in the trigger action.

It is possible to explicitly raise an exception from within the trigger action, or
from within an exception handler declared in it, by executing the SIGNAL
statement.

9-4 Triggers

Mimer SQL version 8.2
Programmer’s Manual

9.4.1 New and old table aliases
It is possible, by using the optional REFERENCING clause in the CREATE
TRIGGER statement, to specify the existence of two special tables called the
“old table alias” and the “new table alias”.

The name of each table is specified separately in the REFERENCING clause
and they must not have the same name. Both tables are accessible from within
the trigger action.

Each specified table is created just prior to the execution of the trigger and
each is local to the entire scope of the trigger action, including the optional
WHEN clause.

Note: A REFERENCING clause is not permitted in a CREATE TRIGGER
statement which has BEFORE specified for the trigger time.

The old table alias and new table alias contain copies of those database table
rows affected by the data manipulation operation that caused the execution of
the trigger (i.e. the trigger event).

In the case of a trigger executing AFTER the trigger event, the alias tables
show the database table rows actually affected by the trigger event.

In the case of a trigger executing INSTEAD OF the trigger event, the alias
tables show the database table rows that would have been affected by the
trigger event had its data manipulations actually been performed.

The old table alias shows each affected database table row in the state it was in
before normal execution of the trigger event.

The new table alias shows how each affected table row appears (or would
appear, in the case of INSTEAD OF triggers) after normal execution of the
trigger event.

If the trigger event was an INSERT, the old table alias cannot be specified. If
the trigger event was a DELETE, the new table alias cannot be specified.

The rows of the alias tables are created before the trigger executes and do not
change during execution of the trigger.

If the trigger action contains data manipulation statements that attempt to alter
the alias tables, an error will be raised when the CREATE TRIGGER statement
is executed.

9.4.2 Altered table rows
When the rows of the database table on which the trigger was created are
examined from within the trigger action, they will always reflect the actual
data manipulations performed by the trigger event and the trigger action.

In the case of an AFTER trigger, all rows inserted by the trigger event will be
visible, all rows deleted by the trigger event will not be found and all rows
updated by the trigger event will appear in their altered state.

Triggers 9-5

Mimer SQL version 8.2
Programmer’s Manual

In the case of an INSTEAD OF trigger, none of the data manipulations
specified by the trigger event will seen when the table is examined because the
trigger event does not actually perform any of its data change operations.

The rows of the old table alias and the new table alias will always show the
changes that were specified by the trigger event, even if these changes were not
actually performed on the database table (as is the case for INSTEAD OF
triggers).

9.4.3 Recursion
Any data manipulation statements occurring in a trigger action will be executed
in the normal way. It is, therefore, possible that the execution of a data
manipulation statement in the trigger action may lead to the execution of
another trigger or the recursive execution of the current trigger.

In either case, the execution context of the current trigger action is preserved
and newly-invoked trigger executes in the normal way, in its own execution
context, with appropriate versions of any old table alias and new table alias
(see Section 9.4.1).

9.5 Comments on triggers

The COMMENT ON TRIGGER statement can be used to create a comment on
a trigger.

Only the creator of the schema to which the trigger belongs may create a
comment on the trigger.

9.6 Using DROP and REVOKE

The following points apply to triggers when using DROP and REVOKE with
triggers:

• A trigger can be dropped by using the DROP TRIGGER statement.

• Only the creator of the trigger can drop it using the DROP TRIGGER
statement.

• When a trigger is dropped, the comments created on it are also dropped.

• Dropping an object referenced from an SQL statement in a trigger action
will cause the trigger to be dropped.

• If the required privileges held on a database object are revoked from the
creator of a trigger whose trigger action contains an SQL statement
referencing the object, the trigger will be dropped.

Handling errors and exception conditions 10-1

Mimer SQL version 8.2
Programmer’s Manual

10 HANDLING ERRORS AND
EXCEPTION CONDITIONS

Errors may arise at three general levels in an embedded SQL program (not
counting errors in the SQL-independent host language code). These are syntax,
semantic and run-time errors.

See Section 8.7 for information about managing exception conditions in
routines and triggers.

10.1 Syntax errors

Syntax errors are constructions which break the rules for formulating SQL
statements. For example:

• spelling errors in keywords

 SLEECT for SELECT

• incorrect or missing delimiters

 DELETEFROM for DELETE FROM
 SELECT column1;column2 for SELECT column1,column2

• incorrect clause ordering

 UPDATE..WHERE..SET for UPDATE..SET..WHERE

Syntactically incorrect statements are not accepted by the preprocessor. The
error must be corrected before the program can be successfully preprocessed.

10.2 Semantic errors

Semantic errors arise when SQL statements are formulated in full accordance
with the syntax rules, but do not reflect the programmer’s intentions correctly.
Some semantic errors, e.g. incorrect references to database objects, are detected
and reported by the ESQL preprocessor but other semantic errors will not
become apparent until run-time.

10-2 Handling errors and exception conditions

Mimer SQL version 8.2
Programmer’s Manual

10.3 Run-time errors

Run-time errors and exception conditions (for example warnings) arising
during execution of embedded SQL statements are signaled by the contents of
the SQLSTATE status variable described in Section 3.2. A list of possible
SQLSTATE values is provided in Appendix B.

The GET DIAGNOSTICS statement can be used to retrieve detailed
information about an exception (see the Mimer SQL Reference Manual for the
syntax description).

The NATIVE_ERROR and MESSAGE_TEXT fields of the diagnostics area
retrieved by using GET DIAGNOSTICS are used to get the internal Mimer
SQL return code and the descriptive text, respectively, relating to the exception
(these are listed in Appendix B).

10.3.1 Testing for run-time errors and exception
conditions

The application program may test the outcome of a statement in one of two
ways:

• by explicitly testing the content of the SQLSTATE variable

• by using the SQL statement WHENEVER (see the Mimer SQL Reference
Manual for the syntax description), which tests the class of the
SQLSTATE variable.

An application program may contain any number of WHENEVER statements,
and the statements may be placed anywhere in the program. A separate
WHENEVER statement must be issued for each situation (NOT FOUND,
SQLERROR or SQLWARNING) which is to be tested. When an exception
condition arises, action will be taken as specified in the WHENEVER
statement most recently encountered in the code, for the respective condition.

WHENEVER statements are expanded by the preprocessor into explicit tests.
These tests are placed after every subsequent SQL statement in that
program until a new WHENEVER statement is issued for the same condition.

Two important consequences follow:

• WHENEVER statements are preprocessed strictly in the order in which
they appear in the source code, regardless of execution order or conditional
execution that the source code might imply. For instance, the
WHENEVER statement in the following FORTRAN construction is
expanded by the preprocessor, even though its “execution” is never
actually requested:

 ...
 GOTO 1025
 EXEC SQL WHENEVER SQLERROR GOTO 1600
1025 CONTINUE
 EXEC SQL DELETE FROM MYTABLE
 ...

Handling errors and exception conditions 10-3

Mimer SQL version 8.2
Programmer’s Manual

• Mixing explicit tests and WHENEVER statements requires care. As a
general rule, it is advisable to use either hand-written tests or
WHENEVER statements in a program module, and to avoid mixing them.

The condition handling defined by a WHENEVER statement applies to the
SQL statements that follow it in the source code. If a “GOTO” action is
defined, the pre-processor inserts an exception test and action directly after
each SQL statement affected by it and thus before any hand-written tests in
the source code. The hand-written test in this situation would never be
executed.

If “CONTINUE” is specified in a WHENEVER statement, the pre-
processor does not insert an exception test and action, thus no exception
handling is defined by the WHENEVER statement. Any hand-written tests
present in the source code will then take effect.

The interchange between hand-written exception handling and the implicit
exception handling inserted by the pre-processor (or not) can be confusing.
It is therefore advisable to make a clear coding decision to use one method
or the other.

Host language dependent aspects A-1

Mimer SQL version 8.2
Programmer’s Manual

A HOST LANGUAGE DEPENDENT
ASPECTS

SQL statements may be embedded in any of the following host languages:

• C/C++

• COBOL

• FORTRAN

See Section 2.3.2.1 for list of the ESQL preprocessors available for a specific
platform.

This appendix describes features of embedded SQL which differ between the
respective host languages.

Note: It is not a complete description of the rules for writing embedded SQL
programs. The programmer should use the main body of this manual as a guide
to writing programs, and refer to this appendix for language-specific details.

The following topics are discussed for each language:

• SQL statement format: delimiters, margins, line continuation, comments,
special characters.

• Restrictions.

• Host variables - declarations, SQL data type correspondence, value
assignment rules.

• Preprocessor output format.

• Scope rules.

A-2 Host language dependent aspects - C/C++

Mimer SQL version 8.2
Programmer’s Manual

A.1 Embedded SQL in C/C++ programs

Mimer SQL supports embedded SQL for C/C++ following the ANSI standard.

A.1.1 SQL statement format

Statement delimiters
SQL statements are identified by the leading delimiter “exec sql” and
terminated by a semicolon (;).

Example:

exec sql DELETE FROM HOTEL;

Line continuation
Line continuation rules for SQL statements are the same as those for ordinary
C statements.

For a string constant, a white-space character (ASCII HEX-values 09 - 0D, or
20, i.e. <TAB>, <LF>, <VT>, <FF>, <CR> or <SP>), can be used to join two
or more sub-strings. Each substring must be separately enclosed in delimiters.

Examples:

exec sql SELECT HOTELCODE, ROOMNO
FROM BOOK_GUEST
WHERE RESERVATION = :CUSTNO;

exec sql COMMENT ON TABLE ROOM_PRICES IS
'Prices apply from date given'<LF>
' in column FROM_DATE';

Comments
Comments, from // to end-of-line or enclosed between the markers /* and */,
may be written anywhere within SQL statements where a white-space is
permitted, except between the keywords “exec” and “sql” and within string
constants. The comment may replace the white-space, for example

exec sql DELETE/* all rows */FROM HOTEL;

Special characters
The delimiters in SQL are apostrophes (') for string constants and quotation
marks (") for delimited identifiers. This is contrary to the C string delimiter
usage.

Keywords are separated by a white-space character.

A.1.2 Host variables

Declarations
Host variables used in SQL statements must be declared within the SQL
DECLARE SECTION, delimited by the statements BEGIN DECLARE
SECTION and END DECLARE SECTION.

Host language dependent aspects - C/C++ A-3

Mimer SQL version 8.2
Programmer’s Manual

Variables declared within the SQL DECLARE SECTION must conform to the
following rules in order to be recognized by the SQL preprocessor:

• host variables may be of AUTO, EXTERN or STATIC class, or parameters

• array variables are not permitted with the exception of character arrays

• character arrays are interpreted as null terminated strings

• the VARCHAR host variable data type is recognized by the ESQL/C
preprocessor and should be used when variable-length character data is to
be returned from SQL as a null terminated string without any blank
padding (the VARCHAR host variable should be declared with a length
one greater than the length of the SQL VARCHAR)

• where binary data is stored in a character array, the size of the array must
match the length of the binary data exactly because binary data is not
terminated and therefore all array elements are significant

• variable names are case significant

• indicator variables should be declared as short or int

• SQLSTATE should be declared as char[6].

A syntax diagram showing the variable declarations recognized by the ESQL/C
preprocessor is given below:

ªÞÞ½ÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞ½Þ character-declaration Þ½ÞÞ ; ÞÞÃ
 ¦ ¦ ¦ ¦ ¦ ¦
 ðÞ auto ÞÞÞ¶ ðÞ const ÞÞÞÞ¶ ÷Þ numeric-declaration ÞÞÞÇ
 ¦ ¦ ¦ ¦
 ðÞ extern Þ¶ ÷Þ volatile ÞÇ
 ¦ ¦
 ÷Þ static Þç

where character-declaration is

 ……ÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞ½Þ char ÞÞÞÞ½ÞÞÞÞÞ½ÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ……
 ¦ ¦ ¦ ¦ ¦ ¦
 ðÞ signed ÞÞÞ¶ ÷Þ VARCHAR ÞÇ ÷Þ * ÞÇ
 ¦ ¦
 ÷Þ unsigned ÞÇ

 •ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ ‚ ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞé
 ‘ ¦
 ……ÞÞÞÞ character-variable Þ½ [index] ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞ½ÞÞÅÞÞÞÞÞÞ……
 ¦ ¦ ¦ ¦
 ¦ ðÞ = "string" ÞÞÞÞÞ¶ ¦
 ¦ ¦ ¦ ¦
 ¦ ¦ •ÞÞ , ÞÞÞé ¦ ¦
 ¦ ¦ ‘ ¦ ¦ ¦
 ¦ ÷Þ = {Þ 'char' Å} ÞÇ ¦
 ¦ ¦
 ÷Þ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÇ
 ¦ ¦
 ðÞ = 'char' ÞÞÞÞÞÞÞÞÞÞÞÞÞ¶
 ¦ ¦
 ÷Þ = character-variable ÞÇ

A-4 Host language dependent aspects - C/C++

Mimer SQL version 8.2
Programmer’s Manual

and numeric-declaration is

 ……ÞÞÞÞÞ½Þ int ÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞÞ½ÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ……
 ¦ ¦ ¦ ¦
 ðÞ short ÞÞÞÞÞÞÞÞÞÞÞ¶ ÷Þ * ÞÇ
 ¦ ¦
 ðÞ long ÞÞÞÞÞÞÞÞÞÞÞÞ¶
 ¦ ¦
 ðÞ float ÞÞÞÞÞÞÞÞÞÞÞ¶
 ¦ ¦
 ðÞ double ÞÞÞÞÞÞÞÞÞÞ¶
 ¦ ¦
 ÷Þ long double ÞÞÞÞÞÇ

 •ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ , ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞé
 ‘ ¦
 ……ÞÞÞÞÞÞÞ numeric-variable Þ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÅÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ……
 ¦ ¦
 ðÞ = numeric-constant Þ¶
 ¦ ¦
 ÷Þ = numeric-variable ÞÇ

The following points should be noted:

• In accordance with the syntax rules of C, keywords are case-sensitive and
are given in the required case in the syntax diagram. This deviates from the
general practice in Mimer SQL documentation of using upper-case to
denote keywords

• Index must be a number which is 1 or greater

• Only data types char and VARCHAR can be indexed.

SQL data type correspondence
Valid host data types are listed below for each of the data types used in SQL
statements.

SQL data type C variable declaration

SMALLINT
INTEGER
BIGINT

short
int
long

DECIMAL
NUMERIC

float
double
long double

FLOAT
REAL
DOUBLE PRECISION

float
double
long double

CHARACTER
VARCHAR
DATETIME
INTERVAL
BINARY
BINARY VARYING

char
VARCHAR ¹

¹ The VARCHAR host variable type is recognized by the ESQL/C preprocessor
and converted to the char data type in C.

Host language dependent aspects - C/C++ A-5

Mimer SQL version 8.2
Programmer’s Manual

Note: Your C compiler may not support all of these possible declarations.

Value assignments
The general rules for conversion of values between compatible but different
data types (see Chapter 4 of the Mimer SQL Reference Manual) apply to the
transfer of data between the database and host variables, with the data type
correspondence as given in the table above.

When reading any character array host variable, declared as char or
VARCHAR, the contents of the variable must be terminated by a null byte.
When a host variable declared as char is read, its value is blank padded to the
same length as the host variable. When a host variable declared as VARCHAR
is read, no blank padding is performed.

When retrieving a value shorter than the character array host variable (declared
as char), the host variable will be padded with blanks (and terminated with a
null byte). When retrieving a value to a VARCHAR host variable, the variable
will not be blank padded, just terminated by a null byte.

When retrieving binary data into a character array there is no padding or
termination of the binary string, so all the character array elements have
significance. The character array must, therefore, be declared with exactly the
same length as the binary data.

When any type conversion is done when retrieving a value to a character host
variable, the data will be right justified. When type conversion is done when
retrieving a value to a VARCHAR host variable, the data will be left justified.

Example:

char cstr[9];
VARCHAR vstr[9];
retrieving the value 'abc ' will give the following
result:
cstr = 'abc ' /* blankpadded to eight characters */
vstr = 'abc ' /* the same length as the value */

retrieving the value 123, the values will be as:
cstr = ' 123' /* right justified */
vstr = '123' /* left justified */

See Chapter 4 of the Mimer SQL Reference Manual for a further discussion of
different character string assignments.

A.1.3 Preprocessor output format
Output from the ESQL/C preprocessor retains SQL statements from the
original source code as comments. Comments on the same line as SQL
statements are retained as “comments within comments”, marked by the
delimiters /+ and +/.

The preprocessed code is structured to reflect the structuring of the original
source code.

A-6 Host language dependent aspects - C/C++

Mimer SQL version 8.2
Programmer’s Manual

The use of the #line directive will ensure that any information from the C
compiler will correctly reference line numbers in the original source code. It
will also help a debugger correctly coordinate display of source lines in the
original source file and the generated C file. Refer to information on running
ESQL for the platform you are using for details on how to get #line directives.

A.1.4 Scope rules
Host variables follow the same scope rules as ordinary variables in C. SQL
descriptor names, cursor names and statement names must be unique within the
compilation unit. A compilation unit for C is the same as a file (including
included files).

Host language dependent aspects - COBOL A-7

Mimer SQL version 8.2
Programmer’s Manual

A.2 Embedded SQL in COBOL programs

Mimer SQL supports embedded SQL for COBOL following the COBOL-85
ANSI standard.

A.2.1 SQL statement format

Statement delimiters
SQL statements are identified by the leading delimiter EXEC SQL and
terminated by END-EXEC.

SQL statements are treated exactly as ordinary COBOL statements with regard
to the use of an ending period to mark the end of a COBOL sentence. Any valid
COBOL punctuation may be placed after the END-EXEC terminator.

Examples:

EXEC SQL DELETE FROM HOTEL END-EXEC.
IF SQLSTATE NOT = "02000" THEN

EXEC SQL COMMIT END-EXEC
ELSE

EXEC SQL ROLLBACK END-EXEC.

Margins
Statements (including delimiters) may be written anywhere between positions 8
and 72 inclusive.

Line continuation
Line continuation rules for SQL statements are the same as those for ordinary
COBOL statements.

If a string constant within an SQL statement is divided over several lines, the
first non-blank character on the continuation line must be a string delimiter.
There is no terminating string delimiter at the end of the line preceding the
continuation line.

Example:

EXEC SQL SELECT HOTELCODE, ROOMNO
FROM BOOK_GUEST
WHERE RESERVATION = :CUST-NUMBER END-EXEC.

EXEC SQL COMMENT ON TABLE ROOM_PRICES IS
 'Prices apply from date given
- ' in column FROM_DATE' END-EXEC.

An alternative way to break a character string constant over several lines, is to
use a white-space character (ASCII HEX-values 09 - 0D, or 20, i.e. <TAB>,
<LF>, <VT>, <FF>, <CR> or <SP>), to join two or more substrings. Each
substring must be separately enclosed in delimiters.

EXEC SQL COMMENT ON TABLE ROOM_PRICES IS
 'Prices apply from date given'<LF>
 ' in column FROM_DATE' END-EXEC.

A-8 Host language dependent aspects - COBOL

Mimer SQL version 8.2
Programmer’s Manual

Comments
Comment lines, marked by an asterisk (*) in position 7, may be written within
SQL statements. The whole line following a comment mark is treated as a
comment.

Debugging lines and page eject lines (marked by D and / respectively in
position 7) are treated as comments by the preprocessor.

Special characters
The delimiters in SQL are apostrophes (') for string constants and quotation
marks (") for delimited identifiers. This is contrary to the default COBOL
string delimiter usage.

Observe that the minus sign (-) is valid in variable names in COBOL. All
arithmetic expressions using this operator should have at least one space
separating the operands from the operator. Thus

:A - B means “variable called A minus column B”
:A-B means “variable called A-B”

A.2.2 Restrictions
The following restrictions apply specifically to COBOL:

• END-EXEC is a keyword reserved to SQL.

• COBOL figurative constants (such as ZERO and SPACE) may not be used
as constants in SQL statements.

A.2.3 Host variables

Declarations
Host variables used in SQL statements must be declared within the SQL
DECLARE SECTION, delimited by the statements BEGIN DECLARE
SECTION and END DECLARE SECTION.

Variables declared within the SQL DECLARE SECTION must conform to the
following rules in order to be recognized by the SQL preprocessor:

• variable names must begin with a letter. Within this restriction, any valid
COBOL variable name may be used

• host variable structures may not be used

• the specifications JUSTIFIED, BLANK WITH ZERO, and OCCURS may
not be used

• the data type must be consistent with SQL data types as specified below

• level number 01 or 77 should be used for all variable names which are used
in SQL statements. Other levels may be used for program host variables,
but they are not recognized by the preprocessor

Host language dependent aspects - COBOL A-9

Mimer SQL version 8.2
Programmer’s Manual

• FILLER entries are ignored for variables used in SQL statements

• Indicator variables should be declared as PIC S9(4) COMP or PIC S9(9)
COMP

A syntax diagram for COBOL variable declarations recognized by the
ESQL/COBOL preprocessor is given below. Other declarations are ignored by
the preprocessor:

ªÞÞÞ½ 01 ½ÞÞÞ variable ÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞ……
 ÷ 77 ç ÷ REDEFINES variable ç

……ÞÞ PIC ½ X9.. Þ½ÞÞÞÞÞÞÞÞ½ÞÞÞ½Þ……
 ¦ ÷ (int) ç ¦
 ¦ ¦
 ð S9.. Þ½ÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ COMP ÞÞÞÞ¶
 ¦ ÷ (int) ç ÷ USAGE ç ¦
 ¦ ¦
 ðÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½Þ V9.. Þ½ÞÞÞÞÞÞÞ½Þ½ÞÞÞÞÞÞÞ½ COMP-3 ÞÞ¶
 ð S9.. Þ½ÞÞÞÞÞÞÞ½ÞÞÞÞÇ ÷ (int) ç ÷ USAGE ç ¦
 ¦ ÷ (int) ç ¦
 ¦ ¦
 ðÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞ½ÞÞ COMP-2 ÞÞ¶
 ¦ ÷ USAGE ç ¦
 ¦ ¦
 ÷ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞ½ÞÞ COMP-1 ÞÞÇ
 ÷ USAGE ç

……ÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÃ
 ÷Þ VALUE... ÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÇ
 ÷Þ SYNCH... Þç

Commas and semicolons may be used in accordance with standard COBOL
practice.

The following abbreviations are accepted:

PIC for PICTURE or PICTURE IS
USAGE for USAGE or USAGE IS
COMP for COMPUTATIONAL
SYNC for SYNCHRONIZED

Note: The PIC S9(n)9(m) formulation is not accepted.

SQL data type correspondence
Valid host data types are listed below for each of the data types used in SQL
statements.

Varying-length character string structures may be used in embedded SQL
statements in COBOL programs. In assigning the value of such variables to
columns, the current length of the string is used. The variable name used in
SQL statements is the name of the structure (level 01 declaration), not of the
character string element (level 49).

A-10 Host language dependent aspects - COBOL

Mimer SQL version 8.2
Programmer’s Manual

SQL data type COBOL data declaration Comments

SMALLINT
INTEGER

01 name PIC S9(n) COMP. 1 ≤≤≤≤ n ≤≤≤≤ 9

DECIMAL
NUMERIC

01 name PIC S9(n)V9(m) COMP-3. 1 ≤≤≤≤ n+m ≤≤≤≤ 15

FLOAT
DOUBLE

01 name COMP-2.

REAL 01 name COMP-1.

CHARACTER
VARCHAR
DATETIME
INTERVAL

01 name PIC X(n). 1 ≤≤≤≤ n

Value assignments
The general rules for conversion of values between compatible but different
data types (see Chapter 4 of the Mimer SQL Reference Manual) apply to the
transfer of data between the database and host variables, with the data type
correspondence as given in the table above.

The first element in a varying-length character string structure is used to store
the current length of the character string. When writing to the variable, the first
element is updated with the current length of the variable. If the column value
is longer than the variable, the value is truncated.

A.2.4 Preprocessor output format
Output from the ESQL/COBOL preprocessor retains SQL statements from the
original source code as comments. Comments within SQL statements are
retained exactly as written. The output follows the ANSI standard for record
format, and should be compiled with a COBOL compiler set to accept ANSI
standard.

Debugging lines and page eject lines (using D and / respectively in position 7)
remain unchanged after preprocessing.

The preprocessed code is structured to reflect the structuring of the original
source code.

A.2.5 Scope rules
Host variables follows the same scope rules as ordinary variables in COBOL.
SQL descriptor names, cursor names and statement names must be unique
within the compilation unit. A compilation unit for COBOL is the same as a
routine.

Host language dependent aspects - FORTRAN A-11

Mimer SQL version 8.2
Programmer’s Manual

A.3 Embedded SQL in FORTRAN programs

Mimer SQL supports embedded SQL for ANSI FORTRAN-90 fixed format.

Source statements must be provided as fixed format, 80 byte records.

A.3.1 SQL statement format

Statement delimiters
SQL statements are identified by the leading delimiter EXEC SQL. The end of
an SQL statement is marked by the end of the line when the following line does
not begin with a continuation character. The FORTRAN-90 statement delimiter
“;” can also be used.

Example:

 EXEC SQL DELETE FROM HOTEL

Margins
Statements (including delimiters) may be written anywhere between positions 7
and 72 inclusive.

Line continuation
Line continuation rules for SQL statements are the same as those for ordinary
FORTRAN statements. The continuation character is any character except
space and 0 (zero) in position 6. The FORTRAN limitation of a maximum of
19 continuation lines per statement does not apply within SQL statements.

For a string constant, a white-space character (ASCII HEX-values 09 - 0D, or
20, i.e. <TAB>, <LF>, <VT>, <FF>, <CR> or <SP>), can be used to join two
or more substrings. Each substring must be separately enclosed in delimiters.

Examples:

 EXEC SQL SELECT HOTELCODE, ROOMNO
+ FROM BOOK_GUEST
+ WHERE RESERVATION = :CUSTNO

 EXEC SQL COMMENT ON TABLE ROOM_PRICES IS
+ 'Prices apply from date given'<LF>
+ ' in column FROM_DATE'

Statement numbers
Any labeled SQL statement in the source code will generate a CONTINUE
statement during preprocessing. Declarative SQL statements used before the
first executable SQL statement should not be labeled.

Comments
Comment lines, marked by * or C in position 1, may be written within SQL
statements. The whole line following a comment mark is treated as a comment,
and the following line must either be another comment or follow the
continuation rules given above.

A-12 Host language dependent aspects - FORTRAN

Mimer SQL version 8.2
Programmer’s Manual

Note: Lines which are completely blank are not treated as comments by the
ESQL/FORTRAN preprocessor. The absence of a continuation character
indicates the end of the previous statement, and a completely blank line may be
used to structure comments in the output from the preprocessor. See
Section A.3.3 for details.

FORTRAN-90 style comments may also be used, marked by the “!” character
(the text between the “!” and the end-of-line is treated as a comment).

Debugging lines (marked with a D in position 1) are treated as comments by
the preprocessor.

A.3.2 Host variables

Declarations
Host variables used in SQL statements must be declared within the SQL
DECLARE SECTION, delimited by the statements BEGIN DECLARE
SECTION and END DECLARE SECTION.

Variables declared within the SQL DECLARE SECTION must conform to the
following rules in order to be recognized by the SQL preprocessor:

• any valid FORTRAN variable name may be used.

• variables must be scalar variables (i.e. they may not be elements of vectors
or arrays).

• implicit declaration by means of the IMPLICIT statement or default typing
may not be used.

• FORTRAN COMPLEX variables may not be used.

• character variables must be declared with a fixed constant length.
Expressions and variable length declarations (such as CHARACTER*(*))
may not be used.

• indicator variables should be declared as INTEGER*2 or INTEGER*4.

A syntax diagram showing the variable declarations recognized by the
ESQL/FORTRAN preprocessor is given below:

ªÞ½ÞÞ½Þ CHARACTER Þ½ÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ……
 ¦ ðÞ INTEGER ÞÞÞ¶ ÷ * length Þç ¦
 ¦ ÷Þ REAL ÞÞÞÞÞÞç ¦
 ¦ ¦
 ÷ÞÞÞÞ DOUBLE PRECISION ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞç

 •ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ ‚ ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞé
 ‘ ¦
……ÞÞÞ variable ÞÞ½ÞÞÞÞÞÞÞÞÞÞÞ½ÞÞ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞ½ÞÞÞÞÅÞÞÞÞÞÞÞÞÞÞÞÃ
 ¦ ¦ ¦ •ÞÞÞ ‚ ÞÞÞé ¦
 ¦ ¦ ¦ ‘ ¦ ¦
 ÷Þ * length ç ÷Þ / ÞÞÞ value ÞÅÞ / Þç

The data type declaration must be separated from the variable name by at least
one space (which is not required in FORTRAN declarations outside the SQL
DECLARE SECTION).

Host language dependent aspects - FORTRAN A-13

Mimer SQL version 8.2
Programmer’s Manual

Thus the declaration:

 INTEGER*2A

is not recognized. The required formulation is:

 INTEGER*2 A

Lists of variables following a single default data type declaration are accepted.
Any declarations in a list which are not valid in SQL contexts are ignored by
the preprocessor. Thus the following statement declares variables A and D as
INTEGER*4 and B as INTEGER*2 for use in SQL statements, while the array
C is ignored:

 INTEGER*4 A, B*2, C(10), D

SQL data type correspondence
Valid host data types are listed below for each of the data types used in SQL
statements.

SQL data type FORTRAN data declaration

SMALLINT
INTEGER

INTEGER*2
INTEGER*4

DECIMAL
NUMERIC

REAL*4

FLOAT
DOUBLE
REAL

REAL*8
DOUBLE PRECISION

CHARACTER
VARCHAR
DATETIME
INTERVAL

CHARACTER*n

The following additional points should be noted:

• FORTRAN does not support DECIMAL data types. A string of digits
including a decimal point is interpreted as a REAL constant in FORTRAN.
Exponential notation should always be used to specify floating point
values in SQL statements.

• DOUBLE PRECISION constants may be written with a D as the exponent
marker in FORTRAN (e.g. 1.23D+02). The only permissible exponent
marker within SQL statements is E (e.g. 1.23E+02).

Value assignments
The general rules for conversion of values between compatible but different
data types (see Chapter 4 of the Mimer SQL Reference Manual) apply to the
transfer of data between the database and host variables, with the data type
correspondence as given in the table above.

A-14 Host language dependent aspects - FORTRAN

Mimer SQL version 8.2
Programmer’s Manual

A.3.3 Preprocessor output format
Output from the ESQL/FORTRAN preprocessor retains SQL statements from
the original source code as comments. The output follows the ANSI standard
for record format, and should be compiled with a FORTRAN compiler set to
accept ANSI standard. Comments within SQL statements are retained exactly
as written.

Completely blank lines between SQL statements and following comments
cause the preprocessor to write the comments after the generated SQL call.
Otherwise comments immediately following SQL statements are output before
the generated call. Debugging lines (using D in position 1) remain unchanged
after preprocessing.

The preprocessed code is structured to reflect the structuring of the original
source code.

A.3.4 Scope rules
Host variables follows the same scope rules as ordinary variables in
FORTRAN. SQL descriptor names, cursor names and statement names must be
unique within the compilation unit. A compilation unit for FORTRAN is the
same as a routine.

Return codes B-1

Mimer SQL version 8.2
Programmer’s Manual

B RETURN CODES

Mimer SQL returns two kinds of return codes to an application. The
SQLSTATE variable returns a standardized, general error code, which gives a
rough description of the status for the most recently executed SQL statement.

GET DIAGNOSTICS can be called to access the exception information stored
in the diagnostics area that applies to the most recently executed SQL
statement (see Section 10.3).

The symbol <%> in the text of error messages listed in this chapter indicates
the location of an identifier inserted at run-time

B-2 Return codes

Mimer SQL version 8.2
Programmer’s Manual

B.1 SQLSTATE return codes

SQLSTATE contains a 5-character long return code string that indicates the
status of an SQL statement. These return codes are standardized following the
established standards. Observe that not all standardized SQLSTATE return
codes are used by Mimer SQL.

The SQLSTATE values consists of two fields. The class, which is the first two
characters of the string, and the subclass, which is the terminating three
characters of the string.

List of SQLSTATE values:

Class Subclass Meaning

00 000 Success

01 000 Success with warning

01 002 - Disconnect error

01 003 - Null value eliminated in set function

01 004 - String data, right truncation

01 005 - Insufficient item descriptor areas

01 006 - Privilege not revoked

01 007 - Privilege not granted

02 000 No data

07 000 Dynamic SQL error

07 001 - using-clause does not match dynamic
variables

07 002 - using-clause does not match target
specification

07 003 - Cursor specification cannot be executed

07 004 - using-clause required for dynamic
parameters

07 006 - Restricted data type attribute violation

07 007 - using-clause required for result fields

07 008 - Invalid descriptor count

07 009 - Invalid descriptor index

08 000 Connection exception

08 001 - Client unable to establish connection

08 002 - Connection name in use

08 003 - Connection does not exist

08 004 - Server rejected the connection

08 006 - Connection failure

0A 000 Feature not supported

20 000 Case not found for a case statement

21 000 Cardinality violation

Return codes B-3

Mimer SQL version 8.2
Programmer’s Manual

Class Subclass Meaning

22 000 Data exception

22 001 - String data, right truncation

22 002 - Null value, no indicator variable

22 003 - Numeric value out of range

22 005 - Error in assignment

22 006 - Invalid interval format

22 007 - Invalid datetime format

22 008 - Datetime field overflow

22 011 - Substring error

22 012 - Division by zero

22 015 - Interval field overflow

22 018 - Invalid character value for CAST

22 019 - Invalid escape character

22 023 - Invalid parameter value

22 024 - Unterminated C string

22 025 - Invalid escape sequence

22 027 - Trim error

23 000 Integrity constraint violation

24 000 Invalid cursor state

25 000 Invalid transaction state

26 000 Invalid SQL statement identifier

28 000 Invalid authorization specification

2E 000 Invalid connection name

33 000 Invalid SQL descriptor name

34 000 Invalid cursor name

35 000 Invalid exception number

37 000 Syntax error or access violation (in
PREPARE or EXECUTE IMMEDIATE)

3C 000 Ambiguous cursor name

40 000 Transaction rollback

40 001 - Serialization failure

40 003 - Statement completion unknown

42 000 Syntax error or access violation

44 000 WITH CHECK OPTION violation

S1 000 General error

S1 001 - Memory allocation failure

B-4 Return codes

Mimer SQL version 8.2
Programmer’s Manual

B.2 Internal Mimer SQL return codes

Here the internal Mimer SQL return code values are listed together with the
associated text message. See Section 10.3 for details on how to retrieve this
information after an exception has been raised. The codes are grouped
according to function as follows:

Code numbers Functional group
> 0 Warnings, messages
= 0 Success
100 No data
-100 to -999 ODBC error codes
-10000 to -10999 Data-dependent errors
-11000 to -11999 Limits exceeded
-12000 to -12999 SQL statement errors
-13000 to -13999 Not currently used
-14000 to -14999 Program-dependent errors
-15000 to -15999 Not currently used
-16000 to -16999 Databank and table errors
-17000 to -17999 Not currently used
-18000 to -18999 Miscellaneous errors
-19000 to -19999 Internal errors
-20000 to -20999 Not currently used
-21000 to -21999 Communication errors
-22000 to -22999 JDBC error codes

Corrective action is given in general terms for each group of codes. When
reporting errors to Mimer support, make sure you include the internal Mimer
SQL return code.

B.2.1 Warnings and messages
No corrective action is normally required for internal Mimer SQL return code
values greater than zero.

 54 Character string was truncated
 55 Insufficient item descriptor areas
 56 Privilege not revoked
 57 Privilege not granted
 58 Zero bits were added to the binary string
 90 Login failure
 91 Soft enter performed
 92 No cursor state was saved on stack
 94 Message text not found
 100 Row not found for FETCH, UPDATE or DELETE, or the result of a

query is an empty table
 100 No data - Item number is greater than the value of count

Return codes B-5

Mimer SQL version 8.2
Programmer’s Manual

B.2.2 ODBC errors
These errors arise when ODBC calls to Mimer SQL fails for some reason.

-100 Illegal sequence
-101 Out of memory
-102 Option out of range
-103 Function not supported
-104 Connection not open
-105 Connection in use
-106 Invalid argument value
-107 Invalid transaction operation code
-108 Internal network buffer overflow
-109 Invalid C data type
-110 Invalid SQL data type
-111 Bad address
-112 Function already active
-113 Operation canceled
-114 Wrong number of parameters
-115 Use ODBC function SQLTransact to commit or rollback transaction
-116 Statement is not in a prepared state
-117 Invalid transaction state
-118 Unknown statement type
-119 Unknown internal data type
-120 Extype corrupt
-121 Invalid buffer length
-122 String data truncated
-123 Numeric data truncated
-124 Numeric value out of range
-125 Invalid numeric value
-126 Bad parameter passed to numeric package
-127 Invalid column number
-128 Database name mandatory
-129 Connect dialog failed
-130 Data truncated
-131 Invalid connection string attribute
-132 Invalid cursor state
-133 Invalid parameter number
-134 Descriptor type out of range
-135 Invalid type passed to DICOA3
-136 Function type out of range
-137 Invalid cursor name
-138 Duplicate cursor name
-139 Cursor hash table corrupt
-140 ODBC database control block chain corrupt
-141 Option type out of range
-142 Option value not supported

B-6 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-143 Option not supported
-144 Invalid row or keyset size
-145 Invalid concurrency option
-146 Invalid fetch type
-147 Not a scrollable cursor
-148 Row position out of range
-149 Only one SQLPutData for fixed length parameter
-150 SQLPutData does not support block cursors
-151 Driver not capable
-152 Table type out of range
-153 Invalid string length
-154 Data type out of range
-155 Syntax error found in escape clause
-156 DDO buffer overflow
-157 Uniqueness option type out of range
-158 Accuracy option type out of range
-159 Column type out of range
-160 Scope type out of range
-161 Nullable type out of range
-162 Internal type mismatch
-163 Conversion between data types not supported
-164 Invalid date, time, or timestamp
-165 Restricted data type attribute violation
-166 Date, time, or timestamp data truncated
-167 Database has not been configured. Run Configure MIMER 7.1
-168 Translated native SQL string was truncated
-169 ODBC extension DATE, TIME or TIMESTAMP is not supported
-170 ODBC extension OUTER JOIN is not supported
-171 ODBC extension for procedure invocation is not supported
-172 Unrecognized first word in escape clause, expected

'CALL','FN','OJ','D','T' or 'TS'
-173 This server version does not support the used scalar function
-174 Unrecognized scalar function found in escape clause
-175 Argument missing in scalar function
-176 Too many arguments in scalar function
-177 Syntax error, incomplete escape clause
-178 Syntax error, unmatched apostrophe in string literal
-179 Syntax error, unmatched quote in delimited identifier
-180 Invalid data type specified in scalar function CONVERT
-181 Information type out of range
-182 Parameter type may only be used with procedures
-183 Parameter type out of range
-184 Update and delete where current fully supported (not simulated)
-185 Option value changed
-186 Static scrollable cursor used instead of keyset or dynamic cursor
-187 Error in row, please check next error code

Return codes B-7

Mimer SQL version 8.2
Programmer’s Manual

-188 Cancel treated as FreeStatement/CLOSE
-189 Attempt to fetch before the result set returned the first rowset
-190 Invalid cursor position
-191 Unknown first parameter in scalar function TIMESTAMPADD
-192 Unknown first parameter in scalar function TIMESTAMPDIFF
-193 Bad parameter passed to datetime package
-203 Interval second fraction truncated
-204 Interval truncation error
-205 Interval convert error
-206 Year to month interval cannot be converted to a numeric value

because it is not a single field
-207 Interval cannot be converted to a numeric value because it is not a

single field
-208 Invalid interval literal
-209 Interval leading field truncation error
-210 Interval trailing field truncated
-211 Binary data truncated
-212 Binary truncation error
-213 Binary length invalid
-214 Binary data invalid
-215 Binary not supported
-216 Inconsistent descriptor information
-217 Cannot modify IRD
-218 Invalid use of null pointer
-219 Character data not hexadecimal
-220 Internal error
-221 Significant parts of datetime/interval string truncated
-224 Binary data truncated
-225 String data truncated
-226 Binary data truncated

B.2.3 Data-dependent errors
These errors arise when an SQL statement cannot be executed correctly
because of the data content of variables, expressions, and so on in the
statement. The appropriate corrective action is determined by the nature of the
error and the specific context in the application program.

-10001 Transaction aborted due to conflict with other transaction
-10100 PRIMARY KEY constraint violation, attempt to insert NULL value
-10101 PRIMARY KEY constraint violation, attempt to insert duplicate

value
-10102 Domain constraint violation <%>
-10103 Table constraint violation <%>
-10104 View constraint violation <%>
-10105 INSERT or UPDATE operation invalid because the referencing

table <%> does not satisfy a referential constraint

B-8 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-10106 UPDATE or DELETE operation invalid because the referenced
table <%> does not satisfy a referential constraint

-10107 The result of a subquery in a basic predicate is more than one value
-10108 Result of SELECT INTO or EXECUTE INTO statement is a table

of more than one row
-10109 Type constraint violation
-10110 UNIQUE constraint violation
-10199 Host variable type packed decimal is not supported
-10200 Reserved numeric operand found during data type conversion
-10201 Length error or incorrect value found during data type conversion
-10202 Division by zero attempted
-10203 Negative overflow occurred during data type conversion
-10204 Positive overflow occurred during data type conversion
-10205 Loss of significance occurred during data type conversion
-10207 Undefined value found during data type conversion
-10208 Restricted data type attribute violation
-10210 Error in assignment
-10211 Undefined value found during data type conversion
-10212 Overflow occurred during data type conversion
-10221 The NULL value cannot be assigned to a host variable because no

indicator variable is specified
-10222 NULL not allowed for item descriptor area
-10250 Data type not supported
-10301 Loss of significance occurred in arithmetic operation <%>
-10302 Positive overflow occurred in arithmetic operation <%>
-10303 Negative overflow occurred in arithmetic operation <%>
-10304 Division by zero attempted
-10305 Bad parameter encountered in arithmetic operation <%>
-10306 Invalid input for numeric function
-10307 The binary strings are of unequal length
-10310 Invalid character value for CAST
-10311 String data truncated
-10312 Numeric value out of range
-10313 Illegal (negative) substring length
-10314 Like pattern escape character not followed by underscore or percent

character
-10315 Length of like pattern escape character is not equal to 1
-10321 Datetime loss of significance
-10322 Datetime positive overflow
-10323 Datetime negative overflow
-10325 Bad parameter encountered in datetime operation
-10326 Datetime illegal operand
-10327 Invalid datetime value
-10328 Datetime subtype mismatch
-10329 Invalid datetime format
-10331 Interval loss of significance

Return codes B-9

Mimer SQL version 8.2
Programmer’s Manual

-10332 Interval positive overflow
-10333 Interval negative overflow
-10335 Bad parameter encountered in interval operation
-10336 Interval illegal operand
-10337 Invalid interval value
-10338 Interval subtype mismatch
-10339 Invalid interval format
-10601 Invalid value for field of item descriptor area
-10602 Invalid datetime or interval code

B.2.4 Limits exceeded
These errors arise when internal limits in the Mimer SQL system are exceeded.
Some of the limitations are determined by installation-specific parameters,
while others are fixed by Mimer SQL. In general, errors of this nature require
either re-installation of the system with extended limitations or modification of
the application program to reduce the system demands. Contact your Mimer
representative if you have difficulty avoiding errors of this nature.

-11001 Dynamic storage area exhausted in host level interface (DYNDE3)
-11002 Internal DB dynamic storage area (SQLPOOL) exhausted
-11011 Internal storage (SQLPOOL) for like pattern exhausted
-11012 Transaction list exhausted
-11013 Too many databanks referenced in statement (max 30)
-11014 Too many databanks active in transaction
-11047 The maximum number of recursive invocations has been exceeded
-11100 Internal limit exceeded : query stack
-11101 Internal limit exceeded : scan stack
-11102 Internal limit exceeded : generation stack
-11103 Internal limit exceeded : table descriptor list
-11105 Internal limit exceeded : patch table
-11106 Internal limit exceeded : label table
-11107 Internal limit exceeded : traversal stack
-11108 Internal limit exceeded : sco list
-11109 Internal limit exceeded : boolean stack
-11111 Internal limit exceeded : semantic stack
-11113 Internal limit exceeded : statement too complex
-11114 Required temporary table row length is <%>, only <%> is possible
-11115 Internal limit exceeded : restriction group pool
-11118 Internal limit exceeded : scan queue

B-10 Return codes

Mimer SQL version 8.2
Programmer’s Manual

B.2.5 SQL statement errors
These errors arise from syntactic or semantic errors in SQL statements. In
general, syntactic errors in embedded SQL programs are detected by the
preprocessor, so errors cannot arise at run-time. Dynamically submitted SQL
statements are however parsed at run-time, and the syntax error codes are
returned after attempting PREPARE for a syntactically incorrect source
statement.

Semantic errors can arise at run-time from both dynamic and static SQL
statements.

-12001 Too many errors, error collection terminated
-12101 Syntax error, <%> assumed missing
-12102 Syntax error, <%> ignored
-12103 Syntax error, <%> assumed to mean <%>
-12104 Invalid construction
-12106 Internal parser error, analysis aborted
-12107 Syntax analysis resumed here
-12108 Multiple statements not allowed
-12120 Table name too long
-12121 String literal too long
-12122 Numeric literal too long
-12123 Invalid password string
-12124 Invalid hexadecimal literal
-12125 Reserved word may not be used as an identifier
-12126 Invalid name
-12128 Result of concatenation too long
-12129 Table definition does not include any column specification
-12131 Table definition includes more than one PRIMARY KEY

specification
-12132 Only one column allowed in column list
-12152 <%> not allowed in EXECUTE mode
-12154 User name too long
-12156 Column name too long
-12157 Synonym name too long
-12158 Correlation name too long
-12159 Cursor name too long
-12160 Databank name too long
-12161 Shadow name too long
-12162 Host Variable or Parameter Marker name too long
-12163 File name too long
-12164 Label name too long
-12165 Index name too long
-12166 Object name too long
-12167 View name too long
-12168 Domain name too long
-12169 Too many identifier names given

Return codes B-11

Mimer SQL version 8.2
Programmer’s Manual

-12174 Syntax error in escape clause, expecting comma before PRODUCT
or CONFORMANCE specification

-12175 Syntax error in escape clause, invalid CONFORMANCE
specification

-12176 Syntax error in escape clause, invalid YEAR specification
-12177 Syntax error in escape clause, invalid PRODUCT specification
-12178 Syntax error in escape clause, invalid VENDOR specification
-12179 Syntax error in escape clause, expecting VENDOR or YEAR

after '--(*'
-12180 Syntax error, unexpected token '*)--'
-12181 Syntax error in escape clause, terminating '*)--' missing
-12182 Syntax error in escape clause
-12200 Table <%> not found, table does not exist or no access privilege
-12201 Table reference <%> is ambiguous
-12202 <%> is not a column of an inserted table, updated table or any table

identified in a FROM clause
-12203 <%> is neither an object table of an INSERT, UPDATE or DELETE

statement, nor specified in a FROM clause
-12204 Column reference <%> ambiguous
-12205 Column <%> not referenced in GROUP BY clause
-12207 DISTINCT specified more than once in a subselect
-12208 SELECT clause of a subquery specifies more than one column
-12209 Column <%> identified in HAVING clause but not included in

GROUP BY clause
-12210 Operand of set function includes a set function
-12212 Operand of set function includes a correlated reference specified in

an expression
-12213 Set function not specified in a SELECT clause or HAVING clause
-12214 Invalid operand type, expected type is <%>
-12215 Operand not of <%> type
-12216 Operands are not comparable
-12217 Set function containing DISTINCT may not be specified within an

expression
-12220 Expression must be a column
-12221 SELECT clause contains both column expressions and set function

expressions
-12223 ORDER BY clause invalid because it includes a column name that is

not part of the result table
-12224 ORDER BY clause invalid because it includes an integer which does

not identify a column of the result table
-12225 The ORDER BY clause is invalid because it includes an ambiguous

column reference
-12226 Set function argument not bound in HAVING context
-12227 Duplicate column reference in FOR UPDATE OF clause
-12230 Invalid numeric literal
-12231 Update or insert value is NULL, but the object column <%> cannot

contain NULL values

B-12 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-12232 Insert value must be a constant expression or NULL
-12233 The number of insert values is not the same as the number of object

columns
-12234 Update or insert value not compatible with the data type of the

object column <%>
-12236 Column name <%> does not identify a unique column of the result

table
-12238 Column <%> cannot be updated because it is derived from a set

function or expression
-12239 The use of NULL in a SELECT clause is only allowed in a UNION
-12240 Statement contains too many table references
-12242 The corresponding columns of the operands of a UNION do not

have compatible column descriptions
-12243 Result table contains a column for which the type cannot be

determined
-12244 Operands of a UNION do not have the same number of columns
-12245 FOR UPDATE clause may not be specified because the result table

cannot be modified
-12246 Column <%> in the FOR UPDATE clause is not part of the

identified table or view
-12250 A host variable or parameter marker is not allowed in a view

definition
-12251 CREATE VIEW statement must include a column list because the

SELECT clause contains an expression
-12252 CREATE VIEW statement must include a column list because the

SELECT clause contains duplicate column names
-12253 The number of columns specified for the view is not the same as

specified by the SELECT clause
-12254 WITH CHECK OPTION cannot be used for the specified view

because it cannot be modified
-12258 <%> operation not permitted because the view cannot be modified
-12259 <%> operation not permitted because the joined table cannot be

modified
-12261 INSERT statement not permitted because the object column <%> is

derived from an expression
-12262 The type of the parameter marker cannot be determined
-12263 Parameter markers and host variables not allowed in EXECUTE

IMMEDIATE environment
-12264 Parameter markers may not be specified in SELECT clause
-12265 Literal or computed value overflow
-12266 Decimal divide operation invalid because the result would have a

negative scale
-12267 Duplicate column reference in INSERT column list
-12268 Duplicate column reference in UPDATE set clauses
-12269 Duplicate column reference in View Parameter
-12270 <%> does not have <%> privilege on object <%>
-12271 Duplicate column reference in GROUP BY clause

Return codes B-13

Mimer SQL version 8.2
Programmer’s Manual

-12273 The types of the results of a CASE expression are not type
compatible

-12274 The type of the CASE expression result cannot be determined
-12275 At least one result in a CASE expression must be non-null
-12277 Invalid CAST data type specification
-12278 Invalid EXTRACT field specification
-12280 Invalid datetime literal
-12281 Invalid interval literal
-12282 Invalid interval qualifier
-12283 Invalid use of interval qualifier
-12300 Syntax error in escape clause
-12301 Translated native SQL string was truncated
-12302 The function <%> is not supported
-12303 Unrecognized first word, <%> in escape clause expected 'CALL',

'FN','OJ', 'D', 'T' or 'TS'
-12304 Unrecognized scalar function <%>
-12305 Invalid data type <%> in function CONVERT
-12306 Syntax error, incomplete escape clause
-12307 Syntax error, unmatched apostrophe in string literal
-12308 Syntax error, unmatched quote in delimited identifier
-12309 Unknown first parameter <%> in scalar function <%>
-12310 Argument missing in scalar function <%>
-12311 Too many arguments in scalar function <%>
-12500 A databank named <%> already exists (or filename already used)
-12501 Table <%> does not exist
-12502 <%> does not have <%> privilege
-12503 <%> does not have <%> privilege on object <%>
-12504 Statement not allowed within transaction
-12505 <%> is not a USER or PROGRAM ident
-12506 No privilege
-12507 <%> does not have any databank available
-12509 An ident cannot REVOKE a privilege from itself
-12510 An ident cannot GRANT a privilege to itself
-12511 Duplicate column specification
-12512 Invalid type description
-12516 Qualified column name required
-12517 Object <%> does not exist
-12518 Circular grant of membership between groups not permitted
-12520 An ident cannot GRANT a privilege to itself
-12523 Databank <%> does not exist
-12526 Default value for NOT NULL column <%> missing
-12530 Operand not of type <%>
-12531 Operands not comparable
-12533 Literal or computed value overflow
-12534 Invalid numeric literal
-12535 Invalid identifier, keyword VALUE expected

B-14 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-12536 Name <%> in PRIMARY KEY specification not recognized as a
column name of current table definition

-12537 <%> must be unqualified
-12538 Default value not compatible with domain definition
-12539 Host variable construction illegal in this context
-12540 <%> is not a column of the specified table(s)
-12542 Default value is outside the range specified by domain definition
-12544 Too many columns specified in <%> statement
-12545 Primary key column <%> may not be updated because the table is in

a NULL databank
-12546 Column <%> is not type compatible with the corresponding column

of the referenced table
-12547 Number of columns specified in the foreign key is not the same as

the number of columns in the primary key of the referenced table
-12549 Databank option may not be changed to NULL since <%> contains

tables with FOREIGN KEY, REFERENCE, UNIQUE or trigger
specifications

-12550 Table <%> includes a FOREIGN KEY or UNIQUE constraint and
may therefore not be created in a databank with NULL option

-12551 Table <%> is in a databank with NULL option and may therefore
not be used as referential constraint

-12553 Explicit grant membership on PUBLIC is not permitted
-12554 PUBLIC cannot be member of another group
-12556 <%> cannot be shadowed because it is a NULL databank
-12557 Shadow named <%> already exists
-12558 Ident named <%> already exists
-12559 Index named <%> already exists
-12560 Table, View or Synonym named <%> already exists
-12561 Domain <%> not found, domain does not exist or no usage privilege
-12563 Shadow <%> does not exist
-12564 Ident <%> does not exist
-12565 Maximum row length exceeded by index or key table
-12566 Maximum row length exceeded by base table
-12568 EXISTS construction illegal in this context
-12569 ALL or ANY construction illegal in this context
-12570 Set function construction illegal in this context
-12571 Subquery construction illegal in this context
-12572 Too many columns given in FOREIGN KEY clause
-12573 Name <%> in CHECK clause not recognized as a column name of

current table definition
-12574 Name <%> in column constraint not recognized as current column

name
-12577 Default value not compatible with column specification
-12579 No such unique constraint in referenced table
-12581 Too many columns given in UNIQUE constraint
-12582 UNIQUE constraint equivalent to PRIMARY KEY constraint

Return codes B-15

Mimer SQL version 8.2
Programmer’s Manual

-12583 UNIQUE constraint equivalent to previously given UNIQUE
constraint

-12585 Name <%> in FOREIGN KEY clause not recognized as a column
name of current table definition

-12590 Table contains too many columns
-12591 Cannot create unique index
-12592 Dependencies exist, RESTRICT specified
-12593 Column <%> does not exist
-12594 Column <%> cannot be dropped as it is the only column in table
-12595 Column <%> cannot be dropped, dependencies exist
-12596 Default value for column <%> does not exist
-12597 Change of datatype is not allowed for a column included in a key or

index
-12598 The datatype for a column can not be changed to a domain
-12599 The proposed datatype change is not supported
-12600 Change of datatype is not supported for a column used by a view,

routine or trigger
-12601 Statement does not support backup of <%>
-12602 The same file name is given for backup and incremental backup
-12603 Database is already OFFLINE
-12604 Database is already ONLINE
-12605 Cannot RESET LOG, because database is ONLINE
-12606 Databank <%> is already OFFLINE
-12607 Databank <%> is already ONLINE
-12608 Cannot RESET LOG, because databank <%> is ONLINE
-12609 Shadow <%> is already OFFLINE
-12610 Shadow <%> is already ONLINE
-12611 Cannot RESET LOG, because shadow <%> is ONLINE
-12612 Shadow <%> is already specified
-12613 Cannot set more than one shadow OFFLINE for databank having

shadow <%>
-12614 Statistics cannot be updated for <%> because it is a view
-12615 Filename already used by databank or shadow
-12616 Cannot SET DATABASE OFFLINE, because another user is

connected
-12617 Cannot SET DATABANK <%> OFFLINE, because the databank is

in use
-12618 INCREMENTAL backups can only be used in conjunction with

EXCLUSIVE
-12620 A domain named <%> already exists
-12621 A schema named <%> already exists
-12622 The schema name for the index table must be the same as the

schema name for the table
-12623 A PRIMARY KEY constraint for this table has already been defined
-12624 The UNIQUE constraint cannot be created because the columns

contain duplicates
-12625 Referential constraint criteria not fulfilled

B-16 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-12626 Check constraint criteria not fulfilled
-12627 One or more specified columns does not exist in table
-12628 Referenced table or column not found
-12629 FOREIGN KEY not referencing a compatible UNIQUE or

PRIMARY KEY
-12630 Constraint <%> cannot be dropped, dependencies exist
-12631 PRIMARY KEY or UNIQUE column constraint not valid when

records exist
-12701 <%> is a reserved word, and cannot be used as the name for a

symbol
-12702 <%> is a global variable, and cannot be used as the name for a

variable or parameter
-12703 The class <%> is already present in the handler declaration
-12704 The SQLSTATE <%> is already present in the handler declaration
-12705 The condition identifier <%> is already present in the handler

declaration
-12706 The condition identifier <%> is already used in another handler in

this scope
-12707 A condition identifier for the SQLSTATE <%> has already been

defined in this scope
-12708 <%> is not a valid SQLSTATE value
-12709 The SQLSTATE <%> associated with the condition identifier <%>

is already present in the handler declaration
-12710 An exception handler for the state (<%>) associated with the

condition identifier <%> has already been defined in this scope
-12711 An exception handler for the state <%> has already been defined in

this scope
-12712 An exception handler for the class <%> has already been defined in

this scope
-12713 The default literal is too large for this data type
-12714 The literal value is too large for this data type
-12715 The type of the default value is not compatible with the type of the

variable
-12717 Invalid declaration. The maximum precision for this data type is

<%>
-12718 The scale cannot exceed the precision
-12720 The number of correlation names for <%>, does not match number

of result types
-12721 The parameter <%> for a result set procedure must be declared as IN
-12722 The parameter <%> is declared as IN, and cannot be assigned
-12723 The parameter <%> is declared as OUT, and cannot be used in

expressions
-12724 <%> cannot be assigned a value directly
-12725 Result set procedures can only be used in cursor declarations
-12726 The formal argument of the routine is IN but the actual argument is

OUT
-12727 The formal argument of the routine is OUT but the actual argument

is IN

Return codes B-17

Mimer SQL version 8.2
Programmer’s Manual

-12728 Literals or expressions cannot be used for OUT parameters
-12729 Return statements are only allowed in result set procedures or

functions
-12730 Recursive call to <%>, not allowed
-12731 <%> statement not allowed in result procedure
-12732 The procedure <%> does not return a result set and cannot be used

in a declare cursor for call
-12733 RESIGNAL statement only allowed in exception
-12734 Wrong number of items in result clause, <%> expected
-12735 Wrong number of parameters, <%> expected
-12736 Invalid type for argument, <%> expected
-12737 Too long name <%>
-12738 Duplicate declaration <%>
-12739 x.y.z names not allowed
-12740 Syntax error, <%> assumed to mean <%>
-12741 The label or routine <%> is not defined
-12742 The label <%> is not defined
-12743 The procedure <%> does not exist, (or no execute privilege)
-12744 The variable <%> is not defined
-12745 The condition identifier <%> is not defined
-12746 The cursor <%> is not defined
-12747 Use of domains in PSM control statements not allowed
-12748 Operands are incompatible
-12749 The SQL module <%> already exists
-12750 The procedure <%> already exists
-12751 Duplicate parameter <%>
-12752 The procedure <%> is declared in an SQL module, and cannot be

dropped directly
-12753 Failed to read data dictionary
-12754 The length of a host variable cannot exceed 32
-12755 Host variables cannot be used within a procedure
-12756 The data type for the parameter marker cannot be determined
-12757 The number of items in the into clause is less than the number of

items in the select list
-12758 The number of items in the into clause is greater than the number of

items in the select list
-12759 The number of items in the fetch into clause is less than the number

of items in the cursor declaration
-12760 The number of items in the fetch into clause is greater than the

number of items in the cursor declaration
-12761 A fetch direction other than next, can only be defined for a

scrollable cursor
-12762 The value in a fetch absolute or relative must be an integer
-12763 The argument to fetch absolute must be larger than 0
-12764 A cursor for call is read only and cannot be used in a update or

delete where current statement

B-18 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-12765 The cursor is declared as read only and cannot be used in a update or
delete where current statement

-12766 The table name in the <%> statement is not the same as the name
used in the cursor declaration

-12767 The column <%> is not specified in the for update list of the cursor
declaration

-12768 The size for a data type must be larger than zero
-12769 It is not allowed to declare exception handlers or condition

identifiers for the SQLSTATE successful completion ('00000')
-12770 The formal argument of the procedure is declared as INOUT but the

actual argument is <%>
-12771 A handler declaration cannot contain both an exception class and

SQLSTATE values or condition identifiers
-12772 The procedure does not return a result set and therefore cannot be

used with a scroll cursor
-12773 <%> is not a column and is not declared as a variable or parameter
-12774 The label <%> has already been declared
-12775 The statement requires <%> access
-12776 <%> statement is only allowed if the access indication is

MODIFIES SQL DATA or READS SQL DATA
-12777 <%> statements are only allowed if the access indication is

MODIFIES SQL DATA
-12778 The access indication for a result set procedure must be READS

SQL DATA or CONTAINS SQL
-12779 An UNDO exception handler can only be specified in an atomic

compound statement
-12781 Only assignment and comparison operations allowed
-12782 The column name <%> has already occurred in this row declaration
-12783 The field <%> is not defined in the row data type
-12784 The row data types do not have the same number of fields
-12785 A row data type variable may not be used as a parameter or result

type nor in a DML statement
-12800 Functionality not supported
-12801 Referencing OLD TABLE is not allowed if trigger event is INSERT
-12802 Referencing NEW TABLE is not allowed if trigger event is

DELETE
-12803 The compound statement in a triggered action must be atomic
-12804 Referencing OLD or NEW ROW may only be used if FOR EACH

ROW is specified
-12805 A column list can only be specified if trigger event is UPDATE
-12806 Duplicate column name in OF list
-12807 It is not allowed to modify the <%> table
-12808 The trigger time for a view must be INSTEAD OF
-12809 The trigger time for a base table can not be INSTEAD OF
-12810 Only the creator of a table is allowed to create a trigger for the table
-12811 It is not allowed to create triggers for tables, located in databanks

with NULL option

Return codes B-19

Mimer SQL version 8.2
Programmer’s Manual

-12812 Referencing OLD or NEW table is not allowed in FOR EACH ROW
triggers

-12813 A trigger with the name <%> already exists
-12830 A function with the name <%> already exists
-12831 The function <%> does not exist, (or no execute privilege)
-12832 The result of the expression is not deterministic while the routine is

declared as deterministic
-12833 All privileges used in a trigger must be held with grant option
-12834 The sequence <%> does not exist
-12835 A sequence with the name <%> already exists
-12836 The keyword NULL cannot be used <%>
-12837 The operands to a overlaps predicate must be of a row data type with

two elements
-12838 The two elements in an operand to the overlaps predicate must either

be of the same type or otherwise it shall be possible to add the
second value to first value

-12839 <%> is not allowed in a before trigger
-12840 The simple value specification for a get diagnostics statement must

be of integer type
-12841 <%> is not allowed in a trigger
-12842 The increment for a sequence must be non zero
-12843 Invalid values for sequence attributes
-12844 The schema <%> does not exist, (or no privilege)
-12845 The schema name for routines in a module definition must be the

same as the schema name for the module
-12846 The value for diagnostics size must be positive
-12847 The ident name in an authorization clause must be the same as the

current user
-12848 Constraint name already exists
-12849 The function <%> MODIFIES SQL DATA and can thus not be used

in a DML statement
-12850 A trigger must be located in the same schema as the table
-12851 A constraint must have the same schema name as the object to which

it belongs
-12852 The schema name for a routine is not the same as the schema name

for the module
-12853 Ident name not allowed as a schema with the same name exists
-12854 A non-deterministic expression is not allowed in a check clause
-12855 Default values with a reference to a sequence combined with a check

clause is not allowed in an alter table statement

B.2.6 Program-dependent errors
These errors arise as a result of incorrect program construction. In general,
corrective action requires revision of the program source code.

-14001 Invalid sequence of SQL statements
-14002 SQL statement invalid because the user is not connected

B-20 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-14003 CONNECT statement invalid because the user is already connected
-14004 System already closed down
-14005 Cannot perform DISCONNECT in a transaction
-14006 Login failure
-14011 Transaction already started
-14012 Transaction handling required
-14013 No transaction started
-14014 Cannot perform write operations as transaction status is read-only
-14015 Commit or rollback statements are not allowed in an atomic

execution context
-14016 Select for update is not allowed for a read-only cursor
-14017 Mixing DDL and DML statements in a transaction is not allowed
-14018 Incremental backup not allowed in BACKUP transaction
-14019 Operation not allowed in BACKUP transaction
-14020 START BACKUP command required to perform an online backup
-14021 Cannot perform ENTER or LEAVE in a transaction
-14022 Cannot perform ENTER operation because program level is already

active
-14023 No program level entered, cannot perform leave operation
-14024 Session statements are not allowed in a trigger
-14031 DESCRIBE statement does not identify a prepared statement
-14032 EXECUTE statement does not identify a prepared statement
-14033 PREPARE statement identifies a SELECT statement of an opened

cursor
-14034 The cursor is not in a prepared state
-14035 The cursor identified in a FETCH or CLOSE statement is not open
-14036 The cursor cannot be used because its statement name does not

identify a prepared SELECT statement
-14037 The cursor identified in the UPDATE or DELETE statement is not

open
-14038 UPDATE or DELETE CURRENT statement not allowed for a

cursor of a prepared SELECT statement
-14039 Cursor is not scrollable
-14041 The cursor identified in the UPDATE statement is not positioned on

a row
-14042 The cursor identified in the DELETE statement is not positioned on

a row
-14043 Routine signaled SQLSTATE
-14044 Routine signaled a condition
-14045 Prepared statement not a cursor specification
-14046 The statement RESIGNAL was used outside a exception handler
-14101 Invalid statement identifier
-14201 Compilation did not yield an executable program
-14202 The cursor identified in an OPEN statement is already open, but not

declared as REOPENABLE
-14203 Statement position cannot be saved when temporary tables are used

in the query

Return codes B-21

Mimer SQL version 8.2
Programmer’s Manual

-14210 Cursor for result set procedure may not be reopenable
-14211 With hold option is not available for result set procedures
-14301 SQLDA contains an invalid data address or indicator variable

address
-14302 Invalid address of username or password
-14303 Invalid address
-14311 Illegal statement length given for SQL statement
-14312 Input character string too long
-14313 Like pattern string too long
-14314 Username or password too long
-14315 Illegal byte length of floating point number
-14316 Unterminated C string, null byte not found
-14321 Illegal host variable type
-14322 Illegal host variable type in like pattern string
-14323 Username and password must be fixed length character strings
-14324 Illegal indicator variable type
-14331 The number of provided host variables does not match the number

of parameters
-14332 Using clause required for dynamic parameters
-14333 Using clause required for result fields
-14401 Column cannot be updated because it is not identified in the

UPDATE clause of the SELECT statement of the cursor
-14402 The table identified in the UPDATE or DELETE statement is not

the same as that designated by the cursor
-14403 Cannot describe statement without naming information
-14404 Cannot update table <%> because the declare statement is read-only
-14405 Cannot delete from table <%> because the declare statement is read-

only
-14406 Unexpected statement type encountered in an UPDATE or DELETE

statement
-14501 Database connection is not open
-14601 Invalid cursor state
-14611 Using clause does not match dynamic parameters
-14612 Using clause or Into clause does not match target specifications
-14621 Cursor not found
-14622 Ambiguous cursor name
-14623 Invalid cursor name
-14624 Cursor already allocated for statement
-14631 Invalid SQL statement name
-14641 Invalid SQL descriptor name
-14642 Invalid descriptor index
-14643 Invalid descriptor count
-14651 Invalid exception number
-14700 No return statement was encountered during the execution of a

function
-14701 The statement is not allowed in an atomic execution context

B-22 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-14702 The same column has been updated to different values when
executing a trigger

-14703 An exception occurred during the execution of a trigger
-14720 The maximum_value for the sequence <%> has been reached
-14721 There is no current_value for the sequence <%> because the

next_value function has not been invoked
-14722 Sequence <%> locked by another user
-14723 Update of attributes for the sequence <%> failed

B.2.7 Databank and table errors
These errors are associated with problems of physical access to databanks and
tables. Locking errors should not result from transaction conflicts, but
generally indicate either locking at the operating system level or malfunction of
the internal Mimer SQL routines. Many of the errors in this class are corrected
by action taken at the operating system level. If errors persist in spite of
corrective action, contact your Mimer representative.

-16001 Table locked by another user
-16002 Table locked by another cursor
-16003 Table in referential constraint definition locked by another user
-16004 Table in referential constraint definition locked by another cursor
-16005 Log locked by another user
-16006 Backup unit log file locked
-16101 No databank <%> found in dictionary
-16135 Record no longer exists
-16141 Syntax error in filename for databank <%>
-16142 Cannot open databank <%>, file <%> not found
-16143 File protection violation for databank <%>, file <%>
-16144 Cannot open databank <%>, file <%> locked by other user
-16145 Too many databanks open concurrently (direct access I/O limit)
-16146 File create error, disk full
-16147 File create error (quota exceeded) for databank <%>, file <%>
-16148 Device or network connection not ready, databank <%>, file <%>
-16149 Cannot open databank <%> in file <%>
-16150 Tried to access databank <%> on node which is inaccessible

because TRANSDB is OFFLINE
-16151 Too many databanks open concurrently
-16152 Tried to open a non-MIMER databank
-16154 Table control area exhausted
-16155 Incompatible version of databank <%>
-16156 Databank <%> belongs to another system databank
-16157 Tried to open a read-only databank with write access
-16159 Old version of the databank <%> cannot be accessed without

restoring the databank with the backup and restore utility
-16160 Cannot set TRANSDB shadow OFFLINE on the same node as the

master TRANSDB
-16161 Databank <%> disk space exhausted

Return codes B-23

Mimer SQL version 8.2
Programmer’s Manual

-16162 Databank LOGDB disk space exhausted
-16163 Databank TRANSDB disk space exhausted
-16164 Databank SQLDB disk space exhausted
-16172 Databank <%> locked by another MIMER/DB user
-16182 Databank <%> corrupt
-16183 Bad parameter
-16184 I/O error
-16185 Internal databank identifier invalid
-16186 Internal table identifier invalid
-16187 Shadow <%> in file <%> has illegal sequence number
-16189 Corrupt bitmap page
-16190 Table root entry not found
-16191 Exclusive access to databank required for attempted operation
-16192 Load not allowed in databank with TRANS or LOG option
-16193 TRANSDB and/or LOGDB not open
-16194 Error occurred in transaction commit phase
-16195 Internal inconsistency detected
-16196 No end of table mark found for tableid
-16197 Shadow <%> is already OFFLINE
-16198 Shadow <%> is already ONLINE
-16199 Result of bitmap page I/O undefined
-16200 Result of index page I/O undefined
-16201 Result of root page I/O undefined
-16202 Result of data page I/O undefined
-16203 Corrupt index page
-16204 Corrupt root page
-16205 Corrupt data page
-16206 Write set corrupt
-16207 Table <%> has invalid record length
-16208 Unable to open databank <%>. SHADOW license required
-16209 Unable to open databank <%>. NETIO license required
-16210 Cleanup control area exhausted
-16211 Not properly closed, dbcheck initiated
-16212 TRANSDB restart directory corrupt
-16213 Error when closing databank file. Please consult multiuser log file
-16214 Blockdata DKBLK1 missing
-16215 Error accessing remote TRANSDB, node will not be accessed

further
-16216 Blocksize not supported
-16217 Error when generating internal key
-16218 Operation not allowed. Licensed number of users exceeded
-16219 Too many multi systems started
-16220 Unable to retrieve limit on number of allowed users
-16221 Lost contact with peer
-16222 Record length from update before is invalid
-16224 Transaction state table entries exhausted

B-24 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-16225 Transaction state identifier invalid
-16226 Invalid function code
-16227 Commit set corrupt
-16228 Restart set corrupt
-16229 Cancel requested
-16230 Transaction cache inconsistent
-16231 Shadow <%> is inaccessible due to incomplete CREATE SHADOW

or SET ONLINE operation
-16232 Database upgrade required
-16233 Operation not allowed. Licensed number of users exceeded
-16234 Execution interrupted by scheduler
-16401 Routine cannot be dropped because it is in use
-16402 Routine cannot be used because it is being dropped

B.2.8 Miscellaneous errors
These errors arise from miscellaneous problems which do not fall into the other
classes. If the corrective action is not indicated by the error description, contact
your Mimer representative for help.

-18001 Blockdata BLKDS2 not included
-18002 Cannot log in, error in SYSDB initialization
-18003 No privilege to open log file
-18004 Databank LOGDB already opened by another MIMER/DB user.

Could not be opened exclusively to drop log records
-18005 Unknown language
-18006 Language not properly installed
-18007 Unable to fetch message text
-18008 Restore in wrong sequence attempted
-18009 Mismatching version of Embedded SQL and MIMER/DB
-18010 Invalid log record found during restore operation
-18011 Mismatching version of MIMER/DB and utilities
-18012 The transformation of a TRANSDB shadow to master was

interrupted before completion. Please login to UTIL to complete the
transformation

-18013 MIMER/DB started from SYSDB shadow. Transform SYSDB
shadow to master with UTIL, or restart system from master SYSDB

-18014 Alter shadow not allowed in SQL for system databanks. Use utility
program instead.

-18015 Open with hold is not possible when temporary tables are used for
evaluation of the query

-18016 Cursor could not be opened with hold as it is not prepared with hold
-18017 With hold functionality not supported
-18018 The network server version does not support scroll
-18019 Bad parameters passed to DBAPI4
-18020 Unknown information code = <%> used

Return codes B-25

Mimer SQL version 8.2
Programmer’s Manual

-18021 Only SELECT, INSERT, UPDATE, and DELETE operations
(excluding where current forms) may be compiled together in a
single statement

-18022 Distributed transactions not supported by server
-18023 Requested DTC function not supported by server
-18024 Failed to enlist transaction in distributed transaction
-18025 Unable to retrieve transaction manager's where-abouts
-18026 Failed to import transaction identifier
-18027 Statement already active in other transaction
-18028 Cannot initiate a new PSM debugger session, because the number of

request threads is insufficient
-18029 Execution interrupted by debugger
-18041 Update of primary key columns for a table located in a databank,

with NULL option is not allowed
-18042 Primary key columns may not be updated by Level2 applications
-18043 The rowid column may not be updated
-18101 Operation not allowed. SHADOW license required
-18102 Operation not allowed. MIMER/DB license required
-18103 Operation not allowed. MIMER/DB Level2 license required
-18104 Operation not allowed. MIMER/NET Client license required
-18105 Operation not allowed. MIMER/NET Server license required
-18106 Operation not allowed. MIMER/NET PC-Server license required
-18107 Operation not allowed. Beta test version of MIMER requires BETA

license.
-18108 Error opening MIMER keyfile
-18121 Operation not allowed. VAR specific MIMER license required
-18122 Authorization failure. Invalid attempt to connect
-18201 SYSDB cannot be backed up using CREATE BACKUP without an

ONLINE shadow
-18231 <%> records dropped from LOGDB
-18232 Shadow <%> is OFFLINE
-18233 Unable to access databank <%>, because it is OFFLINE
-18234 Error <%> occurred when trying to access shadow <%>
-18235 Error <%> occurred when trying to access databank <%>
-18236 Statistics updated for <%> tables
-18237 Databank <%> does not have LOG option
-18238 <%> records copied to incremental backup
-18239 Unable to CONNECT, because database is OFFLINE
-18240 Unable to CONNECT, because database is OFFLINE and one

connection already exists
-18241 Unable to CONNECT, because SYSDB is OFFLINE
-18242 Unable to CONNECT, because SYSDB is OFFLINE and one

connection already exists
-18243 Unable to access databank <%>, because database is OFFLINE
-18244 Could not get exclusive access to the database because one or more

connections already exists

B-26 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-18245 Could not connect to database <%>, a system administrator is
executing a statement that requires exclusive access to the database

-18500 Database <%> not found in MIMER_SQLHOSTS
-18501 Database <%> unknown on remote node
-18502 Handshake message invalid, incompatible protocol
-18503 Only remote databases are allowed, specify database which is not

local
-18504 The network server version is not compatible
-18505 Local memory pool in network server exhausted (SQLPOOL)
-18506 In the current version only one local (and several remote) databases

can be connected at a time
-18507 Unknown connection name <%> specified
-18508 Already connected, connection name <%>
-18509 Database name <%> invalid, too long or contains invalid characters
-18510 Connection name <%> invalid, too long or contains invalid

characters
-18512 Illegal reentrant call
-18513 Use another TCP/IP port number
-18514 Too deep address indirection
-18515 Cannot get value of thread-local variable
-18516 The network server version does not support Level2
-18518 Catalog version from betatest. See Release Notes, how to upgrade
-18519 Erroneous contents in MIMER_SQLHOSTS
-18521 Error opening MIMER_SQLHOSTS, filename syntax error
-18522 Error opening MIMER_SQLHOSTS, file not found
-18523 Error opening MIMER_SQLHOSTS, file protection violation
-18524 Error opening MIMER_SQLHOSTS, file locked
-18525 Error opening MIMER_SQLHOSTS, too many opened files
-18526 Error opening MIMER_SQLHOSTS, file create error, disk space

exhausted
-18527 Error opening MIMER_SQLHOSTS, other error (-7)
-18528 Error opening MIMER_SQLHOSTS, other error (-8)
-18529 Error opening MIMER_SQLHOSTS, other error (-9)
-18530 Error opening MIMER_SQLHOSTS, illegal access options
-18550 Invalid network package format
-18551 Unknown request code in network package (<%>)
-18552 Network package longer than expected
-18553 Internal data structures corrupt (DSNEE4)
-18554 The UTILITY program does not have client/server support
-18594 Query timeout period expired
-18595 Network partner disconnected
-18601 Could not connect to database <%>, unknown node '<%>'
-18602 Could not connect to database <%>, unknown protocol '<%>'
-18603 Could not connect to database <%>, unknown interface '<%>'
-18604 Could not connect to database <%>, unknown service '<%>'

Return codes B-27

Mimer SQL version 8.2
Programmer’s Manual

-18605 Could not connect to database <%>, chosen protocol not supported
on ALPHA/VMS '<%>'

-18606 Could not connect to database <%>, network type not supported
'<%>'

-18607 Could not connect to database <%>, remote node is unreachable
'<%>'

-18608 Bad parameter NETID=<%> passed to network package
-18609 Invalid parameter RECLEN=<%> passed to network package
-18610 Invalid parameter BUFFER=<%> passed to network package
-18611 Too many concurrent network connections
-18612 Connection refused '<%>'
-18613 Unexpected network event '<%>'
-18614 The underlying network protocol does not have enough capabilities

'<%>'
-18615 Network service busy '<%>'
-18616 Local or remote system resources are insufficient '<%>'
-18617 Connection timed out '<%>'
-18618 Insufficient privileges for attempted network operation '<%>'
-18619 Unexpected network error '<%>'
-18620 Network operation would block (asynch mode)
-18621 Could not load network library
-18622 Required routines missing from network library
-18901 Multi-user system not started
-18902 MIMER logins are currently disabled, try again later
-18903 Access denied to MIMER multi-user system
-18904 Unable to attach to multi-user system, no response
-18905 Operation not allowed. Licensed number of users exceeded
-18920 Machine dependent error-18920
-18921 Machine dependent error-18921
-18922 Machine dependent error-18922
-18923 Machine dependent error-18923
-18924 Machine dependent error-18924
-18925 Machine dependent error-18925
-18926 Machine dependent error-18926
-18927 Machine dependent error-18927
-18928 Machine dependent error-18928
-18929 Machine dependent error-18929

B.2.9 Internal errors
These errors arise from malfunction in internal Mimer SQL routines. Contact
your Mimer representative for help.

-19001 Program level list corrupt
-19002 No program level found
-19003 Statement list corrupt
-19004 Output parameter list corrupt

B-28 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-19005 Table list corrupt
-19006 Unable to find log file, LOGDB corrupt
-19007 Inconsistency detected when trying to update dictionary
-19008 Unable to open SYSTEM base tables
-19009 Dictionary table SYSTEM.USERS corrupt
-19010 Unable to extract correct information from

SYSTEM.DATABANKS
-19011 Unable to extract correct information from

SYSTEM.TABLE_CONSTRAINTS
-19012 Could not find foreign key tableid (<%>) in

SYSTEM.TABLE_CONSTRAINTS
-19015 Sysid record in SYSTEM.OBJECTS not found
-19017 Invalid MAE program
-19018 Invalid operation code <%> at PC=<%>
-19019 Missing IMC instruction
-19020 Invalid function code passed to instruction <%>
-19021 No databank control block found for <%>
-19022 Bad function code passed to DSCDB3
-19023 Invalid pointer to naming structure
-19024 Severity message program corrupt
-19025 Invalid table descriptor
-19026 Invalid table descriptor, log status invalid
-19027 Base table must be opened before index tables
-19028 Table root entry not found
-19029 Unable to change position on write set because no mark is set
-19030 Invalid length for allocation of program space
-19031 Invalid table type
-19032 No table control block found
-19033 Cannot delete databank file outside transaction
-19034 Bad function code passed to DSCRD2
-19035 Invalid index descriptor
-19036 Error detected when closing table, hash chain corrupt
-19037 Invalid internal table type encountered
-19038 Write set inconsistency encountered
-19039 Invalid internal statement identifier
-19040 Invalid internal system identifier
-19041 Invalid internal user identifier
-19042 The static statement cannot be compiled because it is already

identified with some other statement
-19043 The statement cannot be prepared because it is already identified

with a static statement
-19044 Transaction control block chain corrupt
-19045 Shadow <%> cannot be transformed because it is OFFLINE
-19046 Databank <%> is referenced but not opened
-19047 Table has not been opened with sufficient access to allow current

operation

Return codes B-29

Mimer SQL version 8.2
Programmer’s Manual

-19048 Databank <%>, no shadow is found in dictionary with sequence
number = <%>

-19049 The internal update operation has not been prepared with the old
record

-19050 Catalog version not compatible with server
-19051 Compiled LIKE pattern corrupt
-19052 Could not store lookup path, inconsistency detected
-19053 Output descriptor overflow
-19054 Unable to initialize database system
-19055 Unable to generate an internal key
-19056 Inconsistent user identifier (not logged in)
-19057 Scroll program corrupt
-19058 Extended name not supported in static SQL
-19059 Invalid error message descriptor
-19061 Loss of significance for VARCHAR length
-19062 Positive overflow for VARCHAR length
-19063 Negative overflow for VARCHAR length
-19065 Bad parameter for VARCHAR length
-19066 Illegal operand for VARCHAR length
-19067 Bad record number
-19068 No matching record
-19069 Corrupt cancel state
-19071 Unrecognized data types for conversion
-19072 Invalid read set record
-19073 Insufficient internal descriptor area
-19074 Internal inconsistency encountered in TCACHE
-19075 Invalid internal DDU identifier
-19076 Internal inconsistency encountered in table list
-19077 Internal inconsistency encountered in DU1
-19078 Invalid parameter encountered in MOS
-19079 Internal inconsistency encountered in DSETH3
-19080 Thread initialization failure
-19081 Hash table missing in system control block
-19082 Internal inconsistency encountered in DSGSH2
-19083 Internal inconsistency encountered in MCOMEM
-19084 Runtime assertion failed
-19085 Invalid descriptor encountered on server
-19086 Invalid statement status encountered on server
-19087 PSM debugger resources already allocated
-19088 PSM debugger resources already deallocated
-19089 Invalid parameter encountered in DDU
-19091 Invalid function code passed to routine
-19092 Invalid function code 2 passed to routine
-19093 Invalid function code 3 passed to routine
-19201 System error : <%>- Area outside MAE data storage
-19202 System error : <%>- Attempt to qqwsal() in closed area

B-30 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-19203 System error : <%>- Cost value out of range
-19204 System error : <%>- Error converting into Mimer format
-19205 System error : <%>- Error from MDRCCI call
-19206 System error : <%>- Error when reading databank option
-19207 System error : <%>- Expression switch case not recognized
-19208 System error : <%>- Factor was left unused
-19209 System error : <%>- Failed to get a slave RST
-19210 System error : <%>- Generation stack underflow
-19211 System error : <%>- Group is not allocated
-19212 System error : <%>- Host variable not defined
-19213 System error : <%>- Host variable number mismatch
-19214 System error : <%>- Illegal Set Func. mode switch case
-19215 System error : <%>- Illegal Status switch case <%>
-19216 System error : <%>- Index table not found
-19217 System error : <%>- Invalid base pointer
-19218 System error : <%>- Invalid object type
-19219 System error : <%>- Invalid pointer
-19220 System error : <%>- Main switch case not recognized
-19221 System error : <%>- Multiple offset assignment
-19222 System error : <%>- Multiple restriction groups
-19223 System error : <%>- No area opened
-19224 System error : <%>- Nonexistent member
-19225 System error : <%>- No Tbl_desc for SCO
-19226 System error : <%>- NOT stack overflow
-19227 System error : <%>- NOT stack underflow
-19228 System error : <%>- Offset outside MAE data storage
-19229 System error : <%>- qqcbix() with illegal operator
-19230 System error : <%>- qqcunx() with illegal operator
-19231 System error : <%>- Error from MDRCFC call
-19232 System error : <%>- qqrlst() with NULL list
-19233 System error : <%>- qqwlst() with NULL list
-19234 System error : <%>- Query result stack underflow
-19235 System error : <%>- Query stack underflow
-19236 System error : <%>- Rule matrix index out of range
-19237 System error : <%>- Scan kind not implemented
-19238 System error : <%>- Scan stack underflow
-19239 System error : <%>- Selectivity factor value out of range
-19240 System error : <%>- Semantic stack underflow
-19241 System error : <%>- Set range violation
-19242 System error : <%>- Set size incompatibility
-19243 System error : <%>- Stack underflow
-19244 System error : <%>- Statement switch case not recognized
-19245 System error : <%>- Switch case not recognized
-19246 System error : <%>- Too complicated UNION query
-19247 System error : <%>- Too many nested subqueries
-19248 System error : <%>- Traversal stack underflow

Return codes B-31

Mimer SQL version 8.2
Programmer’s Manual

-19249 System error : <%>- Unexpected EXPRESSION in HOST variables
-19250 System error : <%>- Unexpected expression operand
-19251 System error : <%>- Unexpected expression subtype
-19252 System error : <%>- Unexpected node class
-19253 System error : <%>- Unexpected SELECT ITEM
-19254 System error : <%>- Unexpected statement subclass
-19255 System error : <%>- Unexpected DD return code <%>
-19256 System error : <%>- Unknown Host Variable type
-19257 System error : <%>- Unknown statement type
-19258 System error : <%>- WS stack overflow
-19259 System error : <%>- X stack overflow
-19260 System error : <%>- X stack underflow
-19261 System error : <%>- Error logging is not enabled
-19262 System error : <%>- Source position line or column is negative
-19263 System error : <%>- Message insert string too long
-19264 System error : <%>- Error logging is already enabled
-19265 System error : <%>- MAE constant storage overflow
-19266 System error : <%>- Selectivity rule number out of range
-19267 System error : <%>- No entry for index id
-19268 System error : <%>- qqcfnx() with illegal operator
-19269 Unexpected duplicate row found in temporary table
-19270 System error : <%>- Scan queue underflow
-19280 System error : <%>- Error from MDRTDC call
-19290 Out of memory
-19291 Invalid attribute type
-19292 Error when trying to store procedure in dictionary
-19293 Error when trying to share program
-19300 <%> unhandled production
-19301 Internal inconsistency detected in PSM
-19901 Function not yet implemented

B.2.10 Communication errors
Error codes from the communication kernel layer (network routines):

-21001 Already listening on service <%>
-21002 Error trying to ASSIGN channel for TCP/IP communication
-21003 Error when creating socket
-21004 Error when binding socket address for service <%>
-21005 Error when getting port number for service <%>
-21006 Illegal protocol specified: <%>
-21007 Error when looking up host name: <%>
-21008 Error when connecting to database <%> on <%> using <%> to

service <%>
-21009 Illegal channel id specified
-21010 Error when reading data from network channel
-21011 Error when writing data to network channel

B-32 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-21012 Channel is not open
-21013 Channel is not accessible from this process
-21014 Error when creating mailbox
-21015 Error when declaring network object for service <%>
-21016 Unimplemented feature
-21017 Error when accepting new channel
-21018 Error when doing local listen for database <%> on path <%>
-21019 Too many channels used
-21020 Multiple read requests on channel
-21021 Multiple write requests on channel
-21022 Local write when not owning buffer
-21023 Cancel request illegal on channel
-21024 No available channel id number
-21025 Tried to open too many local servers
-21026 Database server for database <%> not running
-21027 Incompatible buffer versions
-21028 Failed to do a LOCAL connection to the server for database <%>
-21029 Illegal reentrant request on channel
-21030 Network request would block caller
-21031 Too large network I/O requested
-21032 Could not find DSINI4 in single-user library
-21033 Could not find DSHND4 in single-user library
-21034 Could not find DSGMD4 in single-user library
-21035 Could not find DSUMP4 in single-user library
-21036 The channel is closed
-21037 The specified network interface is not supported
-21038 Could not lock communication buffers in memory
-21039 Error trying to ASSIGN channel for DECNET communication
-21040 Could not map library for single-user mode
-21041 Could not initialize CK package
-21042 Error when performing initial communication with database server
-21043 Server rejected connection to database <%> on <%> using <%> to

service <%>
-21044 Server rejected named pipe connection to database <%>
-21045 The address family for network protocol was unknown
-21046 Error when creating named pipe server objects
-21047 Error when setting up TCP server objects
-21048 Unexpected communication error
-21049 Error when reading/writing data to/from network channel
-21050 Error when closing communication with database server
-21051 All local communication slots are in use
-21052 Database server request failed
-21053 Database or network service not started Error when connecting to

database <%> on <%> using <%> to service <%>
-21054 Database server for database <%> not started

Return codes B-33

Mimer SQL version 8.2
Programmer’s Manual

-21055 The MIMER network service on <%> for <%> does not currently
accept new connections. Try again later

-21056 Local communication has been disabled for database server <%>
-21057 Named pipe communication has not been enabled for database

server <%>
-21058 TCP/IP communication has not been enabled for database server

<%>
-21100 Command timed out
-21101 Error mapping MCS (MIMER Control Storage)
-21102 Error when doing system communication through the MCS
-21103 MCS communication area is busy. Try again later
-21104 Server for database <%> is already started
-21105 Illegal directory specified for SYSDB82.DBF
-21106 Error in parameter file
-21107 Error when starting database server process
-21108 Error when looking up database name
-21109 Error when creating memory pool in database server
-21110 Could not allocate space from SQLPool
-21111 Error when initiating the ENQ/DEQ package
-21112 Error when attaching a thread to the ENQDEQ area
-21113 Error when initiating server I/O package
-21114 Error when setting default directory for database server I/O package
-21115 Could not start database server thread
-21116 Protocol error- received new request before completion of last

request
-21117 Could not create proper execution environment
-21118 Database server not operational
-21119 Notification thread failed. Server can no longer respond to

mimcontrol
-21120 Illegal directory path
-21121 Could not create new directory
-21122 Channel closed by administrator
-21123 Invalid channel number specified
-21124 Error when initiating request (rq) queue
-21125 Could not lock the bufferpool in memory
-21126 Database server halted. Failed to generate automatic database dumps
-21127 Database server halted. Dump files from the failed database are

placed under <%>
-21128 Error when stopping database server process
-21129 Error when deleting memory pool in database server
-21130 Error getting database server parameters
-21131 Must be superuser to perform this function
-21132 The environment variable MIMER_HOME must point to the

MIMER distribution
-21133 An illegal combination of command switches was specified
-21134 The database parameter must be specified
-21135 Permission denied

B-34 Return codes

Mimer SQL version 8.2
Programmer’s Manual

-21180 Error opening SQLHOSTS file
-21181 Error opening SQLHOSTS file - file name syntax error
-21182 Error opening SQLHOSTS file - file not found
-21183 Error opening SQLHOSTS file - file protection violation
-21184 Error opening SQLHOSTS file - file is locked
-21185 Error opening SQLHOSTS file - too many files are opened
-21186 Error opening SQLHOSTS file - file creation error (diskspace

exhausted)
-21187 Error opening SQLHOSTS file - machine dependent code -7
-21188 Error opening SQLHOSTS file - machine dependent code -8
-21189 Error opening SQLHOSTS file - other error
-21190 Error opening SQLHOSTS file - illegal access option
-21191 Could not find a local definition for the specified database name

Error codes used by the server when creating database dumps. These codes are
never returned to application programs:

-21200 Error when creating dumpfile
-21201 Error when writing dumpfile

Error codes reflecting problems in the layer that creates and interprets network
packets:

-21300 Too large network buffer requested on client side

B.2.11 JDBC errors
These errors arise when the Mimer JDBC Driver fails for some reason. The
error codes are in the range -22000 to -22999. When using Java, the error
message is always included in the exception that is thrown.

To get the complete and accurate list of error codes, execute the following
command:
$ java com.mimer.jdbc.Driver -errors

Deprecated features C-1

Mimer SQL version 8.2
Programmer’s Manual

C DEPRECATED FEATURES

Some non-standard features in earlier versions of Mimer SQL are deprecated,
but retained for backward compatibility. Where these features have equivalents
in the standard implementation, only the standard form is documented in the
main body of this manual. Use of the standard forms is strongly recommended.

C.1 INCLUDE SQLCA
The SQLCA communication area is deprecated feature in Mimer SQL.

For backward compatibility reasons the use of the SQLCA is still supported.

Applications should now use the SQLSTATE variable and the GET
DIAGNOSTICS statement to get all the information previously obtained from
SQLCA.

See Chapter 3 for a description of SQLSTATE and GET DIAGNOSTICS.

C.2 SQLCODE
The use of SQLCODE to retrieve the internal Mimer SQL return code for an
exception has been replaced by the use of SQLSTATE and GET
DIAGNOSTICS with the NATIVE_ERROR option (see Section 10.3) in
Mimer SQL. For compatibility reasons, return codes can still be retrieved in
SQLCODE, as in earlier versions of Mimer SQL. Mimer SQL will assume the
existence of an SQLCODE variable in the application if no INCLUDE SQLCA
statement is found and neither SQLSTATE nor SQLCODE is declared between
BEGIN DECLARE SECTION and END DECLARE SECTION.

The values of SQLCODE are the same as the values for the internal Mimer
SQL return codes described in Appendix B.

C.3 SQLDA
The SQL descriptor area SQLDA, which was used in earlier versions of Mimer
SQL, has now been replaced by a standardized SQL descriptor area. The
SQLDA area was allocated and maintained by constructions in the host
language. The new SQL descriptor area is allocated and maintained by
standardized embedded SQL statements.

The former SQL descriptor area SQLDA is still supported in Mimer SQL for
compatibility reasons.

C-2 Deprecated features

Mimer SQL version 8.2
Programmer’s Manual

C.4 Parameter marker representation
In earlier versions of Mimer SQL it was documented that a parameter marker in
a dynamic SQL statement could be represented by either a question mark or a
parameter name preceded by a colon. The non-standard representation of a
parameter name preceded with a colon is now deprecated, but it is still
supported for compatibility reasons.

C.5 VARCHAR(size)
In earlier versions of Mimer SQL a VARCHAR structure was documented,
which was used in the C language for handling variable-length character
strings. This VARCHAR structure was defined as:

#define VARCHAR(x)
 struct {
 short len;
 char text[x];
 }

where the character string is stored in text, and the length of the text is stored in
len.

C.6 SET TRANSACTION
Following the introduction of the SET TRANSACTION READ and SET
TRANSACTION ISOLATION LEVEL options, the SET TRANSACTION
CHANGES options no longer apply.

The following options are supported for backward compatibility only:

 ªÞÞ SET TRANSACTION ÞÞÞÞ CHANGES Þ½Þ INVISIBLE Þ½ÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÞÃ
 ¦ ¦
 ÷Þ VISIBLE ÞÞÞç

C.7 DBERM4
The DBERM4 routine, which could be used to retrieve the internal Mimer SQL
return code and error message text for an exception, is now deprecated. The
GET DIAGNOSTICS statement should now be used to retrieve these exception
information items (see Section 10.3).

Application program examples D-1

Mimer SQL version 8.2
Programmer’s Manual

D APPLICATION PROGRAM EXAMPLES

This chapter illustrates the use of ODBC and embedded SQL in application
programs in each of the host languages supported by Mimer SQL (the C code
examples can be used with C++). The source code for the application examples
is supplied with the standard distribution of Mimer SQL.

The Section D.2 of this chapter illustrates an example of how dynamic SQL
can be used with Mimer SQL. This example is only supplied in the C language.

D-2 EXAMPLE program

Mimer SQL version 8.2
Programmer’s Manual

D.1 EXAMPLE program

This simple EXAMPLE program is written according to international SQL
standards and it should be possible to use them on any standard-compliant
database management system without modification.

The program logs in to the default database with the user ident SYSADM and
password SYSADM (change the program as appropriate). The program will
then select and print all the rows of the X/Open standard system catalog view
INFORMATION_SCHEMA.TABLES, i.e. lists all tables in the system.

D.1.1 Building the EXAMPLE program

Unix The following example assumes Mimer SQL is installed in the directory
/opt/mimer821A and illustrates how the C version of the EXAMPLE program is
compiled and built by using the distributed example makefile:

$ mkdir example # Do everything in a sub directory
$ cd example
$ cp /opt/mimer821A/examples/ex_makefile ./makefile
$ cp /opt/mimer821A/examples/example.ec .

Take a copy of the makefile and update it so that the MYPROG symbol is set to
“example”, as the name of the program to be created (avoid trailing spaces).

MYPROG = example

Then make the example program:

$ export MIMER_HOME=/opt/mimer821A
$ make
.
.

 VMS The following example illustrates how the FORTRAN version of the EXAMPLE
program is compiled and linked under VMS. The programs written in the other
languages can be linked in a similar manner.

$ ESQL/FORTRAN MIMEXAMPLES8:EXAMPLE ! Preprocess source code
$ FORTRAN EXAMPLE ! Compile preprocessed code
$ LINK EXAMPLE,MIMLIB8:MIMER/OPT ! Link an executable program

 Win On Windows platforms, the examples files are installed in the dev directory
which is located below the installation directory. The dev directory contains a
makefile called makefile.mak, which will build all the example programs at the
same time. The examples have been tested using Microsoft Visual C.

These instructions assume that Microsoft Visual C is used and that the make
command is being executed from the dev directory, appropriate adjustments must
be made if this is not the case.

$ nmake -f makefile.mak

EXAMPLE program D-3

Mimer SQL version 8.2
Programmer’s Manual

D.1.2 C source code for the EXAMPLE program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
** Example of X/Open CAE SQL (1992) compliant embedded program.
**
** The program tries to connect to the DEFAULT database as SYSADM
** with password SYSADM.
** It will then declare a cursor for the standard view
** INFORMATION_SCHEMA.TABLES, and fetch all records from it.
**
** If any error occurs, the print_sqlerror routine will be called
** to print an error message.
*/

/*
** X/Open does not allow the same variable to be defined in several
** DECLARE SECTIONs, so we declare SQLSTATE here so that all routines
** in the file can use the same variable.
*/
exec sql BEGIN DECLARE SECTION;
char SQLSTATE[6];
exec sql END DECLARE SECTION;

void print_sqlerror()
/*
** print_sqlerror prints an error message for the latest error.
** Programmed according to the X/Open CAE specification.
*/
{
 exec sql BEGIN DECLARE SECTION;
 int i;
 int exceptions;
 VARCHAR message[255];
 exec sql END DECLARE SECTION;

 exec sql GET DIAGNOSTICS :exceptions = NUMBER; /* How many exceptions? */
 for (i=1; i<=exceptions; i++) {

exec sql GET DIAGNOSTICS EXCEPTION :i
 :message = MESSAGE_TEXT;

printf("%s\n", message);
 }
}

D-4 EXAMPLE program

Mimer SQL version 8.2
Programmer’s Manual

main()
{
 exec sql BEGIN DECLARE SECTION;
 VARCHAR schema[129];
 VARCHAR table[129];
 char type[21];
 exec sql END DECLARE SECTION;

 exec sql DECLARE MYCURSOR CURSOR FOR
SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE

 FROM INFORMATION_SCHEMA.TABLES;

 exec sql WHENEVER SQLERROR goto error_exit;

 exec sql CONNECT TO '' USER 'SYSADM' USING 'SYSADM'; /* Connect to DEFAULT */

 exec sql OPEN MYCURSOR;

 while (1) {
 exec sql FETCH MYCURSOR INTO :schema,:table,:type;
 if (strcmp(SQLSTATE, "02000") == 0) break; /* No more rows */
 printf("%s %s %s\n", schema, table, type);

 }

 exec sql CLOSE MYCURSOR;
 exec sql COMMIT;

 exec sql DISCONNECT DEFAULT;
 exit(0);

error_exit:
 print_sqlerror();

 exec sql WHENEVER SQLERROR CONTINUE;

 exec sql ROLLBACK;
 exec sql DISCONNECT DEFAULT;
 exit(0);
 return 0;
}

EXAMPLE program D-5

Mimer SQL version 8.2
Programmer’s Manual

D.1.3 COBOL source code for the EXAMPLE program

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 *
 ** Example of X/Open CAE SQL (1992) compliant embedded program.
 **
 ** The program tries to connect to the DEFAULT database as SYSADM
 ** with password SYSADM.
 ** It will then declare a cursor for the standard view
 ** INFORMATION_SCHEMA.TABLES, and fetch all records from it.
 *

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PICTURE X(5).
 01 TABLE-SCHEMA PICTURE X(128).
 01 TABLE-NAME PICTURE X(128).
 01 TABLE-TYPE PICTURE X(20).

 01 EXCEPTIONS PIC S9(10) COMP.
 01 ERROR-MESSAGE PIC X(254).
 01 LINE-NUMBER PIC S9(10) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
 MAIN SECTION.

 DO-IT.
 EXEC SQL DECLARE MYCURSOR CURSOR FOR
 SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE
 FROM INFORMATION_SCHEMA.TABLES END-EXEC.

 EXEC SQL WHENEVER SQLERROR GO TO ERROR-EXIT END-EXEC.

 ** CONNECT TO DEFAULT DATABASE
 EXEC SQL CONNECT TO '' USER 'SYSADM' USING 'SYSADM' END-EXEC.

 EXEC SQL OPEN MYCURSOR END-EXEC.

 PERFORM FETCH-AND-DISPLAY UNTIL SQLSTATE = "02000".

 EXEC SQL CLOSE MYCURSOR END-EXEC.
 EXEC SQL COMMIT END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

D-6 EXAMPLE program

Mimer SQL version 8.2
Programmer’s Manual

 FETCH-AND-DISPLAY.
 EXEC SQL FETCH MYCURSOR INTO :TABLE-SCHEMA,
 :TABLE-NAME,
 :TABLE-TYPE END-EXEC.

 IF SQLSTATE NOT = "02000",
 DISPLAY TABLE-SCHEMA, TABLE-NAME, TABLE-TYPE.

 ERROR-EXIT.
 EXEC SQL ROLLBACK END-EXEC.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL GET DIAGNOSTICS :EXCEPTIONS = NUMBER END-EXEC.
 PERFORM DISPLAY-ERROR-LINE VARYING LINE-NUMBER
 FROM 1 BY 1
 UNTIL LINE-NUMBER IS GREATER THAN EXCEPTIONS.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

 DISPLAY-ERROR-LINE.
 EXEC SQL GET DIAGNOSTICS EXCEPTION :LINE-NUMBER
 :ERROR-MESSAGE = MESSAGE_TEXT
 END-EXEC.

 DISPLAY ERROR-MESSAGE.

 END PROGRAM EXAMPLE.

EXAMPLE program D-7

Mimer SQL version 8.2
Programmer’s Manual

D.1.4 FORTRAN source code for the EXAMPLE program

 PROGRAM SQLEX
C
C Example of SQL-92 compliant embedded FORTRAN program.
C
C The program tries to connect to the DEFAULT database as SYSADM
C with password SYSADM.
C It will then create a cursor to the standard view
C INFORMATION_SCHEMA.TABLES, and fetch all records from it.
C
C If any error occurs, the PSQLER routine will be called to
C print an error message.
C
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 SQLSTATE
 CHARACTER*128 SCHEMA
 CHARACTER*128 TABLE
 CHARACTER*20 TYPE
 EXEC SQL END DECLARE SECTION

 EXEC SQL DECLARE MYCURSOR CURSOR FOR
 + SELECT TABLE_SCHEMA,TABLE_NAME,TABLE_TYPE
 + FROM INFORMATION_SCHEMA.TABLES

 EXEC SQL WHENEVER SQLERROR GOTO 9000

C Connect to the default database
 EXEC SQL CONNECT TO '' USER 'SYSADM' USING 'SYSADM'

 EXEC SQL OPEN MYCURSOR

 EXEC SQL FETCH MYCURSOR INTO :SCHEMA,:TABLE,:TYPE
 DO WHILE (SQLSTATE .NE. '02000')
 WRITE(6,100) SCHEMA,TABLE,TYPE
 100 FORMAT (X,A,X,A,X,A)
 EXEC SQL FETCH MYCURSOR INTO :SCHEMA,:TABLE,:TYPE
 END DO

 EXEC SQL CLOSE MYCURSOR

 GOTO 9999

 9000 CONTINUE
 CALL PSQLER

 9999 CONTINUE
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL COMMIT
 EXEC SQL DISCONNECT DEFAULT
 END

D-8 EXAMPLE program

Mimer SQL version 8.2
Programmer’s Manual

 SUBROUTINE PSQLER
C
C PSQLER prints an error message for the latest error.
C Programmed according to the X/Open CAE specification
C

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 SQLSTATE
 INTEGER I,ERRORS,MSGLEN
 CHARACTER*254 MESSAGE
 EXEC SQL END DECLARE SECTION

 EXEC SQL GET DIAGNOSTICS :ERRORS = NUMBER
 DO 10 I=1,ERRORS
 EXEC SQL GET DIAGNOSTICS EXCEPTION :I
 + :MESSAGE = MESSAGE_TEXT,
 + :MSGLEN = MESSAGE_LENGTH
 WRITE (6,100) MESSAGE(:MSGLEN)
 100 FORMAT(X,A)
 10 CONTINUE

 RETURN
 END

DSQLSAMP program, using Dynamic SQL D-9

Mimer SQL version 8.2
Programmer’s Manual

D.2 DSQLSAMP program using dynamic SQL

The DSQLSAMP program demonstrates how a C program can be constructed
using dynamic SQL syntax according to international standards.

The source code file for the DSQLSAMP program is dsql.ec which contains a
collection of routines that define a simple but convenient API for dynamic
SQL, which can be called from other C programs.

The dsqlsamp.c file contains a program that calls the routines defined in
dsql.ec. The DSQLSAMP program allows the user to enter an SQL statement
that will be executed directly, in a manner similar to the BSQL program (see
the Mimer SQL User’s Manual for details about BSQL).

D.2.1 Building the DSQLSAMP program

Unix The following example assumes Mimer SQL is installed in the directory
/opt/mimer821A and illustrates how the DSQLSAMP program is compiled and
built by using the distributed example makefile:

$ mkdir dsql # Do everything in a sub directory
$ cd dsql
$ cp /opt/mimer821A/examples/ex_makefile ./makefile
$ cp /opt/mimer821A/examples/dsql* .

Take a copy of the makefile and update it so that the MYPROG symbol is set to
“dsqlsamp” and the MYFUNCS symbol is set to “dsql.o” (avoid trailing spaces).

MYPROG = dsqlsamp
MYFUNCS = dsql.o

Then make the dsqlsamp program:

$ export MIMER_HOME=/opt/mimer821A
$ make

 VMS The following example illustrates how the DSQLSAMP program is compiled and
linked under VMS. The program is supplied in C.

$ ESQL/C MIMEXAMPLES8:DSQL ! Preprocess source code
$ COPY MIMEXAMPLES8:DSQL.H SYS$DISK:[] ! Get header file
$ COPY MIMEXAMPLES8:DSQLSAMP.C SYS$DISK:[] ! Get main program
$ CC DSQL ! Compile preprocessed code
$ CC DSQLSAMP ! Compile sample program
$ LINK DSQLSAMP,DSQL,MIMLIB8:MIMER/OPT ! Link executable program

 Win On Windows platforms, the examples files are installed in the dev directory
which is located below the installation directory. The dev directory contains a
makefile called makefile.mak, which will build all the example programs at the
same time. The examples have been tested using Microsoft Visual C.

These instructions assume that Microsoft Visual C is used and that the make
command is being executed from the dev directory, appropriate adjustments must
be made if this is not the case.

$ nmake -f makefile.mak

D-10 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

D.2.2 Source code for the DSQLSAMP program (in C)

/**/
/* dsqlsamp.c - sample program using dynamic SQL driver */
/**/
/* */
/* Simple command line oriented SQL executor */
/* */
/**/
/* */
/* Created by Mimer Information Technology AB */
/* */
/* You have a free right to use, modify, reproduce, and distribute the */
/* sample files (and/or any modified version) in any way you find */
/* useful, provided that you agree that Mimer Information Technology AB */
/* has no warranty obligations or liability for any sample files which */
/* are modified. */
/* */
/**/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "dsql.h" /* function prototype definitions */

static char sqlbuf [4096];

static void error ();
static void getid (char* prompt,char* text);
static char* savres (char* result,char* sqlbuf);
static int* savlen (int* collen,int colcount,char* sqlbuf);
static void show (char* result,int rowcount,int* collen,int colcount);

/**/
int main()
/**/
{
 char database [129];
 char username [129];
 char password [19];
 char* p;
 char* result;
 int* collen;
 int rc;
 int cursor;
 int colcount;
 int rowcount;

 printf("\n *** Welcome to Mimer Dynamic SQL Sample Program ***\n\n");
 /*
 * Connect to database
 */
 for (;;)
 {
 getid("Database:",database);
 getid("Username:",username);
 getid("Password:",password); /* NOTE: password is not hidden! */
 printf(" \n");
 if ((rc = DsqlConnect(database,username,password)) > 0) break;
 if (rc < 0) error(), exit(0);
 printf("You have entered wrong username or password.\n");
 printf("Please, try again.\n\n");
 }
 printf(" - End an SQL statement with ';'\n");
 printf(" - Exit the program by giving an empty command\n\n");

DSQLSAMP program, using Dynamic SQL D-11

Mimer SQL version 8.2
Programmer’s Manual

 /*
 * SQL command loop
 */
 for (;;)
 {
 /*
 * Read an SQL statement ending with ';'
 */
 printf("SQL>"); /* Display command prompter */
 for (p = sqlbuf;; p++, *p++ = ' ')
 {
 *p = '\0';
 fgets(p,255,stdin);
 p += strlen(p);
 while ((*p == '\0' || *p == ' ') && p > sqlbuf) p--;
 if (*sqlbuf == '\0' || *p == ';') break;
 printf(" >");
 }
 printf(" \n");
 if (*p == '\0') /* Empty command, ask if exit */
 {
 printf("Quit? (y/n) ");
 fgets(p,255,stdin);
 printf(" \n");
 if (*p == 'y' || *p == 'Y') break;
 continue;
 }
 p = '\0'; / Eliminate the ending ';' */
 /*
 * Execute SQL-statement
 */
 cursor = DsqlExecute(sqlbuf);
 if (cursor > 0)
 {
 /*
 * It was a select statement, get column names
 */
 if ((colcount = DsqlColNames(cursor,sqlbuf,sizeof(sqlbuf))) > 0)
 {
 result = savres(NULL,sqlbuf);
 collen = savlen(NULL,colcount,sqlbuf);
 /*
 * Fetch the resulting rows into memory
 * and calculate the minimum possible width of the columns
 */
 rowcount = 0;
 while ((rc = DsqlFetch(cursor,sqlbuf,sizeof(sqlbuf))) > 0)
 {
 result = savres(result,sqlbuf);
 collen = savlen(collen,colcount,sqlbuf);
 rowcount++;
 }
 if (rc < 0 || DsqlClose(cursor) < 0) error();
 /*
 * Show the result set nicely formatted
 */
 show(result,rowcount,collen,colcount);
 }
 else
 {
 error();
 }
 }

D-12 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

 else if (cursor == 0)
 {
 printf("*** SQL statement executed successfully! ***\n\n");
 }
 else
 {
 error();
 }
 }
 /*
 * Disconnect and exit
 */
 if (DsqlDisconnect() < 0) error();
 printf(" *** Exit from Mimer Dynamic SQL Sample Program ***\n\n");
 exit(0);
 return 0;
}

/**/
/* */
/* Print SQL error message */
/* */
/**/
static void error()
/**/
{
 DsqlError(sqlbuf,sizeof(sqlbuf));
 printf("%s\n",sqlbuf);
}

/**/
/* */
/* Prompt for connect identifiers */
/* */
/**/
static void getid(char* prompt,char* text)
/**/
{
 printf("%s",prompt);
 sqlbuf[0] = '\0';
 fgets(sqlbuf,255,stdin);
 sqlbuf[128] = '\0';
 strcpy(text,sqlbuf);
}

DSQLSAMP program, using Dynamic SQL D-13

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Save a result row in memory */
/* */
/**/
static char* savres(char* result,char* sqlbuf)
/**/
{
 static int reslen;
 int buflen = strlen(sqlbuf) + 1;

 if (result == NULL)
 {
 result = malloc(buflen + buflen - 1);
 memcpy(result,sqlbuf,buflen);
 reslen = buflen - 1;
 }
 else if((result = realloc(result,reslen + buflen)) == NULL)
 {
 printf("** Fatal: not enough memory, exiting... **\n\n");
 exit(0);
 }
 memcpy(&result[reslen],sqlbuf,buflen);
 reslen += buflen - 1;
 return result;
}

/**/
/* */
/* Keep track of the minimum possible width of the columns */
/* */
/**/
static int* savlen(int* collen,int colcount,char* sqlbuf)
/**/
{
 char* p = strtok(sqlbuf,"\t\n");
 int i,n;

 if (collen == NULL) collen = calloc(sizeof(int),colcount);
 for (i = 0; i < colcount; i++)
 {
 n = p ? strlen(p) : 0;
 if (collen[i] < n) collen[i] = n;
 p = strtok(NULL,"\t\n");
 }
 return collen;
}

D-14 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Print the formatted result set and release memory */
/* */
/**/
static void show(char* result, int rowcount, int* collen, int colcount)
/**/
{
 char* p = strtok(result,"\t\n");
 int i,n,pos;

 printf("*** %d row%s selected ***\n\n", rowcount, rowcount == 1 ? "" : "s");
 for (n = 0; n < rowcount + 2; n++)
 {
 pos = 0;
 memset(sqlbuf,' ',sizeof(sqlbuf));
 for (i = 0; i < colcount; i++)
 {
 if (p) memcpy(&sqlbuf[pos],p,strlen(p));
 if (n == 1) memset(&sqlbuf[pos],'=',collen[i]);
 p = strtok(NULL,"\t\n");
 pos += collen[i] + 1;
 }
 sqlbuf[pos] = '\0';
 printf("%s\n",sqlbuf);
 }
 printf("\n");
 free(result);
 free(collen);
}

DSQLSAMP program, using Dynamic SQL D-15

Mimer SQL version 8.2
Programmer’s Manual

/**********/
/* dsql.h */
/**********/

#ifndef DSQL_H
#define DSQL_H

int DsqlConnect (char* database,char* userid,char* passwd);
int DsqlDisconnect (void);
int DsqlExecute (char* sql);
int DsqlColNames (int stmt,char* buffer,int len);
int DsqlFetch (int stmt,char* buffer,int len);
int DsqlClose (int stmt);
int DsqlError (char* message,int len);

#endif

D-16 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* dsql.ec - dynamic SQL driver */
/**/
/* */
/* This package is a dynamic SQL sample with the following functions: */
/* */
/* DsqlConnect - connect to the database */
/* DsqlDisconnect - disconnect from the database */
/* DsqlExecute - execute an SQL statement */
/* DsqlColNames - get the column names of a result table */
/* DsqlFetch - fetch the next row from a result table */
/* DsqlClose - close a cursor */
/* DsqlError - get error message text */
/* */
/**/
/* */
/* Created by Mimer Information Technology AB. */
/* */
/* You have a free right to use, modify, reproduce, and distribute the */
/* sample files (and/or any modified version) in any way you find */
/* useful, provided that you agree that Mimer Information Technology AB */
/* has no warranty obligations or liability for any sample files which */
/* are modified. */
/* */
/**/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "dsql.h" /* function prototype definitions */

#define TRUE 1
#define FALSE 0

/*
 * VARCHAR data type definition
 */
#define SQL_VARCHAR 12
/*
 * SQLSTATE return code definitions
 */
#define SQL_SUCCESS "00000"
#define SQL_INSUFFICIENT_ITEM_DESCRIPTOR_AREAS "01005"
#define SQL_NO_DATA "02000"
#define SQL_CONNECTION_REJECTED "28000"
/*
 * Shared data areas
 */
exec sql begin declare section;
static char statement [129]; /* Extended statement name */
static char cursor [129]; /* Extended cursor name */
static char descriptor [129]; /* SQL descriptor name */
static char sqlstate [6]; /* SQLSTATE */
static char buffer [8192]; /* Data buffer */
exec sql end declare section;

static int seqno = 0; /* Sequence number for generating unique names */

DSQLSAMP program, using Dynamic SQL D-17

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Connect to the database. */
/* Parameters: */
/* */
/* Return codes: */
/* */
/* 1 : successful connection */
/* 0 : wrong username or password */
/* -1 : error (call DsqlError for message text) */
/**/
int DsqlConnect()
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 char database [129] = "";
 char username [129] = "";
 char password [19] = "";
 exec sql end declare section;
 char* p;

 getid("Database:",database);
 getid("Username:",username);
 getid("Password:",password); /* NOTE: password is not hidden! */

 /*
 * Connect to database.
 */
 for (p = username; *p; p++) *p = (char)toupper((int)*p);

 exec sql connect to :database user :username using :password;

 return 1;

exception:

 if (strcmp(sqlstate, SQL_CONNECTION_REJECTED) == 0)
 {
 return 0;
 }
 return -1;
}

D-18 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Disconnect from the database. */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error (call DsqlError for message text) */
/* */
/**/
int DsqlDisconnect()
/**/
{
 exec sql whenever sqlerror goto exception;

 exec sql disconnect;
 return 0;

exception:

 return -1;
}

/**/
/* */
/* Execute an SQL statement. */
/* */
/* Parameter: */
/* */
/* char* sqlstmt : SQL statement to be executed */
/* */
/* Return codes: */
/* */
/* +n : a select statement successfully opened, */
/* returning a cursor identifier */
/* 0 : a non-select statement executed successfully */
/* -1 : error (call DsqlError for message text) */
/* */
/* Note: */
/* */
/* It is assumed that the SQL statement does not contain any */
/* parameter markers. Unique statement, descriptor, and cursor names */
/* are used, which make it possible to have several cursors open at */
/* the same time. */
/* */
/**/
int DsqlExecute(char* sqlstmt)
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 int count;
 int n;
 int type;
 int length;
 exec sql end declare section;

 /*
 * Check argument.
 */
 if (sqlstmt == NULL) return -1;
 /*
 * Make unique statement and descriptor names.
 */
 seqno++;

DSQLSAMP program, using Dynamic SQL D-19

Mimer SQL version 8.2
Programmer’s Manual

 sprintf(statement, "%d",seqno);
 sprintf(descriptor,"%d",seqno);
 /*
 * Copy SQL statement to buffer.
 */
 strncpy(buffer,sqlstmt,sizeof(buffer));
 buffer[sizeof(buffer) - 1] = '\0';
 /*
 * Prepare SQL statement.
 */
 exec sql prepare :statement from :buffer;
 /*
 * Allocate descriptor.
 */
 exec sql allocate descriptor :descriptor;
 /*
 * Describe output.
 */
 exec sql describe output :statement
 using sql descriptor :descriptor;
 if (strcmp(sqlstate, SQL_INSUFFICIENT_ITEM_DESCRIPTOR_AREAS) == 0)
 {
 /*
 * The descriptor area was insufficient.
 * Allocate a new one with appropriate size.
 */
 exec sql get descriptor :descriptor :count = count;
 exec sql deallocate descriptor :descriptor;
 exec sql allocate descriptor :descriptor
 with max :count;
 exec sql describe output :statement
 using sql descriptor :descriptor;
 }
 /*
 * Get descriptor count to see if this was a select statement or not.
 */
 exec sql get descriptor :descriptor :count = count;
 if (count == 0)
 {
 /*
 * Non-select statement. Execute.
 */
 exec sql execute :statement;
 /*
 * Deallocate statement and descriptor.
 */
 exec sql deallocate prepare :statement;
 exec sql deallocate descriptor :descriptor;
 /*
 * Return successful completion of non-select statement.
 */
 return 0;
 }
 else
 {
 /*
 * Select statement. Set all columns to VARCHAR(512).
 * Mimer SQL automatic type conversion will
 * handle numeric data.
 */
 type = SQL_VARCHAR;
 length = 512;

D-20 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

 for (n = 1; n <= count; n++)
 {
 exec sql set descriptor :descriptor value :n type = :type,
 length = :length;
 }
 /*
 * Make a unique cursor name.
 */
 sprintf(cursor,"%d",seqno);
 /*
 * Allocate and open cursor.
 */
 exec sql allocate :cursor cursor for :statement;
 exec sql open :cursor;
 /*
 * Return cursor identifier.
 */
 return seqno;
 }

exception:
 return -1;
}

DSQLSAMP program, using Dynamic SQL D-21

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Get the column names of a result table. */
/* */
/* Parameters: */
/* */
/* int c : cursor identifier returned from DsqlExecute */
/* char* record : buffer for the result string */
/* int len : length of the buffer (must be >= 32) */
/* */
/* Return codes: */
/* */
/* +n : OK - number of columns */
/* -1 : error (call DsqlError for message text) */
/* */
/* Note: */
/* */
/* The column names are returned in a tab ('\t') separated string */
/* ending with a newline ('\n'). If the string is too large, it is */
/* truncated. */
/* */
/**/
int DsqlColNames(int c,char* record,int len)
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 int count;
 int n;
 char name [129];
 exec sql end declare section;
 int length;

 /*
 * Check arguments.
 */
 if (record == NULL || len < 32) return -1;
 /*
 * Build descriptor name.
 */
 sprintf(descriptor,"%d",c);
 /*
 * Get number of columns.
 */
 exec sql get descriptor :descriptor :count = count;
 for (n = 1; n <= count; n++)
 {
 /*
 * Get one column name.
 */
 exec sql get descriptor :descriptor value :n
 :name = name;
 /*
 * Trim spaces and append a tab.
 */
 length = strlen(name);
 while (length > 1 && name[length - 1] == ' ') length--;
 if (length > len - 2) length = len - 2;
 memcpy(record,name,length);
 record += length;
 len -= length;

D-22 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

 if (len == 2) break;
 if (n < count)
 {
 *record++ = '\t';
 len--;
 }
 }
 *record++ = '\n';
 *record = '\0';
 return count;

exception:

 return -1;
}

DSQLSAMP program, using Dynamic SQL D-23

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Fetch the next row from a result table. */
/* */
/* Parameters: */
/* */
/* int c : cursor identifier returned from DsqlExecute */
/* char* record : buffer for the result string */
/* int len : length of the buffer (must be >= 32) */
/* */
/* Return codes: */
/* */
/* +n : OK - number of columns */
/* 0 : No more data (End of File) */
/* -1 : error (call DsqlError for message text) */
/* */
/* Note: */
/* */
/* The column values are returned in a tab ('\t') separated string */
/* ending with a newline ('\n'). It is assumed that the data does */
/* not contain tab, newline or null characters. A column value of */
/* NULL will be return as '?'. If the string is too large, it is */
/* truncated. */
/* */
/**/
int DsqlFetch(int c,char* record,int len)
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 int count;
 int length;
 int isnull;
 int n;
 exec sql end declare section;

 /*
 * Check arguments.
 */
 if (record == NULL || len < 32) return -1;
 /*
 * Build cursor and descriptor names.
 */
 sprintf(cursor, "%d",c);
 sprintf(descriptor,"%d",c);
 /*
 * Fetch next row from result table.
 */
 exec sql fetch next from :cursor
 into sql descriptor :descriptor;

D-24 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

 if (strcmp(sqlstate,SQL_SUCCESS) == 0)
 {
 /*
 * Get number of columns.
 */
 exec sql get descriptor :descriptor :count = count;
 for (n = 1; n <= count; n++)
 {
 /*
 * Get one column value.
 */
 exec sql get descriptor :descriptor value :n :buffer = data,
 :length = returned_length,
 :isnull = indicator;
 /*
 * Check NULL indicator, trim spaces, append tab.
 */
 if (isnull == -1)
 {
 *record++ = '?';
 len--;
 }
 else
 {
 while (length > 1 && buffer[length - 1] == ' ') length--;
 if (length > len - 2) length = len - 2;
 memcpy(record,buffer,length);
 record += length;
 len -= length;
 }
 if (len == 2) break;
 if (n < count)
 {
 *record++ = '\t';
 len--;
 }
 }
 *record++ = '\n';
 *record = '\0';
 return count;
 }
 else if (strcmp(sqlstate,SQL_NO_DATA) == 0)
 {
 /*
 * No more data.
 */
 return 0;
 }

exception:

 return -1;
}

DSQLSAMP program, using Dynamic SQL D-25

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Close a cursor. */
/* */
/* Parameter: */
/* */
/* int c : cursor identifier returned from DsqlExecute */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error (call DsqlError for message text) */
/* */
/**/
int DsqlClose(int c)
/**/
{
 exec sql whenever sqlerror goto exception;

 /*
 * Build cursor, statement and descriptor names.
 */
 sprintf(cursor, "%d",c);
 sprintf(statement, "%d",c);
 sprintf(descriptor,"%d",c);
 /*
 * Close cursor.
 */
 exec sql close :cursor;
 /*
 * Deallocate statement and descriptor.
 */
 exec sql deallocate prepare :statement;
 exec sql deallocate descriptor :descriptor;
 return 0;

exception:

 return -1;
}

D-26 DSQLSAMP program, using Dynamic SQL

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Get error message text. */
/* */
/* Parameters: */
/* */
/* char* message : buffer for the result string */
/* int len : length of the buffer (must be >= 32) */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error (cannot get message text) */
/* */
/* Note: */
/* */
/* The message text is returned in a newline ('\n') separated */
/* string. If the string is too large, it is truncated. */
/* */
/**/
int DsqlError(char* message,int len)
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 int count;
 int length;
 char state [6]; /* returned_sqlstate may not be stored sqlstate */
 int n;
 exec sql end declare section;
 char* p;

 /*
 * Check arguments.
 */
 if (message == NULL || len < 32) return -1;
 /*
 * Get number of errors.
 */
 exec sql get diagnostics :count = number;
 for (n = 1; n <= count; n++)
 {
 /*
 * Get diagnostics of an error.
 */
 exec sql get diagnostics exception :n :buffer = message_text,
 :length = message_length,
 :state = returned_sqlstate;
 /*
 * Prepare message area.
 */
 if (length > len - 18) length = len - 18;
 memcpy(message,buffer,length);
 p = strchr(message,':');
 if (p) *p = '\n';
 if (length > 64)
 {
 p = strchr(&message[64],' ');
 if (p) *p = '\n';
 }

DSQLSAMP program, using Dynamic SQL D-27

Mimer SQL version 8.2
Programmer’s Manual

 message += length;
 len -= length;
 *message++ = '\n';
 /*
 * Add SQLSTATE code.
 */
 strcpy(message,"SQLSTATE:");
 message += 9;
 strcpy(message,state);
 message += 5;
 *message++ = '\n';
 *message++ = '\n';
 len -= 17;
 if (len < 32) break;
 }
 *message = '\0';
 return 0;

exception:

 strcpy(message,"cannot get diagnostics\n\n");
 return -1;
}

FREQCALL program, using Dynamic SQL and Stored Procedures D-29

Mimer SQL version 8.2
Programmer’s Manual

D.3 FREQCALL program using dynamic SQL and a
stored procedure

The FREQCALL source code demonstrates how to embed a call to a stored
procedure. The procedure used is included in the example database (described
in Section 3.9 of the Mimer SQL System Management Handbook), which must
be installed in order to execute the programs successfully.

D.3.1 Building the FREQCALL program

Unix The following example assumes Mimer SQL is installed in the directory
/opt/mimer821A and illustrates how the C version of the FREQCALL program is
compiled and built by using the distributed example makefile:

$ mkdir freqcall # Do everything in a sub directory
$ cd freqcall
$ cp /opt/mimer821A/examples/ex_makefile ./makefile
$ cp /opt/mimer821A/examples/freqcall.ec .

Take a copy of the makefile and update it so that the MYPROG symbol is set to
“freqcall”, as the name of the program to be created (avoid trailing spaces).

MYPROG = freqcall

Then make the freqcall program:

$ export MIMER_HOME=/opt/mimer821A
$ make
.
.

 VMS The following example illustrates how the C version of the FREQCALL program
is compiled and linked under VMS. The programs written in the other languages
can be linked in a similar manner.

$ ESQL/C MIMEXAMPLES8:FREQCALL ! Preprocess source code
$ CC FREQCALL ! Compile sample program
$ LINK FREQCALL,MIMLIB8:MIMER/OPT ! Link executable program

 Win On Windows platforms, the examples files are installed in the dev directory
which is located below the installation directory. The dev directory contains a
makefile called makefile.mak, which will build all the example programs at the
same time. The examples have been tested using Microsoft Visual C.

These instructions assume that Microsoft Visual C is used and that the make
command is being executed from the dev directory, appropriate adjustments must
be made if this is not the case.

$ nmake -f makefile.mak

D-30 FREQCALL program, using Dynamic SQL and Stored Procedures

Mimer SQL version 8.2
Programmer’s Manual

D.3.2 C source code for the FREQCALL program

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
** Example of Embedded Stored Procedure Calls.
**
** This program calls the procedure freeq, to find out the number of
** vacant rooms at a given hotel.
*/

exec sql BEGIN DECLARE SECTION;
static char sqlstate[6];
exec sql END DECLARE SECTION;

void print_sqlerror()
/*
** print_sqlerror prints an error message for the latest error.
** Programmed according to the X/Open CAE specification.
*/
{
 exec sql BEGIN DECLARE SECTION;
 int i;
 int exceptions;
 VARCHAR message[255];
 exec sql END DECLARE SECTION;

 exec sql GET DIAGNOSTICS :exceptions = NUMBER; /* How many exceptions? */
 for (i=1; i<=exceptions; i++) {
 exec sql GET DIAGNOSTICS EXCEPTION :i
 :message = MESSAGE_TEXT;
 printf("%s\n", message);
 }
}

main()
{
 exec sql BEGIN DECLARE SECTION;
 char query[200] = "call freeq(?,?,?,?,?)";
 char hotelcode[30];
 char roomtype[30];
 char arrive[30], depart[30];
 int rooms;
 exec sql END DECLARE SECTION;

 exec sql WHENEVER SQLERROR goto error_exit;

 exec sql CONNECT TO ' ' USER 'HOTELADM' USING 'HOTELADM';

 /*
 * Make it easy for us. Ask for free rooms on the SKY hotel,
 * roomtype SSGLS during new years eve of the new millennium.
 */
 strcpy(hotelcode,"SKY");
 strcpy(roomtype,"SSGLS");
 strcpy(arrive,"1999-12-31");
 strcpy(depart,"2000-01-01");

 exec sql PREPARE CALL FROM :query;
 exec sql EXECUTE CALL INTO :rooms
 USING :hotelcode, :roomtype, :arrive, :depart;
 printf("%d available rooms.\n",rooms);

FREQCALL program, using Dynamic SQL and Stored Procedures D-31

Mimer SQL version 8.2
Programmer’s Manual

 exec sql commit;
 exec sql DISCONNECT;
 exit(0);

error_exit:
 print_sqlerror();

 exec sql WHENEVER SQLERROR CONTINUE;
 exec sql rollback;
 exec sql DISCONNECT;
 exit(0);
 return 0;
}

D-32 FREQCALL program, using Dynamic SQL and Stored Procedures

Mimer SQL version 8.2
Programmer’s Manual

D.3.3 COBOL source code for the FREQCALL program

 IDENTIFICATION DIVISION.
 PROGRAM-ID. FREQCALL.
 *
 * Example of Embedded Stored Procedure Calls.
 *
 * This program calls the procedure freeq, to find out the number of
 * vacant rooms at a given hotel.
 *

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PICTURE X(5).
 01 QUERY PICTURE X(200).
 01 HOTELCODE PICTURE X(30).
 01 ROOMTYPE PICTURE X(30).
 01 ARRIVE PICTURE X(30).
 01 DEPART PICTURE X(30).
 01 ROOMS PIC S9(10) COMP.
 01 EXCEPTIONS PIC S9(10) COMP.
 01 LINE-NUMBER PIC S9(10) COMP.
 01 ERROR-MESSAGE PICTURE X(254).
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
 BIG.

 EXEC SQL WHENEVER SQLERROR GO TO ERROR-EXIT END-EXEC.

 EXEC SQL CONNECT TO '' USER 'HOTELADM' USING 'HOTELADM'
 END-EXEC.

 *
 * Make it easy for us. Ask for free rooms on the SKY hotel,
 * roomtype SSGLS during new years eve of the new millennium.
 *

 MOVE 'SKY' TO HOTELCODE.
 MOVE 'SSGLS' TO ROOMTYPE.
 MOVE '1999-12-31' TO ARRIVE.
 MOVE '2000-01-01' TO DEPART.

 MOVE 'call freeq(?,?,?,?,?)' TO QUERY.

 EXEC SQL PREPARE CALL FROM :QUERY END-EXEC.
 EXEC SQL EXECUTE CALL INTO :ROOMS
 USING :HOTELCODE, :ROOMTYPE,
 :ARRIVE, :DEPART END-EXEC.

 DISPLAY ROOMS WITH CONVERSION " available rooms.".

 EXEC SQL COMMIT END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

FREQCALL program, using Dynamic SQL and Stored Procedures D-33

Mimer SQL version 8.2
Programmer’s Manual

 ERROR-EXIT.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL GET DIAGNOSTICS :EXCEPTIONS = NUMBER END-EXEC.
 PERFORM DISPLAY-ERROR-LINE VARYING LINE-NUMBER
 FROM 1 BY 1
 UNTIL LINE-NUMBER IS GREATER THAN EXCEPTIONS.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

 DISPLAY-ERROR-LINE.
 EXEC SQL GET DIAGNOSTICS EXCEPTION :LINE-NUMBER
 :ERROR-MESSAGE = MESSAGE_TEXT END-EXEC.
 DISPLAY ERROR-MESSAGE.

 END PROGRAM FREQCALL.

FREQCALL program, using Dynamic SQL and Stored Procedures D-35

Mimer SQL version 8.2
Programmer’s Manual

D.3.4 FORTRAN source code for the FREQCALL program

 PROGRAM FREQCALL
C
C Example of Embedded Stored Procedure Calls.
C
C This program calls the procedure freeq, to find out the number of
C vacant rooms at a given hotel.
C
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 SQLSTATE
 CHARACTER*200 QUERY
 CHARACTER*30 HOTELCODE
 CHARACTER*30 ROOMTYPE
 CHARACTER*30 ARRIVE
 CHARACTER*30 DEPART
 INTEGER ROOMS
 EXEC SQL END DECLARE SECTION

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 EXEC SQL CONNECT TO '' USER 'HOTELADM' USING 'HOTELADM'

C
C Make it easy for us. Ask for free rooms on the SKY hotel,
C roomtype SSGLS during new years eve of the new millennium.
C

 HOTELCODE = 'SKY'
 ROOMTYPE = 'SSGLS'
 ARRIVE = '1999-12-31'
 DEPART = '2000-01-01'

 QUERY = 'call freeq(?,?,?,?,?)'

 EXEC SQL PREPARE CALL FROM :QUERY
 EXEC SQL EXECUTE CALL INTO :ROOMS
 + USING :HOTELCODE, :ROOMTYPE, :ARRIVE, :DEPART

 WRITE(6,100) ROOMS,' available rooms.'
 100 FORMAT (I,A,X,A)

 GOTO 9999

 9000 CONTINUE
 CALL PRINT_SQLERROR

 9999 CONTINUE
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL COMMIT
 EXEC SQL DISCONNECT DEFAULT
 END

D-36 FREQCALL program, using Dynamic SQL and Stored Procedures

Mimer SQL version 8.2
Programmer’s Manual

 SUBROUTINE PRINT_SQLERROR
C
C PRINT_SQLERROR prints an error message for the latest error.
C Programmed according to the X/Open CAE specification.
C

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 SQLSTATE
 INTEGER I,ERRORS,MSGLEN
 CHARACTER*254 MESSAGE
 EXEC SQL END DECLARE SECTION

 EXEC SQL GET DIAGNOSTICS :ERRORS = NUMBER
 DO 10 I=1,ERRORS
 EXEC SQL GET DIAGNOSTICS EXCEPTION :I
 + :MESSAGE = MESSAGE_TEXT,
 + :MSGLEN = MESSAGE_LENGTH
 WRITE (6,100) MESSAGE(:MSGLEN)
 100 FORMAT(X,A)
 10 CONTINUE

 RETURN
 END

WAKECALL program, using Dynamic SQL and a result-set procedure D-37

Mimer SQL version 8.2
Programmer’s Manual

D.4 WAKECALL program using dynamic SQL and a
result-set procedure

The WAKECALL source code demonstrates how to embed a call to a result-set
procedure. The procedure used is included in the example database (described
in Section 3.9 of the Mimer SQL System Management Handbook), which must
be installed in order to execute the programs successfully.

D.4.1 Building the WAKECALL program

Unix The following example assumes Mimer SQL is installed in the directory
/opt/mimer821A and illustrates how the C version of the WAKECALL program
is compiled and built by using the distributed example makefile:

$ mkdir wakecall # Do everything in a sub directory
$ cd wakecall
$ cp /opt/mimer821A/examples/ex_makefile ./makefile
$ cp /opt/mimer821A/examples/wakecall.ec .

Take a copy of the makefile and update it so that the MYPROG symbol is set to
“wakecall”, as the name of the program to be created (avoid trailing spaces).

MYPROG = wakecall

Then make the wakecall program:

$ export MIMER_HOME=/opt/mimer821A
$ make
.
.

 VMS The following example illustrates how the C version of the WAKECALL
program is compiled and linked under VMS. The programs written in the other
languages can be linked in a similar manner.

$ ESQL/C MIMEXAMPLES8:WAKECALL ! Preprocess source code
$ CC WAKECALL ! Compile sample program
$ LINK WAKECALL,MIMLIB8:MIMER/OPT ! Link executable program

 Win On Windows platforms, the examples files are installed in the dev directory
which is located below the installation directory. The dev directory contains a
makefile called makefile.mak, which will build all the example programs at the
same time. The examples have been tested using Microsoft Visual C.

These instructions assume that Microsoft Visual C is used and that the make
command is being executed from the dev directory, appropriate adjustments must
be made if this is not the case.

$ nmake -f makefile.mak

D-38 WAKECALL program, using Dynamic SQL and a result-set procedure

Mimer SQL version 8.2
Programmer’s Manual

D.4.2 C source code for the WAKECALL program
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
** Example of Embedded Stored Procedure Calls.
**
** This program calls the procedure wake_up, which returns
** a list of those rooms which have requested wake up calls within
** the specified amount of time.
*/

exec sql BEGIN DECLARE SECTION;
static char sqlstate[6];
exec sql END DECLARE SECTION;

void print_sqlerror()
/*
** print_sqlerror prints an error message for the latest error.
** Programmed according to the X/Open CAE specification.
*/
{
 exec sql BEGIN DECLARE SECTION;
 int i;
 int exceptions;
 VARCHAR message[255];
 exec sql END DECLARE SECTION;

 exec sql GET DIAGNOSTICS :exceptions = NUMBER; /* How many exceptions? */
 for (i=1; i<=exceptions; i++) {
 exec sql GET DIAGNOSTICS EXCEPTION :i
 :message = MESSAGE_TEXT;
 printf("%s\n", message);
 }
}

main()
{
 exec sql BEGIN DECLARE SECTION;
 char roomnr[30];
 exec sql END DECLARE SECTION;

 exec sql DECLARE MYCURSOR CURSOR FOR CALL wake_up(interval '30' minute);

 exec sql WHENEVER SQLERROR goto error_exit;

 exec sql CONNECT TO ' ' USER 'HOTELADM' USING 'HOTELADM';

 exec sql OPEN MYCURSOR;

 while (1) {
 exec sql FETCH MYCURSOR INTO :roomnr;
 if (strcmp(sqlstate, "02000") == 0) break; /* No more rows */
 printf("Room %s\n", roomnr);
 }

 exec sql CLOSE MYCURSOR;

 exec sql commit;
 exec sql DISCONNECT DEFAULT;
 exit(0);

WAKECALL program, using Dynamic SQL and a result-set procedure D-39

Mimer SQL version 8.2
Programmer’s Manual

error_exit:
 print_sqlerror();

 exec sql WHENEVER SQLERROR CONTINUE;

 exec sql rollback;
 exec sql DISCONNECT;
 exit(0);
 return 0;
}

D-40 WAKECALL program, using Dynamic SQL and a result-set procedure

Mimer SQL version 8.2
Programmer’s Manual

D.4.3 COBOL source code for the WAKECALL program

 IDENTIFICATION DIVISION.
 PROGRAM-ID. WAKECALL.
 *
 ** Example of Embedded Stored Procedure Calls.
 **
 ** This program calls the procedure wake_up, which returns
 ** a list of those rooms which have requested wake up calls within
 ** the specified amount of time.
 *

 DATA DIVISION.
 WORKING-STORAGE SECTION.
 EXEC SQL BEGIN DECLARE SECTION END-EXEC.
 01 SQLSTATE PICTURE X(5).
 01 ROOMNR PICTURE X(30).

 01 EXCEPTIONS PIC S9(10) COMP.
 01 ERROR-MESSAGE PIC X(254).
 01 LINE-NUMBER PIC S9(10) COMP.
 EXEC SQL END DECLARE SECTION END-EXEC.

 PROCEDURE DIVISION.
 MAIN SECTION.

 DO-IT.
 EXEC SQL DECLARE MYCURSOR CURSOR FOR
 CALL wake_up(interval '30' minute) END-EXEC.

 EXEC SQL WHENEVER SQLERROR GO TO ERROR-EXIT END-EXEC.

 EXEC SQL CONNECT TO ''
 USER 'HOTELADM' USING 'HOTELADM' END-EXEC.

 EXEC SQL OPEN MYCURSOR END-EXEC.

 PERFORM FETCH-AND-DISPLAY UNTIL SQLSTATE = "02000".

 EXEC SQL CLOSE MYCURSOR END-EXEC.
 EXEC SQL COMMIT END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

 FETCH-AND-DISPLAY.
 EXEC SQL FETCH MYCURSOR INTO :ROOMNR END-EXEC.

 IF SQLSTATE NOT = "02000",
 DISPLAY "Room " ROOMNR.

 ERROR-EXIT.
 EXEC SQL WHENEVER SQLERROR CONTINUE END-EXEC.
 EXEC SQL GET DIAGNOSTICS :EXCEPTIONS = NUMBER END-EXEC.
 PERFORM DISPLAY-ERROR-LINE VARYING LINE-NUMBER
 FROM 1 BY 1
 UNTIL LINE-NUMBER IS GREATER THAN EXCEPTIONS.
 EXEC SQL ROLLBACK END-EXEC.
 EXEC SQL DISCONNECT DEFAULT END-EXEC.
 STOP RUN.

 DISPLAY-ERROR-LINE.

WAKECALL program, using Dynamic SQL and a result-set procedure D-41

Mimer SQL version 8.2
Programmer’s Manual

 EXEC SQL GET DIAGNOSTICS EXCEPTION :LINE-NUMBER
 :ERROR-MESSAGE = MESSAGE_TEXT END-EXEC.
 DISPLAY ERROR-MESSAGE.

 END PROGRAM WAKECALL.

D-42 WAKECALL program, using Dynamic SQL and a result-set procedure

Mimer SQL version 8.2
Programmer’s Manual

D.4.4 FORTRAN source code for the WAKECALL program

 PROGRAM WAKECALL
C
C Example of Embedded Stored Procedure Calls.
C
C This program calls the procedure wake_up, which returns
C a list of those rooms which have requested wake up calls within
C the specified amount of time.
C
 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 SQLSTATE
 CHARACTER*30 ROOMNO
 EXEC SQL END DECLARE SECTION

 EXEC SQL DECLARE MYCURSOR CURSOR FOR
 + CALL wake_up(interval '30' minute)

 EXEC SQL WHENEVER SQLERROR GOTO 9000

 EXEC SQL CONNECT TO '' USER 'HOTELADM' USING 'HOTELADM'

 EXEC SQL OPEN MYCURSOR

 EXEC SQL FETCH MYCURSOR INTO :ROOMNO
 DO WHILE (SQLSTATE .NE. '02000')
 WRITE(6,100) 'Room ', ROOMNO
 100 FORMAT (X,A,X,A)
 EXEC SQL FETCH MYCURSOR INTO :ROOMNO
 END DO

 EXEC SQL CLOSE MYCURSOR

 GOTO 9999

 9000 CONTINUE
 CALL PSQLER

 9999 CONTINUE
 EXEC SQL WHENEVER SQLERROR CONTINUE
 EXEC SQL COMMIT
 EXEC SQL DISCONNECT DEFAULT
 END

 SUBROUTINE PSQLER
C
C PSQLER prints an error message for the latest error.
C Programmed according to the X/Open CAE specification.
C

 EXEC SQL BEGIN DECLARE SECTION
 CHARACTER*5 SQLSTATE
 INTEGER I,ERRORS,MSGLEN
 CHARACTER*254 MESSAGE
 EXEC SQL END DECLARE SECTION

WAKECALL program, using Dynamic SQL and a result-set procedure D-43

Mimer SQL version 8.2
Programmer’s Manual

 EXEC SQL GET DIAGNOSTICS :ERRORS = NUMBER
 DO 10 I=1,ERRORS
 EXEC SQL GET DIAGNOSTICS EXCEPTION :I
 + :MESSAGE = MESSAGE_TEXT,
 + :MSGLEN = MESSAGE_LENGTH
 WRITE (6,100) MESSAGE(:MSGLEN)
 100 FORMAT(X,A)
 10 CONTINUE

 RETURN
 END

BLOBSAMP program using Dynamic SQL and Binary Data D-45

Mimer SQL version 8.2
Programmer’s Manual

D.5 BLOBSAMP program using Dynamic SQL for
handling binary data

The BLOBSAMP program demonstrates the use of the VARCHAR data type
to store BLOB’s (Binary Large OBjects). The program copies the contents of a
file into the database as a BLOB, it then performs a SELECT to retrieve it
again and compares the result with the original file. The username, password
and file name should be specified as input parameters to the program and the
program assumes that the ident in the database identified by username has
access to a databank where a table can be created.

The BLOBSAMP program expects parameters to be specified on the
command-line. If no parameters are the usage text below is printed:

Usage: blobsamp username password filename

D-46 BLOBSAMP program using Dynamic SQL and Binary Data

Mimer SQL version 8.2
Programmer’s Manual

D.5.1 Building the BLOBSAMP program

Unix The following example assumes MIMER is installed in the directory
/opt/mimer821A and illustrates how the BLOBSAMP program is compiled and
built by using the distributed example makefile:

$ mkdir blobsamp # Do everything in a sub directory
$ cd blobsamp
$ cp /opt/mimer821A/examples/ex_makefile ./makefile
$ cp /opt/mimer821A/examples/blobsamp.ec .

Take a copy of the makefile and update it so that the MYPROG symbol is set to
“blobsamp”, as the name of the program to be created (avoid trailing spaces).

MYPROG = blobsamp

Then make the blobsamp program:

$ export MIMER_HOME=/opt/mimer821A
$ make
.
.

 VMS The following example illustrates how the BLOBSAMP program is compiled and
linked under VMS. The program is supplied in C.

$ ESQL/C MIMEXAMPLES8:BLOBSAMP ! Preprocess source code
$ CC BLOBSAMP ! Compile sample program
$ LINK BLOBSAMP,MIMLIB8:MIMER/OPT ! Link executable program
$ BLOBSAMP:=$disk:[current.dir]BLOBSAMP ! Define BLOBSAMP so it
 ! can be run

 Win On Windows platforms, the examples files are installed in the dev directory
which is located below the installation directory. The dev directory contains a
makefile called makefile.mak, which will build all the example programs at the
same time. The examples have been tested using Microsoft Visual C.

These instructions assume that Microsoft Visual C is used and that the make
command is being executed from the dev directory, appropriate adjustments must
be made if this is not the case.

$ nmake -f makefile.mak

BLOBSAMP program using Dynamic SQL and Binary Data D-47

Mimer SQL version 8.2
Programmer’s Manual

D.5.2 Source code for the BLOBSAMP program (in C)
/**/
/* blobsamp.ec - sample program for put/get binary data using ESQL */
/**/
/* */
/* Created by Mimer Information Technology AB. */
/* */
/* You have a free right to use, modify, reproduce, and distribute the */
/* sample files (and/or any modified version) in any way you find */
/* useful, provided that you agree that Mimer Information Technology AB */
/* has no warranty obligations or liability for any sample files which */
/* are modified. */
/* */
/**/
/* */
/* This sample program just shows how to read a file and insert it into */
/* the table: */
/* */
/* BLOB(ID int, */
/* SEQ int, */
/* DATA varbinary(15000) not null, */
/* primary key(ID,SEQ)) */
/* */
/* and then how to fetch the data from the table BLOB and compare it */
/* with the file. */
/* */
/**/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#define SQL_NO_DATA "02000"

#define SQL_BINARY_VARCHAR -13 /* MIMER-specific type code */

exec sql begin declare section;
static char buffer[15001]; /* data buffer */
static char sqlstate[6];
static char sqlselect[35] = "select DATA from BLOB where ID = ?";
static char sqlinsert[31] = "insert into BLOB values(?,?,?)";
exec sql end declare section;

static int putblob (int,char*);
static int chkblob (int,char*);
static int error (char*,int);

/**/
int main(int argc,char** argv)
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 char uid[129];
 char pwd[19];
 exec sql end declare section;
 char* filename;
 int id = 1;

 if (argc != 4)
 {
 printf("\nUsage: blobsamp username password filename\n\n");
 return 0;
 }

D-48 BLOBSAMP program using Dynamic SQL and Binary Data

Mimer SQL version 8.2
Programmer’s Manual

 strcpy(uid,argv[1]);
 strcpy(pwd,argv[2]);
 filename = argv[3];

 exec sql connect to '' user :uid using :pwd;

 exec sql create table BLOB(ID int,
 SEQ int,
 DATA varbinary(15000) not null,
 primary key(ID,SEQ));
 exec sql commit;

 if (putblob(id,filename) == 0) /* Store file contents in table BLOB */
 {
 chkblob(id,filename); /* Check that we can read the data */
 }
 exec sql drop table BLOB;
 exec sql commit;

 exec sql disconnect;
 return 0;

exception:

 error(buffer,sizeof(buffer));
 printf("%s\n",buffer);
 exec sql disconnect;
 return 0;
}

BLOBSAMP program using Dynamic SQL and Binary Data D-49

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Put the contents of a file into the database */
/* */
/* Parameters: */
/* */
/* int blobid : identifier for the data */
/* char* filename : name of the file */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error */
/* */
/**/
static int putblob(int blobid,char* filename)
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 int id;
 int seq;
 int type;
 int length;
 exec sql end declare section;
 FILE* file;

 if ((file = fopen(filename,"rb")) == NULL)
 {
 printf("open error\n");
 return -1;
 }
 id = blobid;
 type = SQL_BINARY_VARCHAR;

 exec sql prepare statement from :sqlinsert;
 exec sql allocate descriptor 'input' with max 3;
 exec sql describe input statement using sql descriptor 'input';

 for (seq = 1; !feof(file); seq++)
 {
 length = fread(buffer,1,15000,file);
 if (ferror(file))
 {
 printf("read error\n");
 return -1;
 }

 exec sql set descriptor 'input' value 1 data = :id;
 exec sql set descriptor 'input' value 2 data = :seq;
 exec sql set descriptor 'input' value 3 data = :buffer,
 type = :type,
 length = :length;

 exec sql execute statement using sql descriptor 'input';
 }
 exec sql commit;
 exec sql deallocate descriptor 'input';
 exec sql deallocate prepare statement;
 fclose(file);
 return 0;

exception:

 error(buffer,sizeof(buffer));

D-50 BLOBSAMP program using Dynamic SQL and Binary Data

Mimer SQL version 8.2
Programmer’s Manual

 printf("%s\n",buffer);
 return -1;
}

BLOBSAMP program using Dynamic SQL and Binary Data D-51

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Check that stored data are exactly the same as the file contents. */
/* */
/* Parameters: */
/* */
/* int blobid : identifier for the data */
/* char* filename : name of the file */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error */
/* */
/**/
static int chkblob(int blobid,char* filename)
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 int id;
 int type;
 int length;
 exec sql end declare section;
 FILE* file;
 char record[15000];

 if ((file = fopen(filename,"rb")) == NULL)
 {
 printf("open error\n");
 return -1;
 }
 id = blobid;
 type = SQL_BINARY_VARCHAR;

 exec sql prepare statement from :sqlselect;

 exec sql allocate descriptor 'input' with max 1;
 exec sql allocate descriptor 'output' with max 1;

 exec sql describe input statement using sql descriptor 'input';
 exec sql describe output statement using sql descriptor 'output';

 exec sql set descriptor 'input' value 1 data = :id;

 exec sql declare c cursor for statement;
 exec sql open c using sql descriptor 'input';
 for (;;)
 {
 exec sql fetch next from c into sql descriptor 'output';

 if (strcmp(sqlstate,SQL_NO_DATA) == 0) break;

 exec sql get descriptor 'output' value 1 :buffer = data,
 :type = type,
 :length = returned_length;

 if (fread(record,1,15000,file) != (size_t)length ||
 memcmp(buffer,record,length) != 0)
 {
 printf("compare error\n");
 return -1;
 }
 }

D-52 BLOBSAMP program using Dynamic SQL and Binary Data

Mimer SQL version 8.2
Programmer’s Manual

 exec sql close c;
 exec sql deallocate descriptor 'output';
 exec sql deallocate descriptor 'input';
 exec sql deallocate prepare statement;
 fclose(file);
 printf("compare ok!\n");
 return 0;

exception:

 error(buffer,sizeof(buffer));
 printf("%s\n",buffer);
 return -1;
}

BLOBSAMP program using Dynamic SQL and Binary Data D-53

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Get error message text. */
/* */
/* Parameters: */
/* */
/* char* message : buffer for the result string */
/* int len : length of the buffer (must be >= 32) */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error (cannot get message text) */
/* */
/* Note: */
/* */
/* The message text is returned in a newline ('\n') separated */
/* string. If the string is too large, it is truncated. */
/* */
/**/
static int error(char* message,int len)
/**/
{
 exec sql whenever sqlerror goto exception;
 exec sql begin declare section;
 int count;
 int length;
 char state [6]; /* returned_sqlstate may not be stored in sqlstate */
 int n;
 exec sql end declare section;
 char* p;

 /*
 * Check arguments.
 */
 if (message == NULL || len < 32) return -1;
 /*
 * Get number of errors.
 */
 exec sql get diagnostics :count = number;
 for (n = 1; n <= count; n++)
 {
 /*
 * Get diagnostics of an error.
 */
 exec sql get diagnostics exception :n :buffer = message_text,
 :length = message_length,
 :state = returned_sqlstate;
 /*
 * Prepare message area.
 */
 if (length > len - 18) length = len - 18;
 memcpy(message,buffer,length);
 p = strchr(message,':');
 if (p) *p = '\n';
 if (length > 78)
 {
 p = strchr(&message[78],' ');
 if (p) *p = '\n';
 }
 message += length;
 len -= length;
 *message++ = '\n';
 /*
 * Add SQLSTATE code.

D-54 BLOBSAMP program using Dynamic SQL and Binary Data

Mimer SQL version 8.2
Programmer’s Manual

 */
 strcpy(message,"SQLSTATE:");
 message += 9;
 strcpy(message,state);
 message += 5;
 *message++ = '\n';
 *message++ = '\n';
 len -= 17;
 if (len < 32) break;
 }
 *message = '\0';
 return 0;

exception:

 strcpy(message,"cannot get diagnostics\n\n");
 return -1;
}

OSQLSAMP program, using Dynamic SQL and ODBC D-55

Mimer SQL version 8.2
Programmer’s Manual

D.6 OSQLSAMP program using dynamic SQL

To be able to compile the ODBC example program, an ODBC SDK is needed.
This package should include the necessary header files, such as sqlext.h and
sql.h, or corresponding.

The osql.c file contains a collection of routines that define a simple but
convenient API for dynamic SQL, using ODBC according to international
standards. These routines can be called from other C programs, in this case
osqlsamp.c.

The osqlsamp.c (same as dsqlsamp.c - see Section D.2) file contains a program
that calls the routines in osql.c. The osqlsamp program allows the user to enter
a SQL statement that will be executed directly, similar to the BSQL program
(see the Mimer SQL User’s Manual).

D-56 OSQLSAMP program, using Dynamic SQL and ODBC

Mimer SQL version 8.2
Programmer’s Manual

D.6.1 Building the OSQLSAMP program

Unix The following example assumes MIMER is installed in the directory
/opt/mimer821A and illustrates how the OSQLSAMP program is compiled and
built by using the distributed example makefile:

$ mkdir osql # Do everything in a sub directory
$ cd osql
$ cp /opt/mimer821A/examples/ex_makefile ./makefile
$ cp /opt/mimer821A/examples/osql.c .
$ cp /opt/mimer821A/examples/dsql.h .
$ cp /opt/mimer821A/examples/dsqlsamp.c osqlsamp.c

In the following example the ODBC Driver Manager is presumed to be installed
under /usr/local.

Update the following macros in the makefile:

The INCLUDE symbol should be updated to include the search path for the
ODBC Driver Manager include files.

The MYPROG symbol should be set to the main program name, in this case
“osqlsamp”. The MYFUNCS symbol should hold the name of the object file(s)
for the subroutines, in this case “osql.o” (avoid trailing spaces).

The ODBCLIB symbol should be updated to include the search path for the
ODBC Driver Manager library and the name of that library.

INCLUDE = -I$(MIMINC) -I. $(EXTEND) $(EXTEND_SHL)
-I/usr/local/include
MYPROG = osqlsamp
MYFUNCS = osql.o
ODBCLIB = -L/usr/local/lib - liodbc $(CLIB) $(LIBC)

Note! The names of ODBC Driver Manager libraries and include files may vary
between different products. These names must match the makefile and the
C-source header include statements, respectively.

Then make the osqlsamp program:

$ export MIMER_HOME=/opt/mimer821A
$ make

To be able to execute the osqlsamp program the .odbc.ini file must be installed in
the user HOME directory and updated according to the following example (for
details, see documentation for the ODBC Driver Manager in use). The .odbc.ini
file should include lines as in the following example in order to access a Mimer
SQL database:

[ODBC Data Sources]
hotel=MIMER database

[hotel]
Driver = /usr/lib/libmimer.so

[default]
Driver = /usr/lib/libmimer.so
Database = hotel

Note! If the ODBC Data Source name is not equal to the Mimer SQL database
name the “Database” parameter should be used in the .odbc.ini file, as shown for
the “default” ODBC Data Source above.

OSQLSAMP program, using Dynamic SQL and ODBC D-57

Mimer SQL version 8.2
Programmer’s Manual

 VMS The OSQLSAMP program is not currently distributed on VMS.

 Win On Windows platforms, the examples files are installed in the dev directory
which is located below the installation directory. The dev directory contains a
makefile called makefile.mak, which will build all the example programs at the
same time. The examples have been tested using Microsoft Visual C.

These instructions assume that Microsoft Visual C is used and that the make
command is being executed from the dev directory, appropriate adjustments must
be made if this is not the case.

$ nmake -f makefile.mak

D-58 OSQLSAMP program, using Dynamic SQL and ODBC

Mimer SQL version 8.2
Programmer’s Manual

D.6.2 Source code for the OSQLSAMP program (in C)
The main program source is the same as for DSQLSAMP and is in
dsqlsamp.ec, the following code, in osql.c replaces the code in dsql.c.

/**/
/* osql.c - ODBC sql driver */
/**/
/* */
/* This package is an ODBC SQL sample with the following functions: */
/* */
/* DsqlConnect - connect to data source */
/* DsqlDisconnect - disconnect from the data source */
/* DsqlExecute - execute an SQL statement */
/* DsqlColNames - get the column names of a result table */
/* DsqlFetch - fetch the next row from a result table */
/* DsqlClose - close a cursor */
/* DsqlError - get error message text */
/* */
/**/
/* */
/* Created by Mimer Information Technology AB. */
/* */
/* You have a free right to use, modify, reproduce, and distribute the */
/* sample files (and/or any modified version) in any way you find */
/* useful, provided that you agree that Mimer Information Technology AB */
/* has no warranty obligations or liability for any sample files which */
/* are modified. */
/* */
/**/

 Win #include <windows.h>

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "sqlext.h"
#include "dsql.h" /* function prototype definitions */

#define SQL_BADARG -3
#define SQL_HANDLES -4

#define MAXHSTMTS 32

#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
/*
 * Local functions
 */
static int check (RETCODE);
static int sethstmt (HSTMT);
static HSTMT gethstmt (int);
static void drophstmt (int);

OSQLSAMP program, using Dynamic SQL and ODBC D-59

Mimer SQL version 8.2
Programmer’s Manual

/*
 * Shared data areas
 */
static HENV henv;
static HDBC hdbc;
static HSTMT hstmt;
static HSTMT hstmts [MAXHSTMTS];
static SDWORD errcode;
static char state [6];
static char sqlmsg [SQL_MAX_MESSAGE_LENGTH];
static char buffer [8192];
static char* format = "[DSQL Driver]%s";

/**/
/* */
/* Connect to the data source. */
/* */
/* Return codes: */
/* */
/* 1 : successful connection */
/* 0 : wrong username or password */
/* -1 : error (call DsqlError for message text) */
/* */
/**/
int DsqlConnect()
/**/
{
 RETCODE rc;
 UCHAR strout[256];
 SWORD length;
 SQLHWND hwnd;

Unix
 hwnd = 0;

 VMS hwnd = 0;

 Win hwnd = GetDesktopWindow();

 /*
 * Allocate environment.
 */
 if (henv == NULL)
 {
 SQLAllocEnv(&henv);
 if (henv == NULL)
 {
 strcpy(sqlmsg,"cannot allocate ODBC environment\n");
 return -1;
 }
 }
 /*
 * Allocate a connection handle.
 */
 if (check(SQLAllocConnect(henv,&hdbc)) < 0) return -1;

D-60 OSQLSAMP program, using Dynamic SQL and ODBC

Mimer SQL version 8.2
Programmer’s Manual

 /*
 * Connect to data source.
 */

Unix

 VMS

 rc = check(SQLDriverConnect(hdbc,hwnd,(UCHAR*)"",0,strout,255,&length,
 SQL_DRIVER_PROMPT));
 if (rc != 0)
 {
 if (check(SQLAllocConnect(henv,&hdbc)) < 0) return -1;

 rc = check(SQLDriverConnect(hdbc,0,(UCHAR*)"DSN=default",SQL_NTS,
 strout,255,&length,SQL_DRIVER_COMPLETE));
 if (rc != 0)
 {
 if (rc == -2) return 0;
 if (*sqlmsg == '\0')
 strcpy(sqlmsg,"SQLDriverConnect failed...\n");
 return -1;
 }

 }

 Win rc = check(SQLDriverConnect(hdbc,hwnd,(UCHAR*)"",0,strout,255,&length,
 SQL_DRIVER_PROMPT));
 if (rc != 0)
 {
 if (rc == -2) return 0;
 return -1;

 }

 return 1;
}

/**/
/* */
/* Disconnect from the data source. */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error (call DsqlError for message text) */
/* */
/**/
int DsqlDisconnect()
/**/
{
 /*
 * Disconnect.
 */
 if (check(SQLDisconnect(hdbc)) < 0) return -1;
 /*
 * Free connection handle.
 */
 if (check(SQLFreeConnect(hdbc)) < 0) return -1;
 /*
 * Free environment.
 */
 SQLFreeEnv(henv);
 hdbc = SQL_NULL_HDBC;
 henv = SQL_NULL_HENV;
 return 0;
}

OSQLSAMP program, using Dynamic SQL and ODBC D-61

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Execute an SQL statement. */
/* */
/* Parameter: */
/* */
/* char* sqlstmt : SQL statement to be executed */
/* */
/* Return codes: */
/* */
/* +n : a select statement successfully opened, */
/* returning a cursor identifier */
/* 0 : a non-select statement executed successfully */
/* -1 : error (call DsqlError for message text) */
/* */
/* Note: */
/* */
/* It is assumed that the SQL statement does not contain any */
/* parameter markers. Unique statement, descriptor, and cursor names */
/* are used, which make it possible to have several cursors open at */
/* the same time. */
/* */
/**/
int DsqlExecute(char* sqlstmt)
/**/
{
 SWORD count;
 /*
 * Check argument.
 */
 if (sqlstmt == NULL) return check(SQL_BADARG);
 /*
 * Allocate a statement handle.
 */
 if (check(SQLAllocStmt(hdbc,&hstmt)) < 0) return -1;
 /*
 * Execute SQL statement.
 */
 if (check(SQLExecDirect(hstmt,(UCHAR*)sqlstmt,SQL_NTS)) < 0) return -1;
 /*
 * Get number of columns to see if this was a select statement or not.
 */
 if (check(SQLNumResultCols(hstmt,&count)) < 0) return -1;
 if (count == 0)
 {
 /*
 * Non-select statement. Free statement handle.
 */
 if (check(SQLFreeStmt(hstmt,SQL_DROP)) < 0) return -1;
 hstmt = SQL_NULL_HSTMT;
 return 0;
 }
 else
 {
 /*
 * Select statement. Return index for handle.
 */
 return sethstmt(hstmt);
 }
}

D-62 OSQLSAMP program, using Dynamic SQL and ODBC

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Get the column names of a result table. */
/* */
/* Parameters: */
/* */
/* int c : cursor identifier returned from DsqlExecute */
/* char* record : buffer for the result string */
/* int len : length of the buffer (must be >= 32) */
/* */
/* Return codes: */
/* */
/* +n : OK - number of columns */
/* -1 : error (call DsqlError for message text) */
/* */
/* Note: */
/* */
/* The column names are returned in a tab ('\t') separated string */
/* ending with a newline ('\n'). If the string is too large, it is */
/* truncated. */
/* */
/**/
int DsqlColNames(int c,char* record,int len)
/**/
{
 char name [19];
 SWORD count;
 SWORD n,cb,ct,cs,cn;
 UDWORD cp;
 int length;
 /*
 * Check arguments.
 */
 if (record == NULL || len < 32) return check(SQL_BADARG);
 /*
 * Get statement handle.
 */
 hstmt = gethstmt(c);
 /*
 * Get number of columns.
 */
 if (check(SQLNumResultCols(hstmt,&count)) < 0) return -1;
 for (n = 1; n <= count; n++)
 {
 /*
 * Get one column name.
 */
 if (check(SQLDescribeCol(hstmt,(UWORD)n,
 (UCHAR*)name,(SWORD)sizeof(name),
 &cb,&ct,&cp,&cs,&cn)) < 0) return -1;
 /*
 * Trim spaces and append a tab.
 */
 length = (int)cb;
 if (length == 0) *name = ' ', length = 1;
 while (length > 1 && name[length - 1] == ' ') length--;
 if (length > len - 2) length = len - 2;
 memcpy(record,name,length);
 record += length;
 len -= length;
 if (len == 2) break;

OSQLSAMP program, using Dynamic SQL and ODBC D-63

Mimer SQL version 8.2
Programmer’s Manual

 if (n < count)
 {
 *record++ = '\t';
 len--;
 }
 }
 *record++ = '\n';
 *record = '\0';
 return count;
}

/**/
/* */
/* Fetch the next row from a result table. */
/* */
/* Parameters: */
/* */
/* int c : cursor identifier returned from DsqlExecute */
/* char* record : buffer for the result string */
/* int len : length of the buffer (must be >= 32) */
/* */
/* Return codes: */
/* */
/* +n : OK - number of columns */
/* 0 : No more data (End of File) */
/* -1 : error (call DsqlError for message text) */
/* */
/* Note: */
/* */
/* The column values are returned in a tab ('\t') separated string */
/* ending with a newline ('\n'). It is assumed that the data does */
/* not contain tab, newline or null characters. A column value of */
/* NULL will be return as '?'. If the string is too large, it is */
/* truncated. */
/* */
/**/
int DsqlFetch(int c,char* record,int len)
/**/
{
 RETCODE rc;
 SWORD n;
 SWORD count;
 SDWORD cb;
 int length;
 /*
 * Check arguments.
 */
 if (record == NULL || len < 32) return check(SQL_BADARG);
 /*
 * Get statement handle.
 */
 hstmt = gethstmt(c);
 /*
 * Fetch next row from result table.
 */
 rc = check(SQLFetch(hstmt));
 if (rc == 0)
 {
 /*
 * Get number of columns.
 */
 if (check(SQLNumResultCols(hstmt,&count)) < 0) return -1;

D-64 OSQLSAMP program, using Dynamic SQL and ODBC

Mimer SQL version 8.2
Programmer’s Manual

 for (n = 1; n <= count; n++)
 {
 /*
 * Get one column value.
 */
 if (check(SQLGetData(hstmt,n,SQL_C_CHAR,
 (PTR)buffer,(SDWORD)len,&cb)) < 0) return -1;
 /*
 * Check NULL indicator, trim spaces and append a tab.
 */
 if ((length = (int)cb) == SQL_NULL_DATA)
 {
 *record++ = '?';
 len--;
 }
 else
 {
 if (length == 0) *buffer = ' ', length = 1;
 while (length > 1 && buffer[length - 1] == ' ') length--;
 if (length > len - 2) length = len - 2;
 memcpy(record,buffer,length);
 record += length;
 len -= length;
 }
 if (len == 2) break;
 if (n < count)
 {
 *record++ = '\t';
 len--;
 }
 }
 *record++ = '\n';
 *record = '\0';
 return count;
 }
 else if (rc > 0)
 {
 /*
 * No more data.
 */
 return 0;
 }
 return -1;
}

/**/
/* */
/* Close a cursor. */
/* */
/* Parameter: */
/* */
/* int c : cursor identifier returned from DsqlExecute */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error (call DsqlError for message text) */
/* */
/**/
int DsqlClose(int c)
/**/
{
 drophstmt(c);
 return check(SQLFreeStmt(hstmt,SQL_DROP));
}

OSQLSAMP program, using Dynamic SQL and ODBC D-65

Mimer SQL version 8.2
Programmer’s Manual

/**/
/* */
/* Get error message text. */
/* */
/* Parameters: */
/* */
/* char* message : buffer for the result string */
/* int len : length of the buffer (must be >= 32) */
/* */
/* Return codes: */
/* */
/* 0 : OK */
/* -1 : error (cannot get message text) */
/* */
/* Note: */
/* */
/* The message text is returned in a newline ('\n') separated */
/* string. If the string is too large, it is truncated. */
/* */
/**/
int DsqlError(char* message,int len)
/**/
{
 if (message == NULL || len < 32) return -1;
 strncpy(message,sqlmsg,len);
 message[len] = '\0';
 return 0;
}

/**/
static int check(RETCODE rc)
/**/
{
 char* msg;
 SWORD max;
 SWORD len;
 int login;

 if (rc == SQL_ERROR || rc == SQL_SUCCESS_WITH_INFO)
 {
 msg = sqlmsg;
 max = (SWORD)sizeof(sqlmsg);
 login = FALSE;
 while (SQLError(henv,hdbc,hstmt,
 (UCHAR*)state,&errcode,
 (UCHAR*)msg,max,&len) == 0)
 {
 msg += len; max -= len;
 len = (SWORD)sprintf(msg,"\nSQLSTATE:%s\n\n",state);
 msg += len; max -= len;
 if (strcmp(state,"28000") == 0) login = TRUE;
 }
 if (login) return -2;
 if (hstmt && rc == SQL_ERROR)
 {
 SQLFreeStmt(hstmt,SQL_DROP);
 hstmt = SQL_NULL_HSTMT;
 }
 else if (hstmt == NULL && hdbc && rc == SQL_ERROR)
 {
 SQLFreeConnect(hdbc);
 hdbc = SQL_NULL_HDBC;
 }
 }

D-66 OSQLSAMP program, using Dynamic SQL and ODBC

Mimer SQL version 8.2
Programmer’s Manual

 switch (rc)
 {
 case SQL_SUCCESS_WITH_INFO:
 case SQL_SUCCESS:
 return 0;

 case SQL_NO_DATA_FOUND:
 return 1;

 case SQL_STILL_EXECUTING:
 sprintf(sqlmsg,format,"Still executing");
 return -1;

 case SQL_NEED_DATA:
 sprintf(sqlmsg,format,"Need data");
 return -1;

 case SQL_HANDLES:
 sprintf(sqlmsg,format,"Too many handles");
 return -1;

 case SQL_BADARG:
 sprintf(sqlmsg,format,"Bad argument");
 return -1;

 case SQL_INVALID_HANDLE:
 sprintf(sqlmsg,format,"Invalid handle");
 return -1;

 case SQL_ERROR:
 default:
 return -1;
 }
}

/**/
static int sethstmt(HSTMT hstmt)
/**/
{
 int id;

 for (id = 0; id < MAXHSTMTS; id++)
 {
 if (hstmts[id] == 0)
 {
 hstmts[id] = hstmt;
 return id + 1;
 }
 }
 return check(SQL_HANDLES);
}

/**/
static HSTMT gethstmt(int id)
/**/
{
 if (id > 0 && id < MAXHSTMTS + 1)
 {
 return hstmts[id - 1];
 }
 return NULL;
}

OSQLSAMP program, using Dynamic SQL and ODBC D-67

Mimer SQL version 8.2
Programmer’s Manual

/**/
static void drophstmt(int id)
/**/
{
 if (id > 0 && id < MAXHSTMTS + 1)
 {
 hstmts[id - 1] = NULL;
 }
}

Index i

Mimer SQL version 8.2
Programmer’s Manual

INDEX

A
access clause for routines 8-6
access rights 4-2

for cursors 5-4
access rights and routines 8-28
accessing data 5-1
active connection 4-5
ALLOCATE DESCRIPTOR 7-4
arrays 3-1
assignment - SET statement 8-13

B
back-up protection 6-10
BEGIN DECLARE SECTION 3-1

C
C (programming language)

comments A-2
data types A-4
host variables A-2
line continuation A-2
null terminated strings A-3
preprocessor output A-5
see also host languages 2-2
statement delimiters A-2

CALL statement 8-17
calling procedures 8-17
CASE statement 8-14
closing cursors 5-4
COBOL

comments A-8
data types A-9
host variables A-8
line continuation A-7
preprocessor output A-10
see also host languages 2-2
statement delimiters A-7

comments 2-4
in C A-2
in COBOL A-8
in FORTRAN A-11

comments in routines 8-18
COMMIT 6-4
committing transactions 6-1
compiler 2-7
compound sql statement 8-6

ii Index

Mimer SQL version 8.2
Programmer’s Manual

concurrency control 6-1
condition names 8-25
conditional execution - CASE statement 8-14
conditional execution - IF statement 8-13
connecting to a database 4-3
connection name 4-3
connections

and transactions 6-4
cursors 5-5

continue handlers 8-27
current row 5-9
cursor-independent data manipulation 5-8
cursors 5-1

access rights 5-4
and program idents 4-5
closing 5-4
declaration 5-2
declaring in PSM 8-19
evaluating SELECT statement 5-3
for join conditions 5-6
for UPDATE and DELETE 5-9
in dynamic SQL 7-9
in multiple connections 5-5
in transactions 6-8
opening 5-3
position in result set 5-4, 5-9
resource allocation 5-5
restrictions on use in PSM 8-20
stacking 5-7

cursors in routines 8-19

D
data errors B-7
data types

in C A-4
in COBOL A-9
in FORTRAN A-13

databank access errors B-22
databank options 6-10
database concept 4-1
database connection 4-3
deadlock 6-3
DEALLOCATE DESCRIPTOR 7-4
declaration of SQLSTATE 3-3
DECLARE SECTION 3-1
declaring condition names 8-25
declaring cursors 5-2, 8-19
declaring exception handlers in routines 8-25
declaring host variables 5-2
declaring routine parameters 8-5
declaring routine variables 8-9
DELETE 5-8
delimiters

in C A-2
deprecated features C-1

parameter markers C-2
SET TRANSACTION CHANGES C-2
SQLCODE C-1

Index iii

Mimer SQL version 8.2
Programmer’s Manual

SQLDA C-1
VARCHAR(size) C-2

DESCRIBE INPUT 7-7
describing dynamic SQL statements 7-6
designing transactions 6-2
deterministic clause for routines 8-6
diagnostics area 3-4
disconnecting 4-4
disk crash 6-11
dormant cursors 5-5
drop and revoke involving routines 8-29
dynamic SQL 7-1

cursors 7-9
describing statements 7-6
example framework 7-10
executing statements 7-8
preparing statements 7-5
statement object form 7-5
statement source form 7-5
statements 7-3

dynamic SQL program example D-1

E
embedded SQL 2-2

program structure 2-7
restrictions on host language code 2-4
scope 2-2

END DECLARE SECTION 3-1
ending transactions 6-4
ENTER 4-5
error handling 10-1

in transactions 6-9
exception conditions 10-1
exception handlers 8-25
EXEC SQL 2-3
EXECUTE on routine 8-28
executing dynamic SQL statements 7-8
exit handlers 8-26
extended dynamic cursors 7-5
extended dynamic statements 7-5

F
FETCH 5-3
FORTRAN

comments A-11
host variables A-12
line continuation A-11
preprocessor output A-14
see also host languages 2-2
statement delimiters A-11
statement margins A-11
statement numbers A-11

functions
invoking 8-17

G
general exception handlers 8-25
GET DIAGNOSTICS 3-4, 8-19
GRANT OPTION 4-3

iv Index

Mimer SQL version 8.2
Programmer’s Manual

group idents 4-2

H
handlers 8-25
host language included code 2-3
host languages 2-2, A-1
host variables 3-2

arrays 3-1
declaration 3-1, 5-2
declarations 2-7
in C A-2
in COBOL A-8
in cursor declarations 5-3
in dynamic SQL 7-2
in FORTRAN A-12
in SQL statements 3-1
names 2-4

I
IDENT privilege 4-2
identifying SQL statements 2-3
IF statement 8-13
implicit connection 4-4
included code

host language 2-3
indicator variables 3-2
INSERT 5-8
interactive environments 7-1
internal Mimer SQL return codes B-4
interrupted transactions 6-11
invoking functions 8-17
invoking procedures 8-17
ISOLATION LEVEL's in transactions 6-5
Iteration

LOOP statement 8-16
REPEAT statement 8-16
WHILE statement 8-16

J
Java 2-1
JDBC 2-1
join retrievals

using cursors 5-6

L
LEAVE 4-5
LEAVE RETAIN 4-5
LEAVE statement 8-7
limits B-9
line continuation

in C A-2
in COBOL A-7
in FORTRAN A-11

locking 6-3
LOG databank option 6-10
logging 6-10
LOOP statement 8-16
loops 6-2

Index v

Mimer SQL version 8.2
Programmer’s Manual

M
managing exception conditions in routines 8-23
minus sign

in COBOL variable names A-8
modules 8-12
multiple connections 4-4
multiple tables in data retrieval 5-6

N
NULL 3-2
NULL databank option 6-10
null terminated strings A-3

O
object form of dynamic SQL statements 7-5
OPEN 5-3
optimistic concurrency control 6-1
optimization 2-7
OS_USER idents 4-1

P
parameter markers 7-2

in SELECT statements 7-10
parameters in routines 8-5
Parts explosion 5-7
Persistent Stored Modules 8-1
positioning cursors 5-4
preparing dynamic SQL statements 7-5
preprocessing 2-4

WHENEVER statements 10-2
preprocessor output

in C A-5
in COBOL A-10
in FORTRAN A-14

privileges 4-2
procedure-control-statement (see Chapter 6 of the Mimer SQL Reference Manual)
procedures

invoking 8-17
returning result sets 8-21

program construction errors B-19
program examples D-1
program idents 4-2, 4-5
program structure 2-7
PSM 8-1

Q
quotation marks

in C A-2

R
READ ONLY transactions 6-5
READ WRITE transactions 6-5
read-only cursors 5-3, 5-9
read-set 6-1
REPEAT statement 8-16
RESIGNAL statement 8-24
resignaling exceptions in routines 8-24
result set procedure CALL 5-1
result set procedures 8-21

vi Index

Mimer SQL version 8.2
Programmer’s Manual

retrieving data 5-3
retrieving single rows 5-5
RETURN statement 8-22
revoke and drop involving routines 8-29
ROLLBACK 6-4
routines

access clause 8-6
access rights 8-28
beware using drop and revoke 8-29
comments in 8-18
declaring condition names 8-25
declaring cursors 8-19
declaring exception handlers 8-25
declaring variables 8-9
deterministic clause 8-6
invoking 8-17
managing exception conditions 8-23
parameters 8-5
restrictions 8-18
scope in 8-6
SQL constructs in 8-13

run-time errors 10-2

S
scope in routines 8-6
scope of embedded SQL 2-2
SCROLL 5-3
scrollable cursor 5-3
SELECT INTO 5-5
SELECT statement 5-1
semantic errors 10-1
SET statement 8-13
SET TRANSACTION 6-3
SIGNAL statement 8-24
signaling exceptions in routines 8-24
single row SELECT 5-5
source form of dynamic SQL statements 7-5
specific exception handlers 8-26
SQL compiler 2-7
SQL constructs in routines 8-13
SQL descriptor area 3-4, 7-4

COUNT field 7-4
structure 7-4

SQL statement identifier 2-3
SQL statements

errors B-10
using host variables 3-1

SQLSTATE 3-3, 10-2, B-2
class 3-3
fields 3-3
return codes B-2
subclass 3-3

stacking cursors 5-7
starting transactions 6-3
statement delimiters

in C A-2
in COBOL A-7
in FORTRAN A-11

Index vii

Mimer SQL version 8.2
Programmer’s Manual

statement margins
in FORTRAN A-11

statement numbers in FORTRAN: A-11
stored functions and procedures 8-1
stored procedures and functions 8-1
stored routines and modules (PSM) 8-1
subprogram names 2-4
subroutine names 2-4
syntax errors 10-1
system failure 6-11

T
table access errors B-22
TRANS databank option 6-10
transaction consistency - ISOLATION LEVEL 6-5
transaction diagnostics size 6-6
transaction optimization 6-5
transactions 6-1

and cursors 6-8
build-up 6-1
design 6-2
error handling 6-9
interrupted 6-11
with loops 6-2

tree structure
traversing 5-7

types A-13

U
updatable cursors 5-9
UPDATE 5-8
UPDATE CURRENT 5-9
USAGE ON DOMAIN privilege 4-2

V
variables

declaring 8-9
host (see under ‘host variables’)

W
warnings B-4
WHENEVER 10-2

in transactions 6-10
WHILE statement 8-16
white-space A-2, A-7, A-11
write-set 6-1

viii Index

Mimer SQL version 8.2
Programmer’s Manual

Index ix

Mimer SQL version 8.2
Programmer’s Manual

	1 - INTRODUCTION
	2 - CREATING MIMER SQL APPLICATIONS
	2.1 - Using the ODBC database API
	2.2 - Using the JDBC database API
	2.3 - Using embedded Mimer SQL
	2.3.1 - The scope of embedded Mimer SQL
	2.3.2 - General principles for embedding SQL statements
	2.3.2.1 - Host languages
	2.3.2.2 - Identifying SQL statements
	2.3.2.3 - Included code
	2.3.2.4 - Comments
	2.3.2.5 - Recommendations

	2.3.3 - Processing embedded SQL
	2.3.3.1 - Preprocessing - the ESQL command
	2.3.3.2 - Processing embedded SQL - the compiler

	2.3.4 - Essential program structure

	2.4 - Linking applications

	3 - COMMUNICATING WITH THE APPLICATION PROGRAM
	3.1 - Host variable usage
	3.1.1 - Declaring host variables
	3.1.2 - Using variables in statements
	3.1.3 - Indicator variables

	3.2 - The SQLSTATE variable
	3.3 - The diagnostics area
	3.4 - The SQL Descriptor Area

	4 - IDENTS AND DATABASE CONNECTIONS
	4.1 - Mimer SQL idents
	4.2 - Access to the database
	4.3 - Connecting to a database
	4.3.1 - Connecting
	4.3.2 - Changing connection
	4.3.3 - Disconnecting
	4.3.4 - Program idents - ENTER and LEAVE

	5 - ACCESSING DATABASE OBJECTS
	5.1 - Retrieving data using cursors
	5.1.1 - Declaring host variables
	5.1.2 - Declaring the cursor
	5.1.3 - Opening the cursor
	5.1.4 - Retrieving data
	5.1.5 - Closing the cursor

	5.2 - Retrieving single rows
	5.3 - Retrieving data from multiple tables
	5.3.1 - The 'Parts explosion' problem

	5.4 - Entering data into tables
	5.4.1 - Cursor-independent operations
	5.4.2 - Updating and deleting through cursors

	6 - TRANSACTION HANDLING AND DATABASE SECURITY
	6.1 - Transaction principles
	6.1.1 - Concurrency control
	6.1.2 - Locking

	6.2 - Transaction control statements
	6.2.1 - Starting transactions
	6.2.2 - Ending transactions
	6.2.3 - Optimizing transactions
	6.2.4 - Consistency within transactions
	6.2.5 - Exception diagnostics within transactions
	6.2.6 - Setting default transaction options
	6.2.7 - Statements in transactions
	6.2.8 - Cursors in transactions
	6.2.9 - Error handling in transactions

	6.3 - Transactions and logging
	6.4 - Protection against data loss
	6.4.1 - System interruptions
	6.4.2 - Hardware failure

	7 - DYNAMIC SQL
	7.1 - Principles of dynamic SQL
	7.2 - General summary of dynamic SQL processing
	7.3 - SQL descriptor area
	7.3.1 - The structure of the SQL descriptor area

	7.4 - Preparing statements
	7.5 - Extended dynamic cursors
	7.6 - Describing prepared statements
	7.6.1 - Describing output variables
	7.6.2 - Describing input variables

	7.7 - Handling prepared statements
	7.7.1 - Executable statements
	7.7.2 - Result set statements

	7.8 - Example framework for dynamic SQL programs

	8 - PERSISTENT STORED MODULES
	8.1 - Routines
	8.1.1 - Functions
	8.1.2 - Procedures

	8.2 - Syntactic components of a routine definition
	8.2.1 - Routine parameters
	8.2.2 - Routine language indicator
	8.2.3 - Routine deterministic clause
	8.2.4 - Routine access clause
	8.2.5 - Scope in routines - the compound SQL statement
	8.2.5.1 - The ATOMIC compound SQL statement

	8.2.6 - Declaring variables
	8.2.7 - The ROW data type
	8.2.7.1 - ROW data type syntax
	8.2.7.2 - Using the ROW data type

	8.2.8 - Row value expression

	8.3 - Modules
	8.4 - SQL constructs in routines
	8.4.1 - Assignment using SET
	8.4.2 - Conditional execution using IF
	8.4.3 - Conditional execution - the CASE statement
	8.4.4 - Iteration using LOOP
	8.4.5 - Iteration using WHILE
	8.4.6 - Iteration using REPEAT
	8.4.7 - Invoking procedures - CALL
	8.4.8 - Invoking functions - use as a value expression
	8.4.9 - Comments in routines
	8.4.10 - Restrictions

	8.5 - Data manipulation
	8.5.1 - Write operations
	8.5.2 - Using cursors
	8.5.3 - SELECT INTO
	8.5.4 - Transactions

	8.6 - Result set procedures
	8.7 - Managing exception conditions
	8.7.1 - Declaring condition names
	8.7.2 - Declaring exception handlers

	8.8 - Access rights
	8.9 - Using DROP and REVOKE

	9 - TRIGGERS
	9.1 - Creating a trigger
	9.2 - Trigger time
	9.3 - Trigger event
	9.4 - Trigger action
	9.4.1 - New and old table aliases
	9.4.2 - Altered table rows
	9.4.3 - Recursion

	9.5 - Comments on triggers
	9.6 - Using DROP and REVOKE

	10 - HANDLING ERRORS AND EXCEPTION CONDITIONS
	10.1 - Syntax errors
	10.2 - Semantic errors
	10.3 - Run-time errors
	10.3.1 - Testing for run-time errors and exception conditions

	A - HOST LANGUAGE DEPENDENT ASPECTS
	A.1 - Embedded SQL in C/C++ programs
	A.1.1 - SQL statement format
	A.1.2 - Host variables
	A.1.3 - Preprocessor output format
	A.1.4 - Scope rules

	A.2 - Embedded SQL in COBOL programs
	A.2.1 - SQL statement format
	A.2.2 - Restrictions
	A.2.3 - Host variables
	A.2.4 - Preprocessor output format
	A.2.5 - Scope rules

	A.3 - Embedded SQL in FORTRAN programs
	A.3.1 - SQL statement format
	A.3.2 - Host variables
	A.3.3 - Preprocessor output format
	A.3.4 - Scope rules

	B - RETURN CODES
	B.1 - SQLSTATE return codes
	B.2 - Internal Mimer SQL return codes
	B.2.1 - Warnings and messages
	B.2.2 - ODBC errors
	B.2.3 - Data-dependent errors
	B.2.4 - Limits exceeded
	B.2.5 - SQL statement errors
	B.2.6 - Program-dependent errors
	B.2.7 - Databank and table errors
	B.2.8 - Miscellaneous errors
	B.2.9 - Internal errors
	B.2.10 - Communication errors
	B.2.11 - JDBC errors

	C - DEPRECATED FEATURES
	C.1 - INCLUDE SQLCA
	C.2 - SQLCODE
	C.3 - SQLDA
	C.4 - Parameter marker representation
	C.5 - VARCHAR(size)
	C.6 - SET TRANSACTION
	C.7 - DBERM4

	D - APPLICATION PROGRAM EXAMPLES
	D.1 - EXAMPLE program
	D.1.1 - Building the EXAMPLE program
	D.1.2 - C source code for the EXAMPLE program
	D.1.3 - COBOL source code for the EXAMPLE program
	D.1.4 - FORTRAN source code for the EXAMPLE program

	D.2 - DSQLSAMP program using dynamic SQL
	D.2.1 - Building the DSQLSAMP program
	D.2.2 - Source code for the DSQLSAMP program (in C)

	D.3 - FREQCALL program using dynamic SQL and a stored procedure
	D.3.1 - Building the FREQCALL program
	D.3.2 - C source code for the FREQCALL program
	D.3.3 - COBOL source code for the FREQCALL program
	D.3.4 - FORTRAN source code for the FREQCALL program

	D.4 - WAKECALL program using dynamic SQL and a result-set procedure
	D.4.1 - Building the WAKECALL program
	D.4.2 - C source code for the WAKECALL program
	D.4.3 - COBOL source code for the WAKECALL program
	D.4.4 - FORTRAN source code for the WAKECALL program

	D.5 - BLOBSAMP program using Dynamic SQL for handling binary data
	D.5.1 - Building the BLOBSAMP program
	D.5.2 - Source code for the BLOBSAMP program (in C)

	D.6 - OSQLSAMP program using dynamic SQL
	D.6.1 - Building the OSQLSAMP program
	D.6.2 - Source code for the OSQLSAMP program (in C)

	mimerwww:
	msg: If clicking here fails to start a Web Browser, check your Weblink Preferences.

