
Uppsala Master's Theses in
Computing Science no. 260
Examensarbete DV3 20 p
2004-01-12
ISSN 1100-1836

Importing XML Schema into an Object-
Oriented Database Mediator System

BY

Tony Johansson Richard Heggbrenna

November 2003

Information Technology Computing Science Department
Uppsala University

Box 337
S-751 05 Uppsala

Sweden

Supervisor: professor Tore Risch
Examiner: professor Tore Risch

Passed:

Importing XML Schema into an Object-Oriented Database Mediator
System

Master’s Thesis in Computer Science 20 p

Uppsala University

BY

Tony Johansson
tojo3423@student.uu.se

Uppsala University

Richard Heggbrenna
rihe8139@student.uu.se

Uppsala University

November 2003

This work was carried out at
Uppsala Database Laboratory (UDBL)

Uppsala University
PO Box 513

SE-751 20 Uppsala
Sweden

Abstract:

A mediator system is a middleware database system that provides

uniform queries and views over several different back-end heterogeneous
data sources. An object-oriented mediator system can help solve
integration problems between eXtensive Markup Language (XML)
instance documents and different software applications. It is important to
integrate XML with databases as XML provides a standard technique to
describe data in files. The thesis describes an implemented prototype
system for importing XML Schema definitions into an object-oriented
mediator system. The mediator system provides an object-oriented query
language to specify queries and views over combinations of data from
XML documents, relational databases, and other kinds of data sources
used by applications. Adaptive translation rules and mapping of datatypes
allow automatic importation of XML Schema definitions into the object-
oriented mediator system. As more XML Schema definitions are
imported, the mediator’s schema is dynamically extended using object-
oriented data definition statements. This requires the mediator system to
be capable of dynamically extending and modifying its schema.
Keywords: XML Schema, XML, Mediator, Object-Oriented databases

 ii

Table of contents

1 INTRODUCTION .. 1
1.1. Questions at issue ... 2
1.2. Method used ... 2
1.3. Presuppositions... 3
1.4. Report overview ... 3

2 RELATED WORK ... 4
3 BACKGROUND.. 6

3.1. Databases.. 6
3.2. Query languages ... 6
3.3. Mediators .. 7
3.4. Amos II system... 7

3.4.1. AmosQL... 7
3.4.2. Amos II data model .. 8
3.4.3. Functions .. 10

3.5. XML ... 11
3.5.1. Well-formed XML documents ... 11
3.5.2. Valid XML documents ... 12
3.5.3. XML namespaces ... 12

3.6. XML Schema.. 13
3.6.1. Validation ... 14
3.6.2. Structures.. 14
3.6.3. Namespaces in XML Schema .. 20

3.7. Benchmarks .. 20
3.7.1. XBench... 20
3.7.2. XMach-1... 20
3.7.3. Xmark... 21
3.7.4. XOO7 ... 21
3.7.5. The Michigan Benchmark .. 21

4 REALIZATION ... 22
4.1. Importing an XML Schema .. 22
4.2. Analyzing the XML Schema files in XBench .. 23

4.2.1. Namespace ... 23
4.2.2. Structures.. 23
4.2.3. Datatypes.. 23

4.3. Translation rules ... 24
4.4. Mapping XML Schema built-in datatypes to Amos II datatypes.................................. 28

4.4.1. Mapping string datatypes ... 28
4.4.2. Mapping numeric datatypes ... 29
4.4.3. Date and time datatypes.. 29
4.4.4. The resulting mapping.. 30

4.5. Architecture .. 30
4.6. Implementation... 31
4.7. User interaction... 32

5 THE IMPLEMENTED TOOL ... 33
5.1. The Amos II XML Schema import tool (AXSI)... 33
5.2. Parser choice... 33
5.3. Results from running the tool ... 34
5.4. Limitations.. 36

5.4.1. XML Schema mixed content model... 36
5.4.2. XML Schema model group compositors.. 36
5.4.3. Loss of schema specific details .. 36

5.5. Alternative implementation .. 37
5.5.1. Using the DOM API... 37
5.5.2. Using the XSLT API .. 37

 iii

6 DISCUSSION ..39
6.1. Achieved result..39
6.2. Previous research and results ..39
6.3. Usefulness ...39
6.4. References...39
6.5. Acknowledgements ...40

7 CONCLUSIONS AND FUTURE WORK ...41
7.1. Answers to question at issue ...41
7.2. Further research...42

7.2.1. Data importation ...42
7.2.2. Querying ...42
7.2.3. Web Service Interface...42
7.2.4. Extending Amos II type hierarchy with new literals using Java.....................42

BIBLIOGRAPHY ...43

 iv

Figures and tables

FIGURE 1: PART OF THE SYSTEM TYPE HIERARCHY IN AMOS II. [8] ... 9
FIGURE 2: NUMERIC DATATYPES IN AMOS II... 9
FIGURE 3: AN EXAMPLE OF A WELL-FORMED XML DOCUMENT. ... 12
FIGURE 4: AN XML SCHEMA DEFINITION FROM THE XBENCH BENCHMARK FAMILY...................... 13
FIGURE 5: VALIDATION OF AN XML INSTANCE DOCUMENT. ... 14
FIGURE 6: A SIMPLETYPE DEFINITION DERIVED BY RESTRICTION. [4] ... 15
FIGURE 7: A COMPLEXTYPE DEFINITION WITH A COMPLEX CONTENT MODEL. [4] 16
FIGURE 8: XML REPRESENTATIONS OF TWO DIFFERENT TYPES OF ELEMENT DECLARATION. [4]..... 16
FIGURE 9: USE OF AN ATTRIBUTE DEFINITION IN A COMPLEX TYPE DEFINITION............................... 16
FIGURE 10: BUILT-IN DATATYPE HIERARCHY. [5] .. 17
FIGURE 11: DERIVED NUMERIC DATATYPES. ... 19
FIGURE 12: DATATYPES USED IN THE XBENCH BENCHMARK’S XML SCHEMA DEFINITIONS. 23
FIGURE 13: DATATYPE OCCURRENCES IN NUMBERS.. 24
FIGURE 14: PART OF DSCD.XSD FROM THE XBENCH BENCHMARK SUITE....................................... 25
FIGURE 15: ANOTHER PART OF DCSD.XSD FROM THE XBENCH BENCHMARK SUITE....................... 27
FIGURE 16: AN EXAMPLE USING THE EXTENSION COMPONENT.. 27
FIGURE 17: MAPPINGS BETWEEN XML SCHEMA DEFINITION LANGUAGE DATATYPES AND AMOS II

DATATYPES... 30
FIGURE 18: THE TOOL’S GENERAL DESIGN. THE PICTURE SHOWS THE DIFFERENT PARTS CONTAINED

IN THE PROGRAM MODULE. ... 31
FIGURE 19: AN EXAMPLE OF RUNNING THE TOOL. ... 32
FIGURE 20: DCMDADDR.XSD IS AN XML SCHEMA DEFINITION FROM THE XBENCH BENCHMARK

SUITE. ... 34
FIGURE 21: ADDRESSES.XML IS AN EXAMPLE XML INSTANCE DOCUMENT THAT IS VALID AGAINST

DCMDADDR.XSD. ... 35
FIGURE 22: A TRANSLATION OF THE DCMDADDR.XSD XML SCHEMA DEFINITION INTO AN AMOS II

DATABASE SCHEMA. ... 35
FIGURE 23: AN ARBITRARY EXAMPLE OF A TAG A THAT USES A MIXED CONTENT MODEL............... 36

 v

Importing XML Schema into an Object-Oriented Database Mediator System

Chapter 1

Introduction

An increasingly popular way to represent data is using the eXtensible Markup
Language (XML) [1], which is a markup language to express structured data in files.
These XML files are commonly called XML instance documents. Since XML is a markup
language with no pre-defined tags, in contrast to for example HyperText Markup
Language (HTML) [2] that contains many pre-defined tags, it is possible to declare any
kind of descriptive tags for the contained data. Hence, to exchange XML instance
documents in a meaningful way requires their internal data to be described so that the
various parties involved will interpret them correctly and consistently.

A schema is a description of data in a database, often also referred to as meta-data.
A data model is a language that is used to define schemas, for example the XML Schema
definition language [4][5] provides a data model for defining schemas of XML instance
documents. To avoid confusion we make a distinction between the terms XML Schema
definition language (a data model) and an XML Schema definition (a schema expressed
using the XML Schema definition language) [3].

An XML Schema definition contains rules governing the structure and format of an
XML instance document. It also describes, at least informally and often implicitly, the
intended conceptual meaning of an XML instance document’s components. An XML
Schema definition is, in other words, a specification of the syntax and semantics of a
potentially infinite set of XML instance documents [15]. XML Schema definitions allow
different involved parties to share the documents between each other in a meaningful way
and an XML Schema definition helps the parties to interpret the XML instance
documents correctly and consistently.

The internal structure and datatypes of the XML Schema definition language has
several features beyond what the XML 1.0-Document Type Definitions (DTD) [1]
definition language provide [3]. The main difference between an XML Schema definition
and a DTD definition is that XML Schema definitions include extensive support for
datatyping.

To help solve the problem of integrating and querying data from many different
sources, the wrapper-mediator approach provides intermediate virtual databases, called
mediators, between different kinds of data and the applications using them. A wrapper is
an interface that translates a data source’s data model to a common data model known by
the mediator [7].

This thesis focuses on the ability to wrap an XML Schema definition in an object-
oriented database mediator system to help solve the integration problems between XML
instance documents and other applications that are not using XML. Instead of creating
program modules that explicitly read XML instance documents, a mediator database
system provides the application with data contained inside XML instance documents by
using its query language.

We have developed a schema importation prototype tool for XML Schema
definitions called Amos II XML Schema import tool (AXSI). AXSI allows XML Schema
definitions to be imported into a mediator system. Our mediator system is object-oriented
and uses an object-oriented query language. When an XML Schema definition is
imported the system creates an object-oriented database view in the mediator over data
that is represented in XML documents described by the imported XML Schema
definition. This requires that the object-oriented database mediator system understands
the XML Schema definition language. Given a specific XML Schema definition, the
schema importer needs to know how the XML Schema definitions are translated into

 1

Introduction

object-oriented schema definitions in the mediator. In order to understand an XML
Schema definition, the object-oriented database mediator system must know the
semantics of the XML Schema definition language. When a schema is imported another
data importation tool being developed will make it possible to also import XML
documents described by the imported schema. Finally given that both XML Schema
definitions and XML documents are imported the object-oriented query language of the
mediator can be used to query the imported data.

The mediator system also provides the possibility to use an object-oriented query
language to query and create views over several different data sources, for instance data
in a relational database can be combined with data represented in XML described by an
XML Schema definition. A given set of translation rules from XML Schema to object
schema definitions govern the translations that take place in the wrapper.

With the schema importation tool it is possible to access from the mediator
database any XML instance document conforming to the imported XML Schema
definition just by using the imported object-oriented schema definitions in the mediator
system. In order for this to work, the object-oriented database mediator knows a
significant subset of the XML Schema definition language when performing the
importation.

1.1. Questions at issue

The question is now how an XML Schema definition is imported into an object-
oriented database mediator system by using such a schema importation tool. The question
is divided into three sub questions:

Q1. How is a schema importation tool that imports an XML Schema

definition into the object-oriented database mediator designed? If the tool is
automatic, it can translate different XML Schema definitions automatically.
Consequently, an analysis of several translations will reveal if the tool
performs the importation correctly or not.

Q2. Can the tool translate the structures of an XML Schema definition to

the database schema, in an obvious and useful way, which reflects the
intended meaning of the XML Schema definition? XML Schema part 1:
Structures recommendation shows the structure of the XML Schema
definition language and the language contains several different components
that govern its structure [4].

Q3. Can the tool map XML Schema definition language datatypes to

corresponding datatypes in the object-oriented database mediator? A study
of XML Schema part 2: Datatypes recommendation describes supported
datatypes for the XML Schema definition language [5].

1.2. Method used

First a literature study was made about the concepts of object-oriented databases,
mediators, XML, and the XML Schema definition language.

Based on the literature study a prototype XML Schema importation system was
implemented. The automated tool implements the translation of structures and mapping
of datatypes between the XML Schema definition language and the object-oriented
database mediator data model. Importing several XML Schema definitions confirmed the
correctness of the translations and mappings.

For the evaluation of the prototype the XBench benchmark [12] was used in order
to validate and enhance the results of the tool. This showed that it is possible to import
XML instance documents described by XML Schema definitions from XBench. The

 2

Importing XML Schema into an Object-Oriented Database Mediator System

schemas used in XBench are not object-oriented and therefore a complementing object-
oriented XML Schema was also developed and imported.

1.3. Presuppositions

XBench [12] is a family of benchmarks for XML databases. The benchmark suite
generates XML instance documents of varying size that conform to an included set of
XML Schema definitions. The included XML Schema definitions provide a sufficient
subset of the XML Schema definition language to base the translations on, and, since the
XML Schema definition language is rather extensive, the thesis is limited to presenting
translations that works on these XML Schema definitions. The schema importation tool
was considered complete when it could import these XML Schema definitions into the
database mediator system. The result of this thesis however, should provide a basis for
further research in which added translations provide support for a larger subset of the
XML Schema definition language and as a result, an improved tool can import a wider
range of XML Schema definitions into an object-oriented database mediator system.

1.4. Report overview

The arrangement of the thesis is as follows: Chapter 2 presents related work.
Chapter 3 presents the background to understand this thesis. Chapter 4 describes the
realization of the XML Schema definition importer tool. Chapter 5 describes the XML
Schema definition importer tool. Chapter 6 is a discussion regarding this thesis and
finally, Chapter 7 concludes the work and proposes future work.

 3

Related work

Chapter 2

Related work

A system that integrates XML with applications typically do this by mapping XML
documents to something else, for instance into classes in an object-oriented programming
language or tables in a database. Below is a description of some interesting technologies
and frameworks that relate to this thesis.

The Java Web Services Developer Pack (Java WSDP1) [13] created by SUN
Microsystems is a free integrated toolkit that allows Java developers to build and test
XML applications with up-to-date Web services technologies and standards
implementations. The Java WSDP includes the Java APIs for XML Processing (JAXP)
[14] and Java Architecture for XML Binding (JAXB) [15] technologies among others.

The JAXP framework supports processing of XML documents using the Document
Object Model (DOM) [16] defined by W3C, Simple API for XML (SAX) [17] defined by
saxproject.org and XML Stylesheet Language for Transformations (XSLT) [18] defined
by W3C. This framework enables applications to parse and transform XML documents
independent of a particular XML processing implementation. Depending on the needs of
the application, developers have the flexibility to swap between XML processors (such as
high performance versus memory conservative parsers) without making application code
changes. This technology can be used to XML-enable the prototype importer tool for the
database mediator system [13].

The JAXB framework provides API, tools, and a framework that automates the
mappings between an XML Schema definition and Java-level binding objects. The
objects are classes that can be compiled and later instantiated using an XML instance
document conforming to the XML Schema definition. The framework also allows a
developer to specify application specific details about how the mapping should be
performed [13]. The specification of the framework is the most interesting part and not
the implemented parts of the framework. The specification shows mappings for the
conceptual level of an XML Schema definition, how more intricate parts of an XML
Schema definition map to classes and inheritance, how XML Schema definition primitive
types map to properties in those classes and so forth.

The latest release of Oracle XML DB [19] uses XML Schema definitions to allow
simple element contents and attribute values to be stored in SQL columns declared to
have an SQL type most similar to the corresponding XML Schema type. Many datatypes,
such as sequences, can however not be mapped but are instead represented as text strings.

R. Bourret et al. has developed a database product called XML-DBMS [22] [20]. It
is a middleware for transferring data in XML instance documents to and from relational
databases. XML-DBMS uses an XML-based mapping language to explicitly specify
transformation rules from an XML instance document to a relational database schema i.e.
how classes map to tables and properties map to columns in the tables. If the XML
instance documents are described by DTD definitions the transformation rules of the
XML instance documents can be created automatically rather than explicitly. Currently
however, XML-DBMS cannot automatically create transformation rules of XML instance
documents described by XML Schema definitions and it has no transformation rules to
object-oriented database schemas. By contrast our prototype tool imports an XML
Schema definition as an object-oriented database view over data that is represented in
XML instance documents described by the imported XML Schema definition.

1 http://java.sun.com/webservices/

 4

Importing XML Schema into an Object-Oriented Database Mediator System

H. Lin et al. presented a framework for querying XML data through an object-
oriented mediator using an object-oriented query language. The framework, called
AmosXML, defines a set of translation rules that automatically generate a database
schema in the mediator database from a DTD definition of an XML document, if
available. If the framework reads XML documents with no specified DTD definition or if
the DTD definition is incomplete the framework extends the database schema from the
XML instance document structure. The framework also provides mechanisms to refine
the database schema dynamically while reading XML instance documents [23].

The main differences between H. Lin et al.’s work and this thesis are that different
schema definition languages are used. The AmosXML framework uses DTD definition
language and in this thesis, the definition language is the XML Schema definition
language. The described translation rules by H. Lin et al. can help solve future problems
however, and provide much guidance in the progress of this work.

 5

Background

Chapter 3

Background

The following chapter is an explanation of this thesis’s related concepts. It served
as a resource of information for later chapters and readers are advised not skip this section
unless they are already familiar with the concepts that are used in later chapters.

3.1. Databases

A database is a collection of related data and a database management system
(DBMS) is a collection of programs that enables users to create and maintain a database.
DBMSs can be classified according to several criteria where the main classification is
based on the data model2. The relational data model is the main data model used in many
current commercial DBMSs. The object data model is not as wide spread commercially
as the relational data model, although there are some commercial implementations. Many
of the relational DBMSs have been incorporating many of the concepts from the object
data model. This has formed a new class of data model, the object-relational model.
Other data models are hierarchical and network data models.

In a relational model, a relation can be seen as a table of values where each row
represents a collection of related data. The table and column names help to interpret the
meaning of the data in each row. A row is called a tuple and a column header is called an
attribute. A relational schema is made up by a relational name and a list of attributes. The
relation of a relational schema is made up by a set of tuples where each tuple is an
ordered list of values.

Object oriented databases (OODB) addresses the need to be able to model more
complex structured object, and the need to being able to define nonstandard application-
specific operations. Those kinds of needs can be found in databases for CAD/CAM and
geographic information systems (GIS). A key feature of object-oriented databases is the
ability for the database designer to create objects with desired structure of complex
objects and the operations that can be applied on them. In an OODB the information is
stored as objects that correspond to real-world object. The objects are identified with a
unique system generated object identifier (OID). The OIDs can be compared to the
primary keys in the relational model. The main difference though, is that the OID are
managed by the object-oriented DBMS rather than as user defined keys.

3.2. Query languages

The Structured Query Language SQL

SQL is the standard query language for commercial relational database systems. It

provides a high-level declarative language interface, so the user only has to specify what
the result is to consist of. The DBMS takes care of the optimization of the query and
decides how to execute the query in the most efficient way. SQL has statements for data
definition, query and update, and other facilities such as being able to define integrity
constraints, views, security and authorization control, and transaction controls. The SQL
language is based mainly on tuple relational calculus and it borrows some of the features

2 A collection of concepts that can be used to describe the data types, relationship and constraints
that should hold for the data in a database.

 6

Importing XML Schema into an Object-Oriented Database Mediator System

from relational algebra. SQL uses a select-from-where construct for queries. The ANSI3
and ISO4 standard organizations both form the standard organ for SQL. The current
version of the SQL standard is SQL-99.

The Object Query Language OQL

The Object Data Management Group (ODMG) has proposed a query language,

Object Query Language (OQL), for their object model [24]. The query language has close
bindings to the common programming languages that have object oriented features such
as C++, Java, and Smalltalk. The syntax for QOL is similar to SQL with additional object
oriented features such as object identity, inheritance, polymorphism, and relationships,
etc. The lack of a standard of the object data model has imposed problems with
interoperability and portability. The creation of the standard for the ODMG’s object data
model, hopes to solve these problems. [25]

3.3. Mediators

Wiederhold originally proposes the mediator approach in [26]. Wiederhold offers a
definition on what a mediator is: “A mediator is a software module that exploits encoded
knowledge about certain sets of subsets of data to create information for a higher layer of
applications”. A mediator hides the complexities of different data sources by making it
appear to the user that the mediator database contains all the data, when in fact the
mediator itself is a virtual database connected to the different backend data sources, hence
making it transparent to the user. An alternative to a mediator system is the data
warehouse approach where information is regularly extracted from the heterogeneous
data sources and loaded into a central large database called a data warehouse [27].

3.4. Amos II system

Amos II (Active Mediator Object System) is an object-oriented mediator system
developed at the Uppsala Database laboratory (UDBL5) at Uppsala University in Sweden.
The purpose of the Amos II project is according to [7] to “develop and demonstrate a
mediator architecture for supporting information systems where applications and users
combine and analyze data from many different data sources.” Amos II consists of a
mediator database engine that can process and execute queries over data stored locally or
data scattered over several external data sources. Applications can access data from
distributed heterogeneous sources through one or several Amos II mediators. With
performance in mind, the core of Amos II has been designed as a main-memory DBMS
with a data manager optimized for main-memory access.

Amos II access data from external sources through wrappers. A wrapper is a
program module in Amos II that has particular facilities for query processing and
translation of data from a particular class of external data sources. A wrapper consists of
an interface to the external data source and a translation mechanism for translating
queries in AmosQL into function calls to the interface. [28]

3.4.1. AmosQL

AmosQL is an object-oriented query language based on OSQL [29] and DAPLEX
[30] with extensions of mediation primitives, multi-directional foreign functions, late
binding, and active rules etcetera. AmosQL is similar to the object-oriented parts of SQL-
99. Like SQL, AmosQL uses the select-from-where construct for queries. AmosQL is

3 American National Standard Institute.
4 International Standards Organization.
5 www.docs.uu.se/~udbl

 7

Background

relationally complete which means that it can express all the queries that can be expressed
in relational algebra. AmosQL is a combination of a Data Definition Language (DDL),
Query language and a Data manipulation Language (DML). [8] [9]

3.4.2. Amos II data model

The data model of AMOS II is an object-oriented extension of a functional data
model called Daplex [30]. The basic concepts of the AMOS II data model are objects,
types, and functions, see Figure 1 below.

Objects

All entities in an Amos II database are modeled as objects. Both the user defined

objects and the system objects are managed by the system. There are two main kinds of
representations of objects: literals and surrogates. A literal is a type that is a self-
described, system maintained object that does not have associated explicit object
identifier (OID), e.g. numbers and strings. Literal objects can also be collections of other
objects. The Amos II system supports two types of collections: 1-dimensional arrays
(vector) and unordered sets with duplicates (bag). Surrogate objects are characterized by
having OIDs, which are explicitly created and deleted by the system or the user.
Surrogate objects are used to represent real-world entities such persons. Surrogate objects
are also used to represent meta-objects such as functions as types. Literal and surrogate
objects persist in the database as long as they are referenced by any other object or by
external systems. Unreferenced objects are removed by an automatic garbage collector
[28].

Datatypes

The Objects in Amos II are classified into types. All objects are instances of some

types and the set of all instances of a particular type is called the extent of that type. The
types are organized in a multiple inheritance, supertype/subtype hierarchy. If an object is
an instance of a type, then it is also an instance of all the supertypes of that type; equally,
the extent of a type is a subset of the extent of a supertype of that type. A type that is
multiple inherited from other types has an extent that is the intersection of the extents of
its supertypes [8].

The Amos II data model provides four kinds of types6: stored, derived, proxy and
integration union types. The stored type is the regular type that is created by the create
type statement and have its extent stored locally in the database. The instances of a stored
object are maintained by the user [28].

Amos II has a system type hierarchy that consists of meta-types. A stored type is an
implicitly created as a sub-type to the meta-type UserObject. The general syntax for
creating a new stored type with AmosQL is:

create type <identifier>;

A stored type that is a subtype of another already defined type (supertype) is created with
the following syntax in AmosQL:

create type <identifier> under <supertype>;
where <supertypes> can be a comma-separated list of types, denoting multiple
inheritances. All supertypes have to be defined before their subtypes can be defined. [9]

6 Only the stored datatype will be dealt with in this document. For information about the other
datatypes, the reader is referred to section 4 in. [28]

 8

Importing XML Schema into an Object-Oriented Database Mediator System

Figure 1: Part of the system type hierarchy in Amos II. [8]

Numeric datatypes

Numeric datatypes in Amos II are instances either of the system types Integer or

Real, see Figure 1 above. The Integer and Real meta-types are sub-types of the system
type Number. All numeric datatypes are sub-types of Literal. The Integer datatype can
contain a signed 32 bits wide value. The floating point datatype in Amos II is a double-
precision real number, see Figure 2 below.

Amos II literals: Min Value Max value
Integer (32 bits) -2147483648 2147483647
Real IEEE double-precision 64-bit floating point type

Figure 2: Numeric datatypes in Amos II.

String datatypes

There is one string datatype in Amos II, Charstring. It is implemented as an array

of bytes; therefore it can store an arbitrary long sequence of bytes.

Time and date datatypes

Amos II supports three data types for time and date: Time, Timeval, and Date [9].

• Timeval - is for specifying absolute time points including year, month, and

time-of-day. Timeval has the properties: time, date, second, minute, hour, day,
month and year.

• Date - specifies just year and date. The dates that can be represented by the
datatype Date have to be in the interval: 1970-01-01< date < 2038-01-20.
Date has the properties year, month and day.

• Time - specifies time of day and has the properties second, minute and hour.

 9

Background

A limitation is that the internal operating system representation is used for
representing Timeval values, which means that one cannot specify a date outside the
interval: 1970-01-01< date < 2038-01-20.

3.4.3. Functions

Functions model object attributes, methods, queries, and relationships. Functions
are instances of the meta-type function. The functions can be classified into different
categories depending on their implementation: stored-, derived-, foreign- and proxy
functions, and database procedures. Functions in Amos II can be overloaded i.e. have
different implementations (resolvents) for functions with the same name but with
different arguments [28].

A function consists of a signature and an implementation. The signature defines the
type(s), the optional name(s) of the argument(s), and the result of a function. For
example, to model an attribute “name” of an object “person” the following stored
function is defined using AmosQL:

create function name(Person)->Charstring as stored;

The implementation specifies how to compute the result of a function given the

argument values [8].

Stored function

Stored functions represent properties (attributes) of objects stored in the database.

Stored functions represent data stored in a database as tables in a relational database do.
Stored functions can be used to model relationship between objects [8].

Derived function

Derived functions are functions defined in terms of object-oriented queries over

other AMOSQL functions. Derived functions cannot have any side effects. When a
derived function has been defined, a query optimizer optimizes its definition. Derived
functions correspond to side-effect free methods in object-oriented models and views in
relational databases [28].

Example in AmosQL:

create function age(Person p)->Integer as
select current_year() - born(p);

Foreign functions

Foreign functions are implemented in the programming languages Java, Lisp, or C

and can be used to extend Amos II with new datatypes and functionalities. Foreign
functions can be multidirectional, which means that the system is able to inversely
compute one or several argument values if the expected result value is known. Foreign
functions make it possible for Amos II to access external system, where they can for
example manipulate and update data structures. Foreign functions are realized through the
callout interface and must be side effect free if used in queries. If a foreign function has a
side effect, it should be used as a stored procedure not inside a query since there is no side
effect detection mechanism currently implemented in Amos II.

The callin interface is similar to the call level interfaces for relational databases,
such as ODBC, JDBC, etc. The callin interface is used when external programs written in

 10

Importing XML Schema into an Object-Oriented Database Mediator System

Java, C, or Lisp call Amos II. The callout interface makes it possible for AmosQL
functions to call external functions written in Java, C, or Lisp.

A foreign function is defined in AmosQL using the following syntax for a foreign
function implemented in Java:

create function <function name>(<argument declaration>)-> <result
declaration> as foreign ‘JAVA:<class file>/<method>;

<function name> is the name of the function, <argument declaration> is the

declaration of the arguments to the foreign function, <result declaration> is the
declaration of the result, <class file> is the name of the class where the method is
implemented and <method> is the name of the entry point for the foreign function
implemented in Java. If the class is in a package, it is specified by the package name and
class file separated with a “.”.

The signature for a foreign function implemented in Java is:

public void foreignfunction(CallContext cxt, Tuple tpl) throws
AmosException;

Where CallContext is a data structure that manages the function call and Tuple is

representing both arguments sent to the function and the results returned by it.
An optional cost hint can also be declared for a foreign function. The cost hint is an

estimate of the cost to execute the function and is used by the query optimizer to choose
the most efficient way to execute a query where a foreign function is involved [10].

3.5. XML

XML is a markup language for documents containing structured information. The
XML specification is maintained by the W3C. The driving force behind XML and other
similar technologies is the desire to exchange information in an open and nonproprietary
manner. XML is a meta-language for describing markup languages and specifies neither
semantics nor a tag set. It merely provides a facility to define tags and the structural
relationships between them. The semantics of an XML document is defined by the
processing application.

XML was created because at the time existing technology for describing document
structure, Standard Generalized Markup Language (SGML) [31], was too hard to
implement and too large for just presenting structured documents on the web. HTML [2]
is a markup language that is designed to present information on the web. However,
HTML does not have the ability to store data and metadata. SGML provides a common,
but rather complex, format for defining and exchanging markups between systems that
might not share the same markup language, XML which is a subset of SGML, takes the
best features of SGML allowing it to marking up data in a standard, generalized way, but
strips out the complexities that make SGML hard to implement. [32]

3.5.1. Well-formed XML documents

An XML document is considered being well-formed if it conforms to the XML
syntax. An XML document is by definition well-formed. Hence, if a document is not
well-formed it is not XML.
An XML document must conform to following syntax rules [33]:

• must begin with the XML declaration
• must have one unique root element
• all start tags must match end-tags
• XML tags are case sensitive

 11

Background

• all elements must be closed
• all elements must be properly nested
• all attribute values must be quoted

3.5.2. Valid XML documents

XML instance documents can be well-formed and still contain errors. For an XML
instance document to be valid, it has to contain a proper Document Type Declaration7 and
conform to the constraints declared within. Most commonly, the constraints are expressed
as a DTD definition or an XML Schema definition. The DTD definition language is a part
of the XML recommendation and is inherited from SGML. DTD definition makes it
possible to define the structure of an XML document. Making sure that an XML instance
document is valid significantly improves the quality of document processing. Several
tools for validating XML instance documents are available both as stand-alone programs
and as programmatic APIs. An XML instance document that conforms to a particular
XML Schema definition is said to be an XML instance document of that particular XML
Schema definition.

3.5.3. XML namespaces

To make it possible to reuse previously defined markup vocabulary that has been
previously defined, and eliminate the problems with name collisions for elements and
attributes, W3C have introduced XML namespace [34]. The XML namespaces
recommendation defines a way to distinguish between duplicate element type and
attribute names. A namespace in XML is a collection of element type and attribute names
identified by a unique URI. An element or attribute can uniquely be identified by a name
that consists of two parts: the name of the namespace and the local name. The two-part
name is referred to as a qualified name. [34]

An example of a well-formed, valid XML document is shown below in Figure 3.
The document conforms to an XML Schema definition, DCMDAddr.xsd, which is a part
of the XBench benchmark family.

<?xml version="1.0" encoding="UTF-8"?>
<addresses xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="DCMDAddr.xsd">
 <address id="1">
 <street_address>Department of Information
 Technology</street_address>
 <street_address>Lägerhyddsvägen 2</street_address>
 <name_of_city>Uppsala</name_of_city>
 <name_of_state>Uppland</name_of_state>
 <zip_code>751 05</zip_code>
 <country_id>89</country_id>
 </address>
 <address id="3">
 <street_address>Uppsala University School of
 Engineering</street_address>
 <street_address>Lägerhyddsvägen 1</street_address>
 <name_of_city>Uppsala</name_of_city>
 <name_of_state>Uppland</name_of_state>
 <zip_code>751 21</zip_code>
 <country_id>89</country_id>
 </address>
</addresses>

Figure 3: An example of a well-formed XML document.

7 The Document Type Declaration must not be confused with the Document Type Definition. The
former is used to identify and name the XML content, where as the latter is used to validate the
metadata contained within [32].

 12

Importing XML Schema into an Object-Oriented Database Mediator System

3.6. XML Schema

The XML Schema is a set of recommendations from the W3C. The XML Schema
provides means for defining the structure, content and semantics of XML instance
documents. With XML Schema definitions, it is possible to model how the data in the
XML instance document is to be represented and how data is related to each other i.e.
parent/child, sibling relationship. The XML Schema definition language also makes it
possible to define the datatypes of the data and is extensible because it is composed of
XML-syntax. The predecessor DTD definition language, is composed of non-XML
syntax, hence it is non-extensible which implies that it will constrain the evolution of
XML. The XML Schema definition language has support for namespaces, which the
predecessor has not. XML Schema definition language is a key component of Web
Services specifications such as SOAP8 and WSDL9 [41], and is widely used to describe
XML vocabularies precisely. The current recommendation, version 1.0, is from May
2001 and work on the next recommendation, version 1.1, is in progress. The XML
Schema recommendation is rather extensive so the background information given here
will only contain the most necessary parts for this thesis.

Figure 4 below shows the XML Schema definition DCMDAddr.xsd, a schema that
is included from the XBench benchmark family.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="street_address" maxOccurs="2"
 minOccurs="2"/>
 <xs:element ref="name_of_city"/>
 <xs:element ref="name_of_state"/>
 <xs:element ref="zip_code"/>
 <xs:element ref="country_id"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:long" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="addresses">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="address" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="country_id" type="xs:int"/>
 <xs:element name="name_of_city" type="xs:string"/>
 <xs:element name="name_of_state" type="xs:string"/>
 <xs:element name="street_address" type="xs:string"/>
 <xs:element name="zip_code" type="xs:string"/>
</xs:schema>

Figure 4: An XML Schema definition from the XBench benchmark family.

The XML Schema recommendation consists of three parts that are all publicly
available via the Internet10:

8 SOAP provides the definition of the XML-based information which can be used for exchanging
structured and typed information between peers in a decentralized, distributed environment,
http://www.w3.org/2000/xp/Group/
9WSDL, Web Services Description Language, an XML language for describing Web services
http://www.w3.org/2002/ws/desc/
10 http://www.w3.org/XML/Schema

 13

Background

• XML Schema Part 0: Primer - a non-normative document that intends to
provide a straightforwardly comprehensible description of the XML Schema
definition language. [3]

• XML Schema Part 1: Structures – a normative document that specifies the
XML Schema definition language, which offers facilities for describing the
structure and constraining the contents of XML 1.0 documents. [4]

• XML Schema Part 2: Datatypes – a normative document that defines facilities
for defining datatypes to be used in XML Schema definitions. [5]

3.6.1. Validation

XML Schema definitions are most commonly used to validate XML instance
documents. Several available XML parsers and programs offer validation against XML
Schema definitions as an option. A validating parser ensures that the XML instance
document conforms to a specified XML Schema definition by controlling its structures
and datatypes against the definitions in the XML Schema, see Figure 5 below. Xerces2 is
a fully compliant XML parser from the Apache11 community of open-source software
projects. It has implementations in C++ and Java. Another compliant XML parser is
MSXML from Microsoft12. Other validation parsers and programs are listed on the web
site of W3C13.

Figure 5: Validation of an XML instance document.

3.6.2. Structures

A XML Schema definition consists of different schema components divided into
three groups: Primary-, Secondary- and Helper-components [4]. The primary components
are necessary for the XML Schema definition language. Hence, the primary components
are essential to this thesis. The primary component group consists of:

• Simple type definitions
• Complex type definitions
• Attribute declarations
• Element declarations

An XML Schema definition is always defined between the root element tag

<schema> and </schema>. Elements defined directly under the root is said to be global
whereas when an element is defined as a sub-element is considered being local. The style
of defining elements on a local level is often referred to as a Russian doll design [6].
Global definitions can be referenced directly in an element definition using the type
attribute. Using such a design with global elements, give the XML Schema definition a
modularity that the Russian doll design does not offer. All global definitions have to have
names; however, local elements can be defined with or without names. Elements defined

11 http://www.apache.org
12 http://www.microsoft.com
13 http://www.w3.org/XML/Schema

 14

Importing XML Schema into an Object-Oriented Database Mediator System

without names are called anonymous and the elements with a name named. All elements
that are defined with the <element> element will be visible tags in the XML instance
document. [4]

Simple type definitions

Simple types describe the contents of text nodes or attribute values and are

independent of other nodes, thus independent of the XML markup. A simple type can
only contain character data and no elements and cannot have any attributes. There are
three means in the XML Schema definition language to define custom datatypes that use
the built-in datatypes as a starting point: derivation by restriction, derivation by list and
derivation by union [6]. When a datatype is derived by restriction, using available facets
or regular expressions, it merely adds constraints and keeps the semantic and meaning of
the original datatype it is derived from. A datatype that is derived by list has the semantic
of a list and contains a list of values belonging to a datatype. The datatypes that are
derived by union allows for having values belonging to different datatypes. Figure 6
defines a simple datatype named farenheitWaterTemp that is derived by restriction from
the built-in datatype xs:number, it has two fractional digits and the value has to be in the
interval
0.00 < value < 100.00.

<xs:simpleType name="farenheitWaterTemp">
 <xs:restriction base="xs:number">
 <xs:fractionDigits value="2"/>
 <xs:minExclusive value="0.00"/>
 <xs:maxExclusive value="100.00"/>
 </xs:restriction>
</xs:simpleType>

Figure 6: A simpleType definition derived by restriction. [4]

Complex type definitions

A complex type defines constraints of the XML markup. A complex type can have

different content models; complex when only sub-elements are expected, simple when
only text nodes are expected, mixed when both text nodes and sub-elements can exist, or
empty when only attributes are accepted [6]. Hence, the content model specifies which
text nodes and sub-elements that an element can contain. There are two main ways to
define a complex type: one for complex content models and one for simple content
models. Simple content complex types are created by extending a simple type with
attributes. There are two different ways to extend a complex type with a simple content
model: derivation by extension and derivation by restriction. A derivation by extension
merely adds an attribute to base type it is extending and cannot restrict the datatype of the
text node nor the type of an attribute defined in its base type. However, a derivation by
restrictions offers those facilities and can remove attributes that are not compulsory in the
base type. Derivation of a complex type with a complex, mixed or empty content model
is also possible through extension and restriction. Figure 7 shows a complexType
definition with complex content model. [6]

<xs:complexType name="PurchaseOrderType">
 <xs:sequence>
 <xs:element name="shipTo" type="USAddress"/>
 <xs:element name="billTo" type="USAddress"/>
 <xs:element ref="comment" minOccurs="0"/>
 <xs:element name="items" type="Items"/>
 </xs:sequence>
 <xs:attribute name="orderDate" type="xs:date"/>
</xs:complexType>

 15

Background

Figure 7: A complexType definition with a complex content model. [4]

Element declaration

An element declaration is an association of a name with either a simple or complex

type definition. The association can be either global with the ref attribute or scoped to a
containing complex type definition. Element declaration will appear as tags in the XML
instance document. Figure 8 shows two different element declarations.

<xs:element name="PurchaseOrder" type="PurchaseOrderType"/>

<xs:element name="gift">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="birthday" type="xs:date"/>
 <xs:element ref="PurchaseOrder"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Figure 8: XML representations of two different types of element declaration. [4]

Attribute declaration

Elements in an XML Schema definition can have attributes. This is indicated with

the <attribute> element. An attribute can only be associated with a complex type, either
explicitly or with a reference with the ref attribute. Figure 9 shows how an element
address is defined as having an attribute id.

<xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="street_address" maxOccurs="2" minOccurs="2"/>
 <xs:element ref="name_of_city"/>
 <xs:element ref="name_of_state"/>
 <xs:element ref="zip_code"/>
 <xs:element ref="country_id"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:long" use="required"/>
 </xs:complexType>
</xs:element>

Figure 9: Use of an attribute definition in a complex type definition.

Built-in datatypes

The XML Schema definition language defines a wide set of built-in simple

datatypes. The datatypes are grouped into two groups: Primitive datatypes and Derived
datatypes. The primitive datatypes are a smaller set of datatypes that have a specific
meaning and semantic that cannot be derived from other datatypes. Derived datatypes are
types derived from those primitive datatypes [6]. Currently the set of built-in datatypes in
the XML Schema recommendation consists of 19 primitive and 25 derived datatypes. The
derived datatypes are mostly derived by restriction, although some are derived by list, see
Figure 10. None of the current built-in datatypes are derived by union.

 16

Importing XML Schema into an Object-Oriented Database Mediator System

Figure 10: Built-in Datatype Hierarchy. [5]

The recommendation “XML Schema Part 2: Datatypes” defines the properties and
behavior of each one of the built-in simple datatypes. It makes a distinction between the
lexical space and the value space of the datatype. The lexical space defines the set of
valid characters for a datatype used in the XML instance document. The value space is
the set of values for a datatype. In some cases, the value space and the lexical space for a
datatype are the same, and in sometimes they differ. For example, the value 3.1415 can be
entered as 3.1415 or 31415E-4 for the built-in float datatype. [5]

Below follows a listing of the built-in simple datatypes with a short description.
For the complete definition of the built-in simple datatypes, the reader is referred to the
recommendation. [5] [6]

String datatypes

The string datatypes are derived from or have similar behavior as the simple built-

in datatype string.

Primitive types:

• string – Its lexical space consist of tab, carriage return, line feed, and the legal

characters of Unicode and ISO/IEC 10646. Its value space is the set of finite-
length sequences of characters from its lexical space. Derived type:
normalizedString

 17

Background

• QName – Supports the use of XML namespace-prefixed names. It consists of a
namespace part, anyURI, and a local part, NCName, separated with a colon ‘:’.
The namespace part is optional and can be left out.

• anyURI – Represents a Uniform Resource Identifier, URI.
• NOTATION – Implements XML 1.0 second edition attribute NOTATION, can

only be used in user-defined types.
• hexBinary – Used to string-encode binary content in an XML instance

document. The value space is the set of finite-length sequences of bytes.
• base64Binary - Used to string-encode binary content in an XML instance

document. The value space is the set of finite-length sequences of bytes.

Derived types:

• normalizedString – Derived from string, any occurrence of tab, linefeed or

carriage return is replaced by space.
• token – Derived from normalizedString, trailing spaces are removed and

continuous sequences of spaces are replaced with single spaces. Derived types:
language, Name, NMTOKEN.

• language – Derived from token, accepts the standardized language codes in
RFC 1766.

• Name – Derived from token, must start with a letter or the characters ‘:’ or ‘-‘.
Derived type: NCName

• NMTOKEN – Derived from token, a single name token that consist of a set of
allowed characters. Derived types: NMTOKENS.

• NCName – Derived from name, specifies a Name without a colon ‘:’. Derived
types: ID, IDREF, ENTITY.

• ID – Derived from NCName, no duplicate of an ID can exist in an instance
document. Hence, NCName can be used as a unique identifier in an instance
document.

• IDREF – Derived from NCName, a reference to an ID, that must exist, in the
same document. Derived type: IDREFS.

• ENTITY- Derived from NCName, must match an unparsed14 entity in a DTD.
Derived type: ENTITIES.

Numeric datatypes

Four primitive datatypes can be categorized as numeric datatypes.

Primitive types:

• decimal - Arbitrary long decimal number. Derived type: integer
• float - IEEE 32 bits floating-point.
• double - IEEE 64 bits floating-point.
• boolean - Valid literals are true, false, 1 and 0.

Derived types:

The derived numeric datatypes are presented in Figure 11 below with their

minimum and maximum values. For derivates for each datatype see Figure 10.

14 http://www.w3.org/TR/2000/WD-xml-2e-20000814#dt-unparsed

 18

Importing XML Schema into an Object-Oriented Database Mediator System

Type: Minimum value: Maximum value:
integer -INF INF
nonPositiveInteger -INF 0
negativeInteger -INF -1
nonNegativeInteger 0 INF
positiveInteger 1 INF
long (64 bits) -9223372036854775808 9223372036854775807
int (32 bits) -2147483648 2147483647
short (16 bits) -32768 32767
byte (8 bits) -128 127
unsignedLong (64 bits) 0 18446744073709551615
unsignedInt (32 bits) 0 4294967295
unsignedShort (16 bits) 0 65535
unsignedByte (8 bits) 0 255

Figure 11: Derived numeric datatypes.

Date and time datatypes

The recommendation consists of a set of nine primitive datatypes for describing

time [6]. The time datatypes relies on a subset of the standard ISO 8601, which is a
solution from ISO for the confusion between different time and date formats around the
world.

• duration – Represents a duration of time in the format PnYn MnDTnH nMnS

where nY is the number of years, Mn is the number of Months and so on.
• dateTime – Defines a point in time in the format CCYY-MM-DDThh:mm:ss,

where CC denotes century, YY year, MM month, DD date, hh hour, mm
minute ,ss second. The letter T separates the date from the time part. The
dateTime datatype also has an optional factional part for the seconds and a time
zone.

• time – Represents a reoccurring point in time in the format hh:mm:ss with an
optional time zone part.

• date – Represents a date in the format CCYY-MM-DD with an optional time
zone part.

• gYearMonth – Represents a year and a month in the Gregorian calendar in the
format CCYY-MM with an optional time zone part.

• gYear - Represents a year in the Gregorian calendar in the format CCYY with
an optional time zone part.

• gMonthDay - Represents a month and a day in the Gregorian calendar in the
format --MM-DD with an optional time zone part.

• gDay - Represents a day in the Gregorian calendar in the format ----DD with
an optional time zone part.

• gMonth - Represents a month in the Gregorian calendar in the format --MM
with an optional time zone part.

List types

There are currently three list datatypes in the XML Schema recommendation. Each

one of them specifies a set of infinite, non-zero-length sequences of an IDREF, ENTITY
or NMTOKEN. The three list datatypes are IDREFS, ENTITIES and NMTOKEN [6].

 19

Background

3.6.3. Namespaces in XML Schema

The XML Schema definition language offers support for namespaces to distinguish
between different XML Schema definition vocabularies. Assigning attributes, elements,
simple and complex types to a namespace is done by adding a prefix. The prefix is
considered being a local shortcut for the URI, which is the real identifier for the
namespace. If the prefix is left out, the elements do not belong to any namespace or they
belong to the default namespace if such is defined. The default namespace does not apply
to attributes. The definitions of the namespace prefixes are done as an attribute in the
<schema> element. [6]
Examples:
Defining a default namespace:
<schema “xmlns=http://www.w3.org/2001/XMLSchema“....>...</schema>
Assigning a namespace to a prefix:
<schema “xmlns:udbl=http://user.it.uu.se/~udbl/“....>...</schema>
The targetNamespace attribute is used to define which namespace a schema describes:
<schema targetNamespace=“udbl=http://user.it.uu.se/~udbl/“....>
...</schema>

3.7. Benchmarks

There have been five different benchmarks proposed to test the efficiency of XML
databases. They all have different approaches about how to measure efficiency. The
different benchmarks can be classified into two groups: Application-level benchmarks
and Micro benchmarks. The former focus on mimicking real world applications such as
web applications whereas the latter concentrates on the basic query evaluation operations
such as selections, joins and aggregations. The application-level benchmarks are valuable
for testing and comparing how different XML databases system would perform against
data and queries in a targeted XML application. Micro benchmarks invaluable
engineering tools to measure the performance of individual operators and access methods
[35].

3.7.1. XBench

XBench is a family of benchmarks from the University of Waterloo that recognizes
that different applications require different benchmarks. It characterizes database
applications along two dimensions: data characteristics and application characteristics.
An application can be either data-centric or text-centric. Data-centric applications deal
with data that might not originally be in XML, such as data for an e-commerce catalog or
transactional data captured as XML. Text-centric applications handle actual text data
natively encoded as XML instance documents such as dictionaries or book collections in
a digital library. XBench generates text-centric and data-centric XML instance documents
that conform to XML Schema definitions and DTD definitions. The XML Schema
definitions, DTD definitions and workload queries specified in XQuery15, are included in
the benchmark that can be downloaded from the web [12].

3.7.2. XMach-1

XMach-1 generates XML data that models data from particular Internet
applications. The data in XMach-1 is based on a web application that consists of text
documents, schema-less data, and structured data. The data is generated with the help
DTD definitions [36].

15 http://www.w3.org/TR/xquery/

 20

Importing XML Schema into an Object-Oriented Database Mediator System

3.7.3. Xmark

The data in XMark is based on an Internet auction application that consists of fairly
structured and data-oriented parts. It uses an XML data generator called xmlgen that
generates documents according to a DTD definition [37].

3.7.4. XOO7

XOO7 is a benchmark for evaluating query-processing capabilities for XML
management systems. It is an XML version of OO7, which is a benchmark for object-
oriented database systems. The OO7 schema and instances are mapped into a DTD
definition and eight queries translated into three different query languages [38].

3.7.5. The Michigan Benchmark

The Michigan benchmark is a micro benchmark that focuses on basic query
evaluation operations such as selections, joins and aggregations. It primarily attempts to
capture the rich variety of data structures and distributions possible in XML without
mimicking any particular application. The benchmark specifies a single data set, which
conforms to an XML Schema definition, against which carefully specified queries can be
used to evaluate system performance for XML data with various characteristics [39].

 21

Realization

Chapter 4

Realization

This chapter describes solutions to faced questions and problems when importing
an XML Schema definition into an object-oriented database mediator system. Some
solutions are based upon the background from the previous chapter.

4.1. Importing an XML Schema

The XML Schema recommendations that W3C provides split the definition
language into two separate parts. The parts are the XML Schema part 1: Structures
recommendation [4] and the XML Schema part 2: Datatypes recommendation [5]. Hence,
the XML Schema definition language is about both structure and datatyping which in fact
are relatively independent from each other. In addition, there is a big difference between
the simple types, which deal with constraining content of the leaf nodes in an XML
instance documents and complex types, which are about defining the structure of
documents. A separation between translating structure and mapping datatypes in an XML
Schema definition also seems appropriate to use in the tool architecture where it is
possible. The tool needs to translate the structure of an XML Schema definition into an
object-oriented database mediator database schema in a way that reflects the intended
meaning of XML Schema definition. The declared datatypes therein also needs to map to
corresponding datatypes in the mediator. It is vital to recognize that importing an XML
Schema definition into an object-oriented database mediator system is only concerned
with the data that the XML Schema definition represents and not the physical structure of
the XML Schema definition document [21]. Hence, the tool needs to bind the XML
instance document to a database schema in the mediator using schema definition
statement used by the mediator.

A challenging topic is how the tool will describe the XML Schema definition
language in the object-oriented mediator database data model. The first thing to do is to
identify the components that govern the data model of an XML Schema definition, which
consists of different components classified in different groups accordingly to XML
Schema part 1: Structures recommendation [4]. The groups are Primary- Secondary- and
the Helper-components. The primary components are necessary for the XML Schema
definition language and hence, the tool focuses on translating the primary components
group, which contains:

• simple- and complex type definitions.
• attribute- and element declarations.

The prototype tool generates translations accordingly to translation rules and these

translations will extend the representation of the XML Schema definition in the database
schema successively using related programming structures known to the mediator. In
addition, the prototype tool performs the mapping of datatypes in the XML Schema
definition to datatypes used by the database mediator. The mapping is as straightforward
as possible but when no appropriate mapping is available, the tool needs other solutions.

Since an XML Schema definition is object-oriented in nature, a mediator system
that shows the same behavior is preferable. The Amos II system is truly an object-
oriented database mediator system that is publicly available. The Amos II system
supports an advanced object-oriented query language called AmosQL and the prototype

 22

Importing XML Schema into an Object-Oriented Database Mediator System

tool can use the programming structures of AmosQL to perform the importation of XML
Schema definitions into the Amos II system.

4.2. Analyzing the XML Schema files in XBench

The XML Schema definitions included in the XBench benchmark consist of nine
XML Schema definitions: DCMDAddr.xsd, DCMDAuth.xsd, DCMDCoun.xsd,
DCMDCust.xsd, DCMDItem.xsd, DCMDOrd.xsd, DCSD.xsd, TCMD.xsd and TCSD.xsd.
The majority of the XML Schema definition files define a document-centric (DCxx)
XML structure and only two XML Schema definitions define a text-centric (TCxx)
structure. The analysis is done by carefully reading the XML Schema definitions and
looking for structures, models and datatypes that are used. The result will be used as a
basis for the mapping of the datatypes and when writing the translation rules of the
structures.

4.2.1. Namespace

None of the XML Schema definitions uses any other namespace than their default
namespace, “http://www.w3.org/2001/XMLSchema”.

4.2.2. Structures

The document-centric XML Schema definitions are written with modularity in
mind; hence they do not use the Russian doll design. Elements are defined on global level
and elements within complex types reference those with the ‘ref’ attribute. The content
models used for the complex types are sequence, all, choice and mixed. Only anonymous
complex and simple types are used, i.e. declared within an element declaration [6]. The
only derivation that is used is by restricting simple built-in types.

4.2.3. Datatypes

The analysis of the datatypes used in the XML Schema definitions shows that the
majority are user-defined datatypes, i.e. complex or simple types or global elements [6].
The most common built-in simple type is the string datatype. The result of the analysis is
presented below as a pie chart, see Figure 12, and a table with the actual number of
occurrences of each datatype are shown in Figure 13.

User defined
xs:string
xs:byte
xs:date
xs:dateTime
xs:decimal
xs:ID
xs:IDREF
xs:int
xs:long
xs:short

Figure 12: Datatypes used in the XBench benchmark’s XML Schema definitions.

 23

Realization

Datatype: Occurrence:
User-defined 186
xs:string 91
xs:decimal 22
xs:date 14
xs:long 9
xs:int 6
xs:byte 5
xs:short 5
xs:dateTime 2
xs:ID 2
xs:IDREF 2

Figure 13: Datatype occurrences in
numbers.

The major effort will be put into
creating mappings for the most numerous
datatypes. The mappings should be as near
as possible to the defined system types in
the Amos II system, see Figure 1. The
reason for doing this is that it is the best
way of preserving the good performance of
the of the Amos II system. The user-
defined types, which are the most
numerous, are handled by the translation
rules which are described below. The user-
defined types cannot be mapped directly to
literal system types in the Amos II system
since they have no equivalent. Instead they
are Types in the Amos II system with a
behavior.

4.3. Translation rules

The following is a presentation over the translation rules that the tool uses to
import an XML Schema definition into the object-oriented mediator system Amos II. The
existing translation rules are given and examples in AmosQL syntax show how the tool
would translate an XML Schema definition statement using a relevant rule and Amos II
programming structure into the Amos II mediator system. Most of the example
statements are contained in the XML Schema definition file DCSD.xsd, which is from the
XBench benchmark suite. Figure 14 below shows a partial extract from that file.

<?XML version="1.0" encoding="UTF-8"?>
<xs:schema XMLns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="FAX_number" type="xs:string"/>
 ...
 <xs:element name="author">
 <xs:complexType>
 <xs:all>
 <xs:element name="name">
 <xs:complexType>
 <xs:all>
 <xs:element ref="first_name"/>
 <xs:element ref="middle_name"/>
 <xs:element ref="last_name"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element ref="date_of_birth"/>
 <xs:element ref="biography"/>
 <xs:element name="contact_information">
 <xs:complexType>
 <xs:all>
 <xs:element name="mailing_address">
 <xs:complexType>
 <xs:all>
 <xs:element ref="street_information"/>
 <xs:element ref="name_of_city"/>
 <xs:element ref="name_of_state"/>
 <xs:element ref="zip_code"/>
 <xs:element name="name_of_country" type="xs:string"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element ref="phone_number"/>

 24

Importing XML Schema into an Object-Oriented Database Mediator System

 <xs:element ref="email_address"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 </xs:all>
 </xs:complexType>
 </xs:element>
 ...
</xs:schema>

Figure 14: Part of DSCD.xsd from the XBench benchmark suite.

The first rule creates a user-defined type [9] in the database schema for a global
element declaration in the XML Schema definition:

Rule 1. For every <element> element information item that has the <schema> element
formation item as its parent a new type is created.

Assume, from Figure 14, the following element declaration:
<xs:element name="FAX_number" type="xs:string"/>

This element declaration and several other element declarations have the <schema>
component as parent and therefore, are global element declarations [3]. All global
element declarations can be root in an XML instance document and thus must be a type in
the Amos II system. Rule 1 would instruct Amos II to extend the database schema, using
AmosQL [8] [9], with a new type named FAX_number. The new type is set to be a
subtype of the user-defined type XML.
create type FAX_number under XML;

The extent of the type XML in the database schema will be all created types completed by
tool. This can be useful if sub-types of XML must be identified.

The second rule creates a property function [8], instead of a type, based on a type
definition of an element and adds it to the database schema:

Rule 2. For every global element definition, E with a given type [attribute] creates a
property function with signature E (E) ->E.

Consider the same element declaration as above:
<xs:element name="FAX_number" type="xs:string"/>

Rule 2, instructs the Amos II system to dynamically create a property function named
FAX_number with a FAX_number object as argument and returning the built-in type
Charstring. In AmosQL this can be expressed as:
create function FAX_number(FAX_number) -> charstring as stored;

For built-in type definitions in the XML Schema definition language, i.e. string, integer,
duration etc, a mapping is performed. How the mapping is performed is described under
section 4.4.

The third rule creates a user-defined type in the database schema for each global
element declaration in the schema:

Rule 3. For every <element> element information item that is defined as a
<complexType> and has <complexType> as ancestor, a new type is created.

Assume, from Figure 14the following element declaration:
<xs:element name="name">

When rule 3 is applied a new type, name will extend the database schema:

 25

Realization

create type name under XML;
The fourth rule would then create containment functions based on the element type

definitions and add this to the database schema:

Rule 4. For every element declaration E, defined as a complex type that is contained
within another complex type definition E1 a containment function is created with
signature E (E1) -> E. It returns the sub-element E of a given parent element E1.

When rule 4 is applied on the element declaration Amos II dynamically adds the function:
create function name(author) -> name as stored;

When the tool creates the Amos II statements, the declaration of the complex type
definition will be used for the parent element. The reason for this is, that definitions
themselves will not be completely visible in the instance document only the declarations.
The visible parts of a definition are the order of its sub-elements.

When a schema contains a local declaration defined as a built-in type a property
function will be created. The rule below explains what happens:

Rule 5. Every element declaration E that represents a built-in type and also is part of a
complex type definition E1 creates a property function with signature E (E1) -> E on the
parent element E1. It returns the value of E contained in a given object E1.

The tool would use rule five when the following declaration from Figure 14 is
encountered.
<xs:element name="name_of_country" type="xs:string"/>

The result from applying rule 5 to this element declaration is an Amos II property
function on the parent element.
create function name_of_country(mailing_address) -> charstring as
stored;

Figure 14 contains many examples of declaring local elements using the ref

attribute. A ref attribute can be used to refer to other global element declarations. This
means that the referred elements must be created as types at some point by the tool, since
they are global. When the tool encounters the local elements declarations using the ref
attribute, the following rule is used:

Rule 6. For every element declaration E, declared with the ref [attribute], which is
contained within another complex type definition E1 a containment function is created
with signature E (E1) -> E. It returns the sub-element E of a given parent element E1.

The following statement is taken from Figure 14:
<xs:element ref="first_name"/>

Accordingly to rule 6 the following Amos II containment function is created:
create function first_name(name) -> first_name as stored;

The tool does not create a type for first_name here, instead it creates a function. The type
is either already created, if the declaration of first_name occurred before the ref
declaration, or will be created later when the tool encounters the global element
declaration for first_name.

<?XML version="1.0" encoding="UTF-8"?>
<xs:schema XMLns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 ...

 26

Importing XML Schema into an Object-Oriented Database Mediator System

 <xs:element name="height">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:decimal">
 <xs:attribute name="unit" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 ...
</xs:schema>

Figure 15: Another part of DCSD.xsd from the XBench benchmark suite.

Components in the XML Schema definition that describe elements with attributes
are always complex types, which contain an attribute declaration [6]. The attribute itself
consists of a declaration containing its definition, which is a simple type. If an element
declares an attribute, the tool will use rule 7 below.

Rule 7. Every defined attribute declaration A that is part of a complex type definition E
creates an attribute function. The name of the function is also named A and its signature
is A(E) -> A.

Consider the following statement taken from Figure 15:
<xsd:attribute name="unit" type="xs:string" use="required"/>

The tool will create the attribute function named unit and the database schema is extended
by Amos II with:
create function unit(height) -> charstring as stored;

This represents values of the attribute unit for objects of type height.

Figure 15 also shows an example of the inheritance mechanism in the XML
Schema definition language using the extension component. Amos II also has this
mechanism but does not allow extension of primitive types into new user defined types.
This would have been useful in this case. For cases where elements are declared as
extensions of built-in types in an XML Schema definition, the tool will translate the
extension component as a definition of height as being of type decimal. Hence, the tool
creates a property function (Rule 2) in Amos II on the object height:
create function height(height) -> real as stored;

<xs:schema>
 ...
 <xs:element name="student" type="student"/>
 ...
 <xs:complexType name="student">
 <xs:complexContent>
 <xs:extension base="person">
 ...
 </xs:complexType>
 ...
 <xs:complexType name="person">
 <xs:sequence>
 ...
 </xs:sequence>
 </xs:complexType>
 ...
</xs:schema>

Figure 16: An example using the extension component.

If the extension is defined as the extension of a user-defined type on the other hand,
a translation to Amos II is possible. Rule 8 shows this as:

 27

Realization

Rule 8. For every defined extension E1, defined as a complex type, which has a complex
type E as ancestor an extension of E with E1 is created. It has signature E under E1.

The element declaration student, from Figure 16 above, is an example of an extension of
a complex type person. Student is defined as the extension of the complex type person. In
such a case the type person must also be defined as a complex type somewhere in the
XML Schema definition. The tool will create the following Amos II type:
create type student under person;

It is most likely that at some stage, the tool will create a set of functions for the super type
person. In Figure 16 above, the tool creates the functions for person after the creation of
student because the definition of person follows the definition of student. The other way
around, i.e. the XML Schema definition defines person before student is also a possible.
Because of the inheritance mechanisms in the Amos II system, the inherited functions
from the super type person for the sub type student will be correct. The prototype tool has
to make sure though, that the mediator system creates the super type before it creates a
sub type for this to work.

4.4. Mapping XML Schema built-in datatypes to Amos II datatypes.

The XML Schema definitions included in the XBench benchmark only use a subset
of the built-in datatypes in the XML Schema definition language. Some of the built-in
datatypes in the XML Schema definition language have no equivalent in Amos II. For
example, the W3C predefined integer can be arbitrary long and the Integer datatype in
Amos II is 32 bits wide. This can cause a problem when the XML instance document
contains data of type integer and is larger than what can fit in a 32 bits wide Integer in
Amos II. However, the approach taken in this thesis is to keep it simple and efficient
without having to extend the Amos II system with new literals. The mappings will be
done to match the literals already defined in the Amos II system. Hence, some mappings
will result in loss of precision.

What is important when mapping the datatypes is that the value spaces of the
datatypes are the same, the lexical space, i.e. how the value is represented in the XML
instance document, is of minor importance. Hence, this thesis will only consider the value
space when designing the mappings between XML Schema definition datatypes and
Amos II datatypes.

Ten built-in datatypes from the XBench XML Schema definition files need to be
mapped to the Amos II system: string, decimal, date, long, int, byte, short, dateTime, ID,
IDREF, see Figure 13 above.

4.4.1. Mapping string datatypes

The string datatypes in the XML Schema definition language are derived from or
have similar behavior as the built-in simple type string, which is able to store a finite-
length sequence of 16-bits Unicode characters. The string datatype in Amos II is the
datatype Charstring, which is implemented as a sequence of bytes.

The primitive built-in string datatypes will be mapped to the Amos II Charstring
datatype. This mapping will only cause problems when the string datatype consist
characters outside the 8-bits ASCII table. For the rest of the primitive string datatypes,
QName, anyURI, NOTATION, hexBinary and base64Binary, the mapping will not cause
any problems.

The datatypes that are derived by restricting the string primitive will also be
mapped to the Amos II Charstring datatype with the exception of IDREF and ID. The
IDREF datatype is a reference in the XML instance document to an element containing
an attribute of the type ID. It is not known in the XML Schema definition which element
it will be referencing to until the XML instance document is created. It can point to any

 28

Importing XML Schema into an Object-Oriented Database Mediator System

element that has an attribute of type ID. Hence, since the element is unknown, it has to be
mapped to the created supertype XML, which all user defined types from the XML
Schema definition is created under. If the ID datatype would be mapped to a Charstring,
it would not be possible to later, when reading the XML instance document, map the
IDREF to the ID since the information about which elements that contains an attribute of
type ID is lost. Therefore, a user defined datatype ID is created that the ID datatype can
be mapped to.

4.4.2. Mapping numeric datatypes

Floating-point datatypes

The numeric primitives in the XML Schema definition language are the decimal

datatype, which can hold an arbitrary long decimal number, and the single- and double
precision floating-point datatypes float and double. All other built-in numeric datatypes
are derived by restricting the decimal datatype. The datatype that can hold a floating-
point value in Amos II is datatype Real, which is a double precision floating point
datatype. Therefore, the decimal, float and double datatypes will be mapped to the Real
datatype. However, mapping the primitive decimal type to the Real datatype will result in
a precision loss.

Integer datatypes

The integer datatype in the XML Schema definition language is derived from the

decimal datatype by restricting it to have no fractional part. Hence, it can hold an
arbitrary long integer number. The Amos II Integer datatype is a signed 32-bits wide
datatype and will obviously not be able to hold the value of an arbitrary long integer.
Therefore, to be able to store numbers larger than what the Integer datatype in Amos II
can, the built-in integer datatype will be mapped to the Real datatype in Amos II. The
integer datatypes nonPositiveInteger, negativeInteger, nonNegativeInteger and
positiveInteger have infinity as either their upper or lower limit. They are all arbitrary
long in one direction or another, and can therefore not be directly mapped to the Integer
datatype. They will therefore be as the decimal and integer datatype, mapped to the Real
datatype. The mapping to the Real datatype will of course not allow arbitrary long integer
numbers to be stored. However, it can store a wider range of numbers than the Integer
datatype can.

Amos II does not have any literal that can store a 64-bits long integer or a 32-bits
unsigned integer. Therefore, the datatypes long, unsignedLong and unsignedInt will to be
mapped to the Real datatype. Some precision will be lost for large numbers.

The datatypes int, short, byte, unsignedShort and unsignedByte are defined as 32-,
16- and 8-bits integer numbers respectively. The Integer datatype in Amos II is 32-bits
wide. Therefore, the datatypes integer int, short and byte will be mapped to the Integer
datatype without any loss of precision.

Boolean datatype

The value spaces for the XML Schema definition language datatype boolean and

Boolean in Amos II are identical {true, false}. Therefore, the built-in boolean datatype
will be mapped to the Boolean datatype in the Amos II system.

4.4.3. Date and time datatypes

The only built-in date or time datatype used in the XBench benchmark is dateTime,
which is a composition of the date and time built-in datatypes. Amos II has three date and
time (temporal) datatype: Date, Time and Timeval. Timeval is able to store date and time.

 29

Realization

Therefore, the dateTime datatype will be mapped to the Timeval datatype in Amos II.
Unfortunately, the Timeval datatype is unable to store the optional fractional part of the
seconds or information about time zones. The built-in datatypes date and time have the
corresponding datatypes Date and Time in Amos II. The difference though is that none of
the Amos II temporal types can store information about time zone. However, the time and
date built-in datatypes will be mapped to the Amos II Time and Date datatypes.

The remainder of the built-in time and date datatypes will be mapped to
Charstring, since no equivalent literal exist in Amos II an they do not occur in the XML
Schema definitions from the XBench benchmark.

4.4.4. The resulting mapping

Figure 17 below shows the resulting mappings between the built-in simple types in
the XML Schema definition language to Amos II literals.

W3C datatype AMOS II datatype W3C datatype
AMOS II
datatype

anyURI Charstring integer Real
Base64Binary Charstring language charstring
boolean Boolean long Integer
Byte Integer Name charstring
Date Date NCName charstring
dateTime Charstring negativeInteger Real
decimal Real NMTOKEN charstring
double Real NMTOKENS charstring
duration Charstring nonNegativeInteger Real
ENTITIES Charstring nonPositiveInteger Real
ENTITY Charstring NormalizedString charstring
Float Real NOTATION charstring
gDay Charstring PositiveInteger Real
gMonth Charstring QName charstring
gMonthDay Charstring Short Integer
gYear Charstring String charstring
gYearMonth Charstring Time Time
hexBinary Charstring Token charstring
ID XS_ID UnsignedByte Integer
IDREF XML UnsignedInt Integer
IDREFS XML UnsignedLong Integer
Int Integer UnsignedShort Integer

Figure 17: Mappings between XML Schema definition language datatypes and Amos II
datatypes.

4.5. Architecture

The general architecture of the prototype tool program module, shown in Figure 18
below, contains four separate modules specialized at doing some part of the XML
Schema definition importation into Amos II. Separation of the architecture follows the
separation of the XML Schema specification [4] [5]. Thus, the different modules are able
to perform one particular part of the translation. The modules are AmosXSD,
XSDTranslator, AmosResolver and AmosTypeMapper. The translator module also use
external modules to parse XML Schema definition files that the Amos II system whish to
import. The AmosXSD module is the entry point to the importer tool and it will hold
application state for the tool. The translator module in turn, uses an external parser to read

 30

Importing XML Schema into an Object-Oriented Database Mediator System

an XML Schema definition file, identify the contained structures, and decide what parts
are represented as types or functions in the Amos II system using the translation rules.
The translator then uses the resolver, which creates actual objects representing the
identified types and functions in Amos II using the AmosTypeMapper to perform
mappings of datatypes for the created functions. The resolver is also responsible for
ordering the created objects in the correct order so that no problems occur when creating
the database schema. The result of an importation will be a sorted list of objects that
expressed in string representation is a list of AmosQL statements. The AmosXSD module
then executes the AmosQL statements against the Amos II system, which will result in
the creation of an imported database schema.

Figure 18: The tool’s general design. The picture shows the different parts contained in

the program module.

4.6. Implementation

In order to study methods for importing an XML Schema definition into the Amos
II system an XML Schema definition importer prototype tool was implemented using the
Java 2 Platform, Standard Edition (J2SE)16. The decision to implement the tool in java is
based upon the ability of the Amos II system to define foreign functions written in java
and the strong support the java platform has for XML with JAXP [14]. Two components,
included in this API are, the org.w3c.dom package, which is an interface to DOM [16],
and the org.xml.sax package, which provides interfaces for SAX [17]. The tool needs to
be able to process XML in some way and the javax.xml.parsers package already provides
a set of classes for processing XML documents using parsers. Two different types of
pluggable parsers are available, a SAX parser and a DOM parser. Hence, no other means
for processing XML documents are needed if the tool would use either of these.

The already available XML parsers were a crucial argument for using the java
technology since the tool must be able to process XML in order to create database
schemas in Amos II from a given XML Schema definition data source. Using the
provided Java APIs with the tool also avoids the need to create a new program for the
tool that process an XML file. The idea is to make the tool in a way that it can create
either a database schema as a file that the Amos II system reads at a later stage or a
database schema directly in the Amos II system, using translation rules and mapping of
datatypes by using an XML parser.

16 http://java.sun.com/j2se/

XSD-files

AmosResolver AmosTypeMapper

Parser

XSDTranslator

AmosXSD Program module

uses

uses

uses

uses

reads

uses

result

result

Amos II system

result

 31

Realization

4.7. User interaction

Given an XML Schema definition, the tool automatically translates the XML
Schema definition into an Amos II database schema using the Amos II data model. An
XML Schema definition is given as an argument to a defined Amos II resolvent function,
called importXSD, for the tool from the Amos II system. No other user interaction is
required for the tool to produce a translation. Figure 19 is an example of using the tool.

D:\Program\AmosII\bin>javaamos

D:\Program\AmosII\bin>java JavaAMOS
JavaAMOS 1> create function importXSD(charstring)->charstring as
foreign "JAVA:xsd.AmosXSD/importXSD";
#[OID 729 "CHARSTRING.IMPORTXSD->CHARSTRING"]
JavaAMOS 2> importXSD("DCSD.xsd");
Importing W3C XML Schema DCSD.xsd...Expanding image to 4038137
Image moved in MAKEFN-INDEX
done!
0.161 s
JavaAMOS 3>

Figure 19: An example of running the tool.

Furthermore, the tool can selectively be executed as a stand-alone application in
which case it produces a file containing the imported database schema rather then directly
importing it into the Amos II system. The Amos II system can then read the file at a later
stage.

 32

Importing XML Schema into an Object-Oriented Database Mediator System

Chapter 5

The implemented tool

The primary result of this thesis is the XML-enabled tool, which the Amos II
system can use to translate an XML Schema definition into a database schema, expressed
in the Amos II data model. Secondary results are the translation rules and the mapping of
datatypes that the tool uses to import an XML Schema definition into the Amos II system.
The XBench benchmark suite provides a set of XML Schema definitions that are used to
test the tool and perform some experiments. This chapter describes the tool and the
results of some of the more interesting experiments.

5.1. The Amos II XML Schema import tool (AXSI)

The Amos II XML Schema import tool (AXSI) is the result of the realization. The
AXSI implements the translation rules and the mapping mechanism of the two separate
data models found in XML Schema definition and the Amos II system.

5.2. Parser choice

JAXP in the J2SE platform provides support for processing XML files with parsers
either by using the SAX or DOM APIs. AXSI can use the included parsers to read an
XML Schema definition to avoid the development of a new program module that process
the XML Schema definition. [14]

For the Amos II system, the interesting parts of an XML Schema definition are the
constraints the definition represents for an XML instance document. In order to get hold
of the constraints the AXSI will be XML-enabled with an XML parser to extract the
information from an XML Schema definition. The tool implements the SAX APIs from
the org.xml.sax package for this purpose. The SAX APIs let the AXSI register a SAX
parser and read an XML Schema definition using callback methods. The sax parser is
small and fast and will read an XML Schema definition from the beginning of the
document until the end and notify the AXSI of element-by-element events such as the
beginning of an element when the “<” symbol is encountered or end of an element when
the “/>” symbol is encountered. [13]

The implementation of AXSI becomes somewhat more complex as a result of
using SAX because it needs additional data structures in order to preserve order and
relationship between elements. For example, the AXSI preserves the parent child
relationship between elements with a stack implementation in the translator module.

The Apache Software Foundation has created two available parsers that support
SAX, Crimson17 and Xerces218. Crimson is actually bundled with the J2SE 1.4 and later,
to provide JAXP support. It is located in rt.jar, which is part of the Java Runtime
Environment (JRE). This means that the AXSI will work with Crimson for anyone that
uses J2SE 1.4 or later, without altering any implementation details for AXSI or the JRE.
Xerces2 on the other hand, requires the Endorsed Standards Override Mechanism19 in
order for AXSI to work properly.

To use Crimson with the AXSI is a better choice than using Xerces2. Crimson is a
straightforward implementation of an XML parser with a small footprint: approximately

17 http://xml.apache.org/crimson/index.html
18 http://xml.apache.org/xerces2-j/index.html
19 http://java.sun.com/j2se/1.4.1/docs/guide/standards/

 33

The implemented tool

200KB (jar file size) while Xerces2 is more advanced and includes many additional
features like XML Schema support to validate XML instance documents. Xerces2 also
comes with support for WML and HTML DOMs, which increase the size of the jar file,
to around 2.5MB [40]. The conclusion is to use the Crimson implementation with the
AXSI cause of Crimson’s availability in the JRE and its small footprint. Performance
wise, there is hardly any difference between the two SAX parsers when used with the
AXSI to import XML Schema definitions into the Amos II system.

5.3. Results from running the tool

To verify that the AXSI module creates correct translations of XML Schema
definitions into Amos II database schemas the tool made several translations. The XML
Schema definitions come from the XBench benchmark suite, and they provide a “white
box” testing ground since their structure is known and an expected translation can be
performed by hand in advance prior to letting the AXSI module create a translation. A
comparison between the expected translation and the actual translation made by the AXSI
module is then used to see if the AXSI’s translation is correct. A change in the AXSI
module was needed if the test failed.

Figure 20 shows one of the included XML Schema definitions, called
DCMDAddr.xsd, which is used to verify the correctness of the output of AXSI.

<?XML version="1.0" encoding="UTF-8"?>
 <xs:schema XMLns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xs:element name="address">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="street_address" minOccurs="2" maxOccurs="2"/>
 <xs:element ref="name_of_city"/>
 <xs:element ref="name_of_state"/>
 <xs:element ref="zip_code"/>
 <xs:element ref="country_id"/>
 </xs:sequence>
 <xs:attribute name="id" type="xs:long" use="required"/>
 </xs:complexType>
 </xs:element>
 <xs:element name="addresses">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="address" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="country_id" type="xs:int"/>
 <xs:element name="name_of_city" type="xs:string"/>
 <xs:element name="name_of_state" type="xs:string"/>
 <xs:element name="street_address" type="xs:string"/>
 <xs:element name="zip_code" type="xs:string"/>
 </xs:schema>

Figure 20: DCMDAddr.xsd is an XML Schema definition from the XBench benchmark
suite.

This XML Schema definition constraints an XML instance document for instance
Addresses.xml, which is a made up XML instance document. Figure 21 shows the file
Addresses.xml below.

<?XML version="1.0" encoding="UTF-8"?>
 <addresses XMLns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="D:\Program\XBench\xbench\schemas\DCMDAdd
r.xsd">
 <address id="1">

 34

Importing XML Schema into an Object-Oriented Database Mediator System

 <street_address>Department of Information
 Technology</street_address>
 <street_address>Lägerhyddsvägen 2</street_address>
 <name_of_city>Uppsala</name_of_city>
 <name_of_state>Uppland</name_of_state>
 <zip_code>751 05</zip_code>
 <country_id>89</country_id>
 </address>
 <address id="3">
 <street_address>Uppsala University School of
 Engineering</street_address>
 <street_address>Lägerhyddsvägen 1</street_address>
 <name_of_city>Uppsala</name_of_city>
 <name_of_state>Uppland</name_of_state>
 <zip_code>751 21</zip_code>
 <country_id>89</country_id>
 </address>
 </addresses>

Figure 21: Addresses.xml is an example XML instance document that is valid against
DCMDAddr.xsd.

The AXSI module creates the following Amos II database schema, shown in
Figure 22 below, when the Amos II system calls the resolvent function importXSD with a
URI to the DCMDAddr.xsd as argument. When the translation is finished, the AXSI
module emits the statements back to the Amos II system and the XML Schema definition
importation is complete.

create type XML;
create type XS_address under XML;
create type XS_addresses under XML;
create type XS_country_id under XML;
create type XS_name_of_city under XML;
create type XS_name_of_state under XML;
create type XS_street_address under XML;
create type XS_zip_code under XML;
create function XS_street_address(XS_address nonkey)->XS_street_address
as stored;
create function XS_name_of_city(XS_address)->XS_name_of_city as stored;
create function XS_name_of_state(XS_address)->XS_name_of_state as
stored;
create function XS_zip_code(XS_address)->XS_zip_code as stored;
create function XS_country_id(XS_address)->XS_country_id as stored;
create function XS_id(XS_address)->integer as stored;
create function XS_address(XS_addresses nonkey)->XS_address as stored;
create function XS_country_id(XS_country_id)->integer as stored;
create function XS_name_of_city(XS_name_of_city)->charstring as stored;
create function XS_name_of_state(XS_name_of_state)->charstring as
stored;
create function XS_street_address(XS_street_address)->charstring as
stored;
create function XS_zip_code(XS_zip_code)->charstring as stored;

Figure 22: A translation of the DCMDAddr.xsd XML Schema definition into an Amos II
database schema.

The AXSI module always creates the user-defined type XML first because all other
user-defined types will be subtypes of the type XML. Hence, the extent of the type XML
will be all created types created afterwards. In addition, the AXSI module will add the
prefix “XS_” throughout the translation to avoid naming conflicts with other pre-defined
functions in the Amos II system. The AXSI module creates this database schema using
the previously described translation rules and datatype mappings between the XML
Schema definition language and the Amos II system. The AXSI module simply handles
cardinality constraints in the XML Schema definition as either a one-to-one relationship
or no cardinality constraint for the relationship by adding the nonkey to a function

 35

The implemented tool

definition in the database schema [9]. Figure 22 above, shows this in the declaration of
the first function declaration called XS_street_address. The AXSI module adds the
nonkey since the DCMDAddr.xsd requires more than one occurrence of street_address.

5.4. Limitations

This section describes the current limitations of the AXSI implementation.

5.4.1. XML Schema mixed content model

The current implementation of the AXSI module does not support XML Schema
definition mixed content models for XML instance documents. Figure 23 illustrates an
arbitrary example of using a mixed content model for a tag <A> found in an XML
instance document; in this example, this means that tag <A> contains a mixture of both

text and child-elements tag <c> and tag
. This content model appears more
frequently in text centric XML
documents than in data centric XML
documents where it is more common to
use a content model containing either text
or child-elements but not both at the
same time.

Currently the AXSI module will
translate the mixed content of tag <A> as a type A having the functions XS_c and XS_b
returning c and b instances and the text that otherwise occurs in tag <A> is disregarded.

<A>
 This text <c>cc</c> makes
 bbbb no sense
 <c>cccc</c> except as
 bb an example

Figure 23: An arbitrary example of a tag A
that uses a mixed content model.

A solution to the mixed content problem is to let AXSI use a Collection of
unknown size, for instance the system datatype “Vector”, in Amos II to wrap the
elements contained in tag <A>. The Amos II vector datatype is able to preserve the order
among contained elements as well. R. Bourrret discusses the problem and solution in
detail in [20].

5.4.2. XML Schema model group compositors

The XML Schema definition language’s model group component consists of one or
more recursive compositors, which is either one of all, choice or sequence [4]. The AXSI
module will translate every model group to contain all defined particles within a model
group as types or functions with no specified order. Thus, there is a loss of semantics as
the translation omits sequences or choices constraints.

5.4.3. Loss of schema specific details

The AXSI never translates the <schema> component and any children to the
<schema> component containing schema specific details and consequently never imports
it into the Amos II system. Information items regarding an imported XML Schema
definition document type, such as targetNamespace, version, notation definitions,
annotation definition and others is thus lost. The reason for disregarding this is that this is
documents specific details and this is not of interest to the Amos II system [21]. AXSI
identifies and imports the content of the <schema> component regarding primary
components i.e. types-, elements-, and attribute definitions. If the XML Schema
definition details were interesting however, the AXSI needs to define a new “schema”
type in the Amos II system, define more translation rules for the information items and
mappings of datatypes and add property functions for the “schema” type to store the
XML Schema definition details in.

 36

Importing XML Schema into an Object-Oriented Database Mediator System

5.5. Alternative implementation

The AXSI module uses the SAX API in order to parse an XML Schema definition
and translate the contained structures using translation rules. This is not the only solution
that works to solve the problem of importing an XML Schema definition into the Amos II
system, however. Alternative implementations from JAXP are to use perhaps the DOM
API included in org.w3c.dom, or XSLT contained in the javax.xml.transform package or
some other solution, for example using an XML Schema definition compiler that
performs a direct data binding between an XML Schema definition and the Amos II
system much in the same way JAXB works [15]. This thesis does not discuss the
compiler approach, however since the AXSI has not been tested with this
implementation. Instead, this is a short description for the pros and cons of using DOM
[16] or XSLT [18] with the AXSI instead of using SAX. The AXSI module used these
technologies at some point during development of the prototype; the final solution
however, was to go with the SAX API.

5.5.1. Using the DOM API

The DOM APIs can be used to build an in memory object representation of an
XML document. Since an XML Schema definition is a well-formed XML document, a
DOM parser can create a DOM representation of the XML Schema definition. The
representation is a tree data structure containing nodes that represent the entire XML
Schema definition and once a parser builds a DOM out of the XML Schema definition,
the tree allows random accesses to particular pieces of data with get, set, and create
methods, like any other tree data structure.

Using the DOM API to create an in memory DOM representing an entire XML
Schema definition, would allow the AXSI to navigate its structure and add, modify and
delete elements, attributes and content interactively to produce a DOM which suite the
Amos II system data model. For instance, the structure between elements like parent and
child or siblings relations, are easily identified by other program modules in the DOM
and this can be very helpful when extracting information from the result that translate to
functions and types in the Amos II system.

However, the physical structure of an XML Schema definition document is not of
particular interest to the AXSI, the data that the document constraints are important [21].
Below is a summary of the pros and cons of using DOM with the AXSI:

The pros of using the DOM APIs with the AXSI
DOM allows AXSI to create documents, navigate their structure and add, modify
and delete elements, attributes and content.
DOM allows documents to be interactively modified.

The cons of using the DOM APIs with the AXSI
The DOM is an in memory model of a parsed XML file.
The AXSI is not interested in a documents physical structure.

The cons somewhat outweighed the pros when deciding that this technology is not

appropriate to implement in AXSI. Most importantly is the fact that AXSI is not
interested in an XML Schema definition document structure but rather the data that the
document constraints. Hence, the DOM contains an unnecessary amount of information
kept in memory that perhaps the AXSI will never modify or never even use. [16]

5.5.2. Using the XSLT API

The XSLT API defined in the javax.xml.transform package lets users transform
XML into different formats with a transformation process. A source object is the input to

 37

The implemented tool

the transformation process. A SAX or DOM reader or some other input stream can act as
a source. Similarly, the result object is the result of the transformation process. That
object can be a SAX event handler, a DOM, or an output stream.

A set of transformation instructions, defined in a style sheet, can specify how the
transformer should format for the output. For instance, the transformation instructions
could specify how the transformer should transform an XML source into HTML or a
different XML structure.

The XSLT is an interpreted declarative transformation language that also uses an
addressing language called XPath to identify nodes in a source. Thus, the XSLT API is
very useful for identifying structures within a document and AXSI could use this to
identify the primary components in an XML Schema definition as specified in a style
sheet when importing an XML Schema definition into the Amos II system. This is very
convenient but the problem is how to define the style sheet correctly and what the output
should be like. For instance, the output can be a direct translation to a database schema or
some intermediate data structures that suite the Amos II system, perhaps a DOM
containing a representation of what will be functions and types. Other AXSI modules can
then process this DOM in similar way the current architecture works. When AXSI was
implemented using this technology, a significant performance decrease occurred, and the
reason being, the interpretative nature of the XSLT language.

The pros of using the XSLT APIs with the AXSI
Easily identifies primary components within an XML Schema definition. XSLT
creates views over a document with only a few lines of code.

The cons of using the XSLT APIs with the AXSI
Need to know new languages to use XSLT and XPath.
The interpretative nature of XSLT decreases performance.

This technology never was much of an alternative for the AXSI as it turns out. The

performance dropped too much and in addition, the several issues with defining the style
sheet in a general way to identify the primary components for possibly many different
XML Schema definitions showed to be difficult but not impossible. [18]

 38

Importing XML Schema into an Object-Oriented Database Mediator System

Chapter 6

Discussion

This chapter raises some issues for discussion. The first section review the
achieved result for the thesis, the second section looks at the importance of other research
work within the same research area as this thesis, the third section raises the usefulness of
the thesis, the fourth section contains the bibliography and finally, the last section
contains acknowledgements.

6.1. Achieved result

We described the architecture of AXSI; an XML Schema definition importer tool,
which parses an XML Schema definition and translates it into a database schema that an
object-oriented database mediator system can use. Further more, the thesis present a set of
translation rules for XML Schema definition language structures and mappings of XML
Schema definition language datatypes.

6.2. Previous research and results

Some of the issues raised in the paper by H. Lin et al. [23] are quite similar to the
problems and solutions in this work. In their paper, they propose a wrapper called
AmosXML that uses a parser to read DTD definitions, and then use translation rules to
import the semantics of a DTD definition into an object-oriented database mediator
system. The similarities between AmosXML and the AXSI is the fact that both use
parsers and translation rules, both in their work and in ours fortify the correctness of both
solutions.

The Java WSDP [13] showed to be very useful for the implementation of AXSI
and especially the JAXP framework [14] since AXSI is XML-enabled with the provided
SAX interface of JAXP.

6.3. Usefulness

The thesis proposes how an XML-enabled tool called AXSI can import an XML
Schema definition into an object oriented database mediator system. It can import an
XML Schema definition with basic XML Schema definition language components but
needs further development in order to support a larger number of XML Schema
definitions. The tool is currently a prototype that together with the Amos II system helps
to solve the integration problem between applications and data expressed in XML that is
defined by XML Schema definitions and researchers can use this thesis to find a possible
solution to the integration problem.

6.4. References

Most of the references in the bibliography section of the thesis are provided from
Internet sources. However, the sources are reliable as most of them are provided by well-
known organizations. Several different specifications are used throughout the thesis as
references and these are of course subject to change. The implications of this can result in
an AXSI implementation that no longer follows the specification.

 39

Discussion

6.5. Acknowledgements

We thank our supervisor at Uppsala Database Laboratory, professor Tore Risch,
for his support and enthusiasm for the project and the layout and contents of this thesis.

 40

Importing XML Schema into an Object-Oriented Database Mediator System

Chapter 7

Conclusions and future work

This thesis proves that it is possible to import an XML Schema definition into an
object-oriented database mediator system in an obvious and useful way, which reflects
the intended meaning of an XML Schema definition. A developed prototype tool called
AXSI performs the importation automatically between the data model of an XML
Schema definition into the data model used by the Amos II system by using translation
rules to translate the semantics of an XML Schema definition and a direct mapping of
contained datatypes. The results are validated against a known XML Benchmark called
XBench.

7.1. Answers to question at issue

The development of the prototype tool answered the issued questions and this
section briefly summarizes the result. The main question was; how an XML Schema
definition is imported into an object-oriented database mediator system by using such a
schema importation tool? The question was divided further into three sub questions.

Q1. How is a schema importation tool that imports an XML Schema

definition into the object-oriented database mediator designed? If the tool is
automatic, it can translate different XML Schema definitions automatically.
Consequently, an analysis of several translations will reveal if the tool
performs the importation correctly or not.

A1. There are many different solutions to this. This work specifies the
architecture of a prototype tool called AXSI implemented in Java that uses a
SAX parser and the Amos II system’s Java callout interface. The AXSI is
able to translate an XML Schema definition into a database schema used by
the object-oriented database mediator system Amos II.

Q2. Can the tool translate the structures of an XML Schema definition to

the database schema, in an obvious and useful way, which reflects the
intended meaning of the XML Schema definition? XML Schema part 1:
Structures recommendation shows the structure of the XML Schema
definition language and the language contains several different components
that govern its structure [4].

A2. Yes, our work shows that the chosen object-oriented database
mediator system Amos II has the necessary programming structures and
semantics to represent the structure of an XML document defined by an
XML Schema definition. AXSI can use translation rules to translate the
structures in the XML Schema definition into the data model used by the
Amos II system using the system’s programming structures and semantics.

Q3. Can the tool map XML Schema definition language datatypes to

corresponding datatypes in the object-oriented database mediator? A study
of XML Schema part 2: Datatypes recommendation describes supported
datatypes for the XML Schema definition language [5].

A3. Built-in XML Schema definition language datatypes can be mapped,
but due to lack of equivalents in the object oriented database mediator
system Amos II, some loss of semantics and precision cannot be avoided.

 41

Conclusions and future work

7.2. Further research

The included XML Schema definitions in the XBench benchmark suite cover only
a subset of the XML Schema definition language. Other adaptive translation rules should
also be defined for other schema components and structures in order to support a larger
subset of the XML Schema definition language. Below are some other interesting
research areas in which improvement of the integration between object-oriented database
mediators and XML could continue.

7.2.1. Data importation

A data population tool can be developed that populates the object-oriented database
mediator system with data from an XML instance document, conforming to an XML
Schema definition that AXSI has previously imported into the object-oriented database
mediator, using only the imported database schema.

7.2.2. Querying

Fully develop a wrapper that uses the XML Schema definition importer tool, a data
loader and also adds query capabilities over XML instance documents.

7.2.3. Web Service Interface

Develop a Web Service interfaces to support communication via XML-based
interfaces. A wrapper to use with an object-oriented database mediator system could
support WSDL, and a first step is taken with AXSI as WSDL prefers to use the XML
Schema definition language to express contained types that are used in messages [41].
However, this requires considerable work but AXSI can provide a basis for further
research.

7.2.4. Extending Amos II type hierarchy with new literals using Java

The set of literals in the Amos II system contains the most basic datatypes. Is it
possible to extend the Amos II type hierarchy, see Figure 1, with datatypes from Java?
For example, the Java package java.math provides classes for performing arbitrary-
precision integer arithmetic and arbitrary-precision decimal arithmetic (BigInteger and
BigDecimal). Can they be built into the system, or perhaps, used through user-defined
types that store the values as a charstrings and uses the java interfaces, callin and callout,
to perform arithmetic? Naive experiments have actually been conducted for the latter case
and they indicated that it could be done. However, more extensive experiments need to be
conducted to see whether it is fully possible or not and if it might become a performance
issue. By extending the Amos II system with new literal, a more precise datatype
mapping between XML Schema definitions and the Amos II system could be done.

 42

Bibliography

Bibliography

[1] T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler, Extensible Markup
Language (XML) 1.0 (Second Edition). World Wide Web Consortium (W3C),
October 2000, http://www.w3.org/TR/2000/REC-xml-20001006.

[2] W3C, HTML 4.01 Specification. World Wide Web Consortium. W3C
Recommendation, 24 December 1999. http://www.w3.org/TR/html4/.

[3] W3C, XML Schema Part 0: Primer.World Wide Web Consortium. W3C
Recommendation, 2 May 2001, http://www.w3.org/TR/xmlschema-0/.

[4] W3C, XML Schema Part 1: Structures. World Wide Web Consortium. W3C
Recommendation, 2 May 2001, http://www.w3.org/TR/xmlschema-1/.

[5] W3C, XML Schema Part 2: Datatypes. World Wide Web Consortium. W3C
Recommendation, 2 May 2001, http://www.w3.org/TR/xmlschema-2/.

[6] Eric van der Vlist, XML Schema. O’Reilly & Associates, Inc. June 2002 First
Edition. ISBN: 0-596-00252-1.

[7] Tore Risch, AMOS II Active Mediators for Information Integration. Uppsala
Database Laboratory. http://user.it.uu.se/~udbl/amos/amoswhite.html.

[8] Tore Risch, Vanja Josifovski, Timour Katchaounov, Amos II Concepts. Uppsala
Database Laboratory, June 23, 2000.
http://user.it.uu.se/~udbl/amos/doc/amos_concepts.html.

[9] Staffan Flodin, Vanja Josifovski, Timour Katchaounov, Tore Risch, Martin Sköld,
and Magnus Werner, Amos II User's Manual. Uppsala Database Laboratory, June
23, 2000. Latest revision April 25, 2003.
http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html.

[10] Daniel Elin, Tore Risch, Amos II Java Interfaces. Uppsala Database Laboratory,
Department of Information Science, Uppsala University, Sweden. 2000-08-25.

[11] Gustav Fahl, Tore Risch, AMOS II Introduction. Uppsala Database Laboratory,
Department of Information Science, Uppsala University, Sweden. October 1, 1999.

[12] Benjamin Bin Yao, M. Tamer Özsu and John Keenleyside, XBench - A Family of
Benchmarks for XML DBMSs, TR-CS-2002-39, University of Waterloo, December
2002. http://db.uwaterloo.ca/~ddbms/publications/xml/TR-CS-2002-39.pdf.

[13] E. Armstrong et al, The Java Web Services Tutorial. Sun Microsystems, Inc.
October 9, 2003. http://java.sun.com/webservices/docs/1.3/tutorial/doc/index.html.

[14] Rajiv Mordani, Scott Boag, Java API for XML Processing (JAXP) Specification.
Sun Microsystems, Inc. Version 1.2 Final Release, September 6, 2002.
http://java.sun.com/xml/docs.html.

 43

Bibliography

[15] Joseph Fialli, Sekhar Vajjhala, The Java Architecture for XML Binding (JAXB)
Specification. Sun Microsystems, Inc. Final, V1.0, January 8 2003.
http://java.sun.com/xml/docs.html.

[16] W3C, Document Object Model (DOM) Level 2 Core Specification, Version 1.0,
World Wide Web Consortium. W3C Recommendation, 13 November, 2000.
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/.

[17] David Brownell, Simple API for XML. Saxproject.org. http://www.saxproject.org/.

[18] W3C, XSL Transformations (XSLT). Version 1.0, World Wide Web Consortium.
W3C Recommendation, 16 November, 1999. http://www.w3.org/TR/xslt.

[19] S.Higgins et al, Oracle 9i XML Database Developer's Guide - Oracle XML DB.
System documentation release 2, Oracle Corp., Redwood Shores, 2002.

[20] Ronald Bourret, Mapping DTDs to Databases, O’Reilly XML.com, May 09, 2001.
http://www.xml.com/pub/a/2001/05/09/dtdtodbs.html.

[21] Ronald Bourret, XML and Databases. Copyright 1999-2003 by Ronald Bourret,
Last updated November, 2003.
http://www.rpbourret.com/xml/XMLAndDatabases.htm.

[22] Ronald Bourret, et al, XML-DBMS Middleware for Transferring Data between
XML Documents and Relational Databases.
http://www.rpbourret.com/xmldbms/index.htm.

[23] Hui Lin, Tore Risch, Timour Katchaounov, Adaptive Data Mediation over XML
Data, Uppsala Database Laboratory. http://user.it.uu.se/~torer/publ/jass01.pdf.

[24] R. G. G. Cattell, Douglas K. Barry, Mark Berler, et al, The Object Data Standard:
ODMG 3.0. Object Data Management Group, January 2000, ISBN: 1-55860-647-5.

[25] Elmarze R, Navathe S.B, Fundamentals of Database Systems. Fourth edition,
2003. ISBN: 0-321-20448-4.

[26] G Wiederhold: Mediators in the Architecture of Future Information Systems. IEEE
Computer, 25(3), 38-49, 1992.

[27] Timour Katchaounov, Query Processing for Peer Mediator Databases. Acta
Universitatis Upsaliensis. Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 901. 73 pp. Uppsala. ISBN: 91-554-
5770-3.

[28] Tore Risch, Vanja Josifovski, Distributed Mediation by Object-Oriented Mediator
Servers. Dept. of Information Science Uppsala University, Sweden, December 21,
2000. http://www.dis.uu.se/~udbl/publ/concur00.pdf.

[29] P. Lyngbaek et al: OSQL: A Language for Object Databases, Tech. Report, HP
Labs, HPL-DTD-91-4, 1991.

[30] D.Shipman, The Functional Data Model and the Data Language DAPLEX, ACM
Transactions on Database Systems, 6(1), 1981

 44

Bibliography

[31] ISO 8879:1986(E). Information processing - Text and Office Systems - Standard
Generalized Markup Language (SGML). October 1986, ISO (International
Organization for Standardization).

[32] Schmelser, Vandersypen, Blomberg, et al, XML and Web Services Unleashed.
Sams Publishing, February 2002. ISBN: 0-672-323419.

[33] W3Schools, XML Schemas - Why? W3Schools, Refsnes Data, 1999 - 2003
http://www.w3schools.com/schema/schema_why.asp

[34] W3C, Namespaces in XML. World Wide Web Consortium W3C, January 14, 1999.
http://www.w3.org/TR/REC-xml-names/.

[35] The Michigan Benchmark Team, The Michigan Benchmark: Towards XML Query
Performance Diagnostics. http://www.eecs.umich.edu/db/mbench.

[36] T. Bohme and E. Rahm, XMach-1: A Benchmark for XML Data Management. In
Proceedings of German Database Conference BTW2001, Oldenburg, Germany,
March 2001. http://dbs.uni-leipzig.de/en/projekte/XML/XmlBenchmarking.html.

[37] A. R. Schmidt, F. Wass, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey,
and R. Busse. The XML Benchmark Project. Technical report, CWI, Amsterdam,
The Netherlands, April 2001. http://monetdb.cwi.nl/xml/index.html.

[38] S. Bressan and G. Dobbie and Z. Lacroix and M. L. Lee and Y. G. Li and U.
Nambiar and B. Wadhwa, XOO7: Applying OO7 Benchmark to XML Query
Processing Tools. In Proceedings of the ACM International Conference on
Information and Knowledge Management (CIKM), Atlanta, Georgia, November
2001. http://www.comp.nus.edu.sg/~ebh/XOO7.html.

[39] Runapongsa Jignesh M. Patel H. V. Jagadish Yun Chen Shurug Al-Khalifa Kanda,
The Michigan Benchmark: Towards XML Query Performance Diagnostics.
Department of Electrical Engineering and Computer Science, The University of
Michigan, USA. http://www.eecs.umich.edu/db/mbench/mbench.pdf.

[40] Thierry Violleau, Java Technology and XML Part 2: API Benchmarks. Sun
Microsystems, Inc. From the Java Developer Service, March 2002.
http://developer.java.sun.com/developer/technicalArticles/xml/JavaTechandXML_
part2/

[41] W3C, Web Services Description Language (WSDL) 1.1. World Wide Web
Consortium W3C, W3C Note 15 March 2001. http://www.w3.org/TR/wsdl

 45

