
1-51

Uppsala Master’s Thesis in

Computer Science 308

2007-02-26

ISSN 1100-1836

Automatic Web Service Generator

for Data Access

Feng Luan

Information Technology

Computing Science Department
Uppsala University

Box 337
S-751 05 Uppsala

Sweden

Supervisor: Manivasakan Sabesan
Examiner: Tore Risch

2-51

Abstract

Web services provide software components for application to application
communication. This includes several public standards: WSDL provides a
description of web service interfaces; SOAP is an XML style message protocol
over underlying protocol, and XML Schema provides a type system for
operation signatures. Using those standards, WSMOS (Web Service for Amos
II) explores a mechanism which can deploy specified Amos II functions as a
set of operations of a web service over the Internet. This report describes
automatic generation of WSDL documents given Amos II functions to export,
and immediate deployment of the exported functions. The WSDL generator
binds exported Amos II functions to operations in a WSDL document, and
specifies HTTP transport protocol and RPC/encoding style to be used. The
WSMOS web server receives SOAP messages, parses their contents, calls
Amos II functions, and sends back the SOAP messages of the results.

3-51

Table of contents

1. Introduction ... 5

2. Amos II. .. 6

2.1 The Amos II Data Model...6
2.1.1 Objects ...6
2.1.2 Types ..7
2.1.3 Functions ...8

2.2 Mediator and wrapper ...8
2.3 External Java interface ..9

2.3.1 The Callin Interface ..9
2.3.2 The Callout Interface..10

3. XML and XML Schema.. 10

3.1 Overview of XML...11
3.2 Valid and Well-formed XML documents. ...12
3.3 XML Namespaces ...12
3.4 XML Schema ..13

4. SOAP .. 14

4.1 The SOAP Message Format ..15
4.2 The SOAP encoding..16
4.3 SOAP styles ..17

5. WSDL.. 18

5.1 The types element..20
5.2 The message element ..21
5.3 The portType and operation elements ...21
5.4 The binding element..23
5.5 The service element and the port element...25

6. Implementation of WSMOS 25

6.1 The WSDL generator ..27
6.1.1 SOAP message specification ...29
6.1.2 Data type mappings ...29
6.1.3 Describing an Amos II function as a WSDL operation:31

6.2 The WSMOS web server...36
6.2.1 The communication server ..37
6.2.2 The XML parser ..38
6.2.3 The DOM decoder ..38

4-51

6.2.4 The DOM encoder ..40
6.2.5 Handling exception:..43

7. Summary and future works...................................... 44

Appendix A: A WSDL document with overloading

operations.. 45

Appendix B: A SOAP request message 48

Appendix C: A SOAP response message 48

References... 49

5-51

1. Introduction

A web service [15] is a software system for providing application to application
communication via the World Wide Web. A web service is basically a web
server which implements a set of operations. An application can retrieve data
from a web server by calling operations.

Web Service Description Language (WSDL) [8] is an XML-based language for
describing the operations of a web service. It describes the structure of
arguments and results of each exported operation. Given a WSDL file, the
customer of the web service will know the signature of each operation
described by the file and how to invoke it.

Web service communication between the client and server uses the SOAP [7]
message passing protocol. It is based on exchanging XML documents
between clients and servers. Each SOAP message is represented as an
envelope containing a header and body elements described with XML syntax.
SOAP is independent of the used programming languages and platforms.
Applications using different programming languages or platforms can
communicate and access data using SOAP.

Amos II [1] is an object-oriented and functional database system. Amos II
supports the mediator/wrapper approach [2] to query and update different and
distributed data sources. Database users can query the database using an
object-oriented SQL dialect, AmosQL [1]. The three basic concepts of the
Amos II data model are objects, types, and functions. Types classify objects
and each object is an instance of one or several types. Functions provide
semantics of types. Amos II provides a programming interface for Java, C/C++,
and Lisp.

The purpose of this project is to design a mechanism which can dynamically
deploy any Amos II function as a web service operation without restarting the
server and without developing or deploying any server Java code. The
signature of each deployed Amos II function is described as a web service
operation in an automatically generated WSDL document. The WSDL
document thus describes the interface of the exported functions. The WSDL
file is automatically generated, given names of exported Amos II functions, and
the functions are immediately available as web service operations. An
operation wrapping an exported function receives function arguments from the
client and sends back the result of the function invocation as a collection. The
web server does not need to restart when exporting and publishing new
functions.

6-51

This report is divided into seven chapters. The first five chapters will introduce
Amos II, XML and XML Schema, SOAP, and WSDL. These backgrounds are
essential to understand this project. The implementation of this project is
described in Chapter 6. It is divided to two parts. The first part describes how
the WSDL document of exported functions is generated and the second is the
functioning of the SOAP server. The last chapter concludes and suggests
future works.

2. Amos II.

In this chapter, we will briefly introduce Amos II [1], which stands for Active
Mediators Object System. Amos II is a main memory multi-database system
employing a functional data model. Amos II not only has traditional characters
of a relational DBMS but also supports object-orientation and distributed
databases. As a traditional DBMS, Amos II is made up of a storage manager, a
recovery manager, a transaction manager, and a query processor for the query
language of Amos II, AmosQL [1]. Amos II can be a stand-alone database
server. It can also be set up using its mediator/wrapper facilities [2] to access
different heterogeneous back-end data sources. In this report the system is
used as a stand-alone database server.

2.1 The Amos II Data Model.

An Amos II database is defined in terms of objects, types, and functions. Next
we describe each of these basic system types.

2.1.1 Objects

An Amos II database consists of a set of objects. Basically objects are
represented in two forms, surrogate objects or literal objects. A surrogate
object has a unique object identifier, OID, which is managed by the core
system. All user-defined and many system-defined object are surrogate
objects. Creation or deletion of surrogate objects is made explicitly through
Amos II commands. For example,

• creating an object: create person instances :p;

• deleting an object: delete :p;

Unlike surrogate objects, literal objects are self-described system maintained
objects that do no have explicit OIDs and are automatically deleted by garbage
collection when they are not referenced from any other object. For example,
objects representing numbers and strings are literals. Collections are also

7-51

represented as literal objects. The supported kinds of collections are type
Vector (ordered sets) and Bag (unordered sets with duplicates).

2.1.2 Types

An object is an instance of at least one type. The root type is called Object. All
types inherit from type Object. When you create a subtype it will automatically
inherit all functions (properties) of its supertype, e.g.

• create type Person properties(name Charstring, age Integer);

• create type Student under Person
 properties(program Charstring);

• create type Teacher under Person
 properties(group Charstring);

Both the types Student and Teacher inherit the functions name and age from
type Person. However, the type Student has own function program and type
Teacher has the extra function group.

The Amos II type hierarchy is displayed in Figure 2-1.

Figure 2-1: Part of the Amos II system type hierarchy

8-51

2.1.3 Functions

Functions describe attributes, relationship among different objects, views on
objects, and stored procedures for object. All defined functions are instances of
type named Function. The signature of a function represents its name,
arguments and results, for example:

• name(Person p) -> Charstring nm

The implementation of a function describes how to compute results of a
function for given parameters. There are five kinds of functions:
 1) Stored functions which mainly describe objects’ properties and whose
extents are explicitly stored in the database.
 2) Derived functions which are defined by a query statement.
 3) Foreign functions which are defined in some regular programming
language. Amos II supports C/C++, Java, and Lisp.
 4) Stored procedures which are used to specify computations having side
effects such as database updates.
 5) Overloaded functions which are functions having different
implementations depending on the types of their arguments. A resolvent is a
specific implementation of an overloaded function for a given combination of
argument types. Each resolvent must have a unique name and there is a
convention used in the system for how to construct unique resolvent names.
Assume the following two functions:

• create function info() -> <Charstring name, Integer age>
as select name(p),age(p);

• create function info(Person p)-> <Charstring name, Integer age> as
select name(p),age(p) from Person p;

The capitalization of function names is insignificant and their resolvent names
are capitalized. The unique resolvent names of function info are:

• INFO->CHARSTRING.INTEGER

• PERSON.INFO->CHARSTRING.INTEGER

2.2 Mediator and wrapper

Amos II adopts the mediator/wrapper approach to query heterogeneous data
sources. A mediator is a software module that exploits encoded knowledge
about some sets or subsets of data to create information for a higher layer of
applications [2]. A mediator does not store any data. It uses wrappers to
retrieve data from various data source. A wrapper is a software component
which queries a data source and translates data from is into the format used in

9-51

the mediator. The Figure 2-2 shows the architecture of a mediator/wrapper
system.

In the mediator/wrapper architecture, a query is first received by a mediator.
The mediator will translate the query to sub-queries that the corresponding
wrappers can understand. The wrapper uses the sub-queries to retrieve the
data and return the result to the mediator. The mediator will collect data
returned from different wrappers and process them as the result of the given
query.

2.3 External Java interface

Amos II provides external interfaces for the programming languages C/C++,
Java, and Lisp. The API description for C/C++ and Lisp is in [3] and for Java is
in [4]. We only use the Java API in this project.

The Java API has two kinds of interfaces, called callin and callout interfaces.

2.3.1 The callin Interface

The program developers can use the callin interface to make a call or a query
to an Amos II database from Java application programs. This interface is
similar to other Java database APIs, such as JDBC and ODBC.

With the callin interface, there are two different ways to access an Amos II

Mediator

Wrapper1

Source1

Wrapper2 Wrapper3

Source2 Source3

Figure 2-2: The mediator/wrapper architecture

10-51

database.

• The embedded query Interface: A query string is passed to the
database. Java interface methods are used to convert query results to
Java data structures. The embedded query interface is not used in this
project.

• The fast-path Interface: This interface is used for calling predefined
AmosQL functions. It is much faster than the embedded query interface
since it avoids dynamically parsing and optimizing the query string at
run time.

In this project the fast-path interface is used when the web server invokes
exported functions.

2.3.2 The callout Interface

Using the callout interface, Amos II foreign functions can be implemented as
methods written in Java programs. In order to create a Java foreign function,
there are two steps:

1. Writing a Java method implementing the function: Such a Java method
has two parameter classes, CallContext and Tuple. The CallContext
object is managed by system for error messages and execution control.
The Tuple object passes arguments and results between Java and
Amos II.

2. Defining the signature of the foreign function in AmosQL along with a
reference to the Java class implementing it.

In this project the callout interface is used for generating WSDL documents,
given exported functions. The Amos II server storing the database is
instructed to export functions and generate the WSDL file by calling a
foreign function.

3. XML and XML Schema

Extensive Markup Language (XML) [6] is a markup language rather than a
programming language. It is developed by an XML Working Group formed
under the auspices of the World Wide Web Consortium (W3C) in 1996.

11-51

3.1 Overview of XML

XML uses a tree-based structure to express data structures. Each node of the
structured tree is called elements or entities. It consists of makeup and text. A
makeup consists of start tags and end tags.

An initial example:

An XML document has an optional XML declaration element. This element
specifies what version of XML is to be used and what character encoding is to
be used. The nested element immediately following that element contains the
data exchanged among systems or applications. Nested elements can have
zero or more attributes. Attributes provide meta-information related to the
element content. Each attribute consists of a name and an associated value.

XML is designed for storing information by a text-base method in distributed
systems. Although XML and Hypertext Markup Language (HTML) are both
markup languages and are used to transfer data information via World Wide
Web, there are still some differences between them. HTML is concerned about
rendering information to browsers not the information itself. Thus, the HTML
specification defines a lot of tags, such as <body>, <tr> and <td> to help
browsers recognize the web content layout. However, XML cares also about
data structures rather than just layouts. It has no predefined tags and users
can define their own tags. It is easy to develop software to read and write XML
using some of the tools available for this, such as SAX [24] and DOM [25]
toolkits.

<?XML version="1.1" encoding="UTF-8" ?>
<person>

<name type="string"> Tom </name>
<age type="integer"> 12 </age>

</person>

Figure 3-1: Simple example of XML

The XML
declaration

An element contains
2 child elements,
name and age

Start tag

Attribute
name Associated value

End tag

12-51

3.2 Valid and well-formed XML documents.

An XML document is well-formed if it complies with some XML’s syntax rules
[9]:

• One and only one root element exists for the XML document. However,
the XML declaration, processing instructions, and comment elements
can precede the root element.

• Non-empty elements are delimited by both a start-tag and an end-tag.

• Empty elements should be marked with an empty-element (self-closing)
tag, such as <Empty />. This is equal to <Empty></Empty>.

• All attribute values are quoted, either single (') or double (") quotes.
Single quotes close a single quote and double quotes close a double
quote.

• Tags may be nested but must not overlap. Each non-root element must
be completely contained in another element.

• The document complies with its character set definition. The charset is
usually defined in the XML declaration but it can be provided by the
transport protocol, such as HTTP. If no character set is defined, usage
of a Unicode encoding is assumed, defined by the Unicode Byte Order
Mark. If the mark does not exist, UTF-8 is the default.

All well-formed XML documents that comply with grammar constraints is said
to be valid. There are several languages to specify the constraint grammar.
XML Schema and Document Type Definitions (DTDs) are two often used. This
project does not use DTDs XML-Schema provides a syntax to define user
defined XML data types. We introduce XML Schema in section 3.4.

3.3 XML Namespaces

Each XML element has its own specified name. Sometime name conflicts will
happen when we try to put two or more elements or attributes with the same
name into the XML document, while they have different purposes and structure.
For this, W3C provides XML namespaces [20] to eliminate name collisions
among elements or attributes.

An XML namespace is a collection of element type names and attribute names.
It is identified by a globally unique identifier reference called a URI. This URI is
not as same as the Internet URL although mostly URIs in XML documents are
presented as an internet web address.

13-51

An element type name or attribute name from a namespace appears in other
XML documents as a qualified name referred to as a QName. In the SOAP or
WSDL specifications QNames are widely used. A QName is composed of a
prefix, a delimiter, and a local part. The prefix refers to the namespace and the
local part is a defined name in that namespace. They are separated by a
delimiter, a colon. For instance, in the QName xsd:string, 'xsd' is the prefix that
refers to the namespace http://www.w3.org/2000/10/XMLSchema and 'string'
is a local part in the 'xsd' namespace.

3.4 XML Schema

With the help of XML Schema it is possible to know how the data structures are
represented in an XML document, how data is related to other data, and how to
validate the correctness of data. XML Schema is written in XML notation. An
XML Schema is also an XML document and follows the rules of XML. By
contrast, DTDs are written in non-XML syntax and provide poor data structure
definition facilities.

XML Schema is recommended by W3C. Its specification consists of three
parts:

XML Schema Part 0: Primer, http://www.w3.org/TR/XMLschema-0
XML Schema Part1: Structures, http://www.w3.org/TR/XMLschema-1
XML Schema Part2: Datatypes, http://www.w3.org/TR/XMLschema-2

Here is an XML Schema example, which defines a VectorofString data
structure used in this project:

In Figure 3-2, we define a complexType element, which can contain a set of
elements named member. The type attribute defines the type of these
elements using the QName xsd:string. 'string' is defined as a datatype in
http://www.w3.org/2001/XMLSchema that is XML Schema definition referred

<schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:complexType name="VectorofString">

 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="member"
type="xsd:string" />

 </xsd:sequence>
 </xsd:complexType>
</schema>

Figure 3-2: An XML Schema example

14-51

by the prefix xsd. 'xsd' defines some build-in primitive data types, such as
integer, double and string conforming to the specification of XML Schema Part
2: Datatypes Second Edition [21].

The structure of XML Schema document

In XML Schema, the first top element is named schema. The schema element
contains several kinds of child elements [9], for example:

• An element declaration element specifies allowable elements in XML
instance documents. The declaration element has a name and a type.
The type element can be simpleType or complexType, as described
below.

• An attribute declaration element specifies allowable attributes of XML
instance documents. An attribute element declaration also has a name
and a type.

• A simpleType declaration element restricts an XML Schema element to
have some build-in XML Schema data type (e.g. string or integer). It is
constructed by one or more list, union, or restriction elements. Note that
these elements are exclusive. A given simpleType element can contain
only one of those three elements.

• A complexType declaration element restricts an XML Schema element
to have a complexType datatype. In Figure 3-2 VectorofString is a
complexType example. ComplexType elements represent complex data
structures, such as classes in object-oriented programming languages.
It must contain one and only one element named sequence, choice, all,
or group. It may contain an arbitrary number of attributes or attribute
groups.

4. SOAP

Simple Object Access Protocol (SOAP) 1.1 is a recommended message
exchange protocol by the World Wide Web Consortium (W3C). You can find
the specification of SOAP 1.1 in [7]. We use version SOAP 1.1 in this project.

SOAP 1.1 is a lightweight and simple protocol, which is designed to realize
communication between service requestors and service providers in a
decentralized and distributed environment using XML. It does not require a
particular application environment, programming language, or transport
protocol. Thus, SOAP can potentially use various transport protocols, such as
HTTP, SMTP, or FTP. In this project we use the HTTP transport protocol. The

15-51

following is an overview of HTTP SOAP message transfer:

4.1 The SOAP Message Format

SOAP 1.1 is an XML based protocol. A message can be constructed as shown
in Figure 4-2. A SOAP message is an XML document consisting of a top-level
element named envelope. A SOAP envelope is a container for the SOAP
header and the SOAP body.

The SOAP header is an optional section in the SOAP message. It offers a
convenient way to provide additional information for a service call. Additional

SOAP envelope

SOAP header
(Optional)

SOAP body

Figure 4-2: A SOAP message without attachments

Service
Requestors

Service
Providers

HTTP

HTTP

XML SOAP Message

Figure 4-1: Transferring SOAP messages

16-51

information can be authentication, transaction information, or other needed
information. For example, we can add password and user name in the header
when our service is only available for private customers. We also can put there
cookie or session number specifications, or the bill number for each
transaction into header. If there is no header, the SOAP body will be the first
immediate element in the SOAP envelope.

The SOAP body is a mandatory part of the envelope. It carries the contents of
the message. It immediately follows the SOAP header if present. Otherwise, it
is the first element in the envelope. All immediate child elements of the body
are called body entries, and are SOAP message contents. Body entries are
independent.

A simple example of a SOAP message:

4.2 The SOAP encoding

In a distributed and heterogeneous application system, we often have a
well-known problem: the data type system of the requestor is not compatible
with the type system of the provider. The systems may even be written in
different programming languages or run in the different operation systems. The
solution of SOAP for this problem is to use encodings. The encoding specifies
how the message parts are serialized in the message and how to convert the
data types.

The SOAP section 5 encoding, defined in the namespace
http://schemas.XMLsoap.org/soap/encoding/, is a set of data definitions and

Figure 4-3: A SOAP message

<soapenv:Envelope
XMLns:soapenv="http://schemas.XMLsoap.org/soap/envelope/"
XMLns:xsd="http://www.w3.org/2001/XMLSchema"
XMLns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<soapenv:Body

soapenv:encodingStyle="http://schemas.XMLsoap.org/soap/encoding/">
<tns:INFO XMLns:tns="urn:WSAmos">

<P xsi:type="xsd:string">[OID 1048]</P>
</tns:info>

</soapenv:Body>
</soapenv:Envelope>

17-51

encoding styles. It contains all the types found in XML Schema Part 2
datatypes and add many new data types, like array. This encoding mechanism
is recommended by the SOAP 1.1 specification [7] but is not required; other
encoding mechanism can also be defined. In this project we use the SOAP
section 5 encoding mechanism as illustrated in Figure 4-3. The element p is
converted to a string using an attribute xsi:type.

4.3 SOAP styles

SOAP support two kinds of styles:

1. Document style:

When using the document style, any kind of XML instance can be inserted into
the body element in the envelope. The structure of XML instances carried
through the SOAP message have no restrictions. The document style is not
used in this project.

2. RPC style:

RPC stands for Remote Procedure Call. A client can invoke a remote method
provided by a service and can get the expected results from the service. The
previous example in Figure 4-3 is an RPC style message, which is the only
style used in this project. The client calls the function info with a parameter
named p. It expects to get the information of a specified person. The method
invocation and the method response are modeled by structs which are added
in the SOAP body of the SOAP envelope. Each struct is a compound value in
which accessor name is the only distinction among member values, and no
accessor has the same name as any other. For instance, the method
invocation is viewed as a single struct with the same name as method. The
struct contains several accessors which are referenced as parameters to be
executed. The structure of a method invocation using RPC style is illustrated in
Figure 4-4.

18-51

5. WSDL

The Web service description language (WSDL) provides a mechanism to
describe the interface of a web service in a structured way. One of the most
useful characters is that web service developers can easily and quickly create
a corresponding Java program by some software tools. For example, Apache
AXIS [17] provides two tools named Java2wsdl and wsdl2Java to automatically
generate Java interfaces to web services described by WSDL documents.
Other software vendors, like IBM, SUN, and Microsoft have similar tools.

The Apache AXIS framework provides servlets for Java-based web service
communication between clients and servers. Java2wsdl generates a WSDL file
from a Java interface file and wsdl2Java generates Java client-side and
server-side binding stubs from a WSDL file. Using the generated WSDL-file
and Java code, programmers do not need to care about the communication.
They just need to write Java code to call the web service operations and insert
them into the generated Java stub code. The intent with AXIS is to make it very
simple to split a given Java program into a client part and a server part, which
communicate using WSDL/SOAP.

One problem with AXIS is that the server has to be recompiled and redeployed
whenever new operations are to be exported. This is a problem in a dynamic
system where new interfaces need to be added to a system where the server
is always up-and-running. Furthermore, application deployment is somewhat
error prone. For example, new database applications might require new server

Figure 4-4: The structure of SOAP message using RPC style

<Envelope ….>
 <Header>
 <Header entries>
 </Header>

<Body ….>
<MethodName>

<argument1> Value1 </argument1>
<argument2> Value2 </argument2>
….

 </MethodName>
</Body>

</Envelope>

19-51

operations that retrieve particular data from the server. To avoid redeployment
one may make a static interface that can handle any supported web service
using exactly the same interface. Thus there is no application semantics for the
operation specified in the interface. Such a generic interface for Amos II
servers was previously developed. It had a general web service operation
called callFunction that allowed any Amos II function to be called with any
argument list. The client had to dynamically build the argument list as a data
structure and provide the function name as a string. Thus the semantics of
Amos II functions exported through the web service were not exposed through
the WSDL document as every application used exactly the same WSDL
document. By contrast, in the present project every exported Amos II function
has its own WSDL document that exports the semantics (the signature) of the
function.

In a WSDL file some standard type definition namespaces are used. The
following namespaces will be used in this report.

Prefix URI namespace Definition
wsdl http://schemas.XMLsoap.org/wsdl/ WSDL namespace for

WSDL framework.
soap http://schemas.XMLsoap.org/wsdl/soap/ WSDL namespace for

WSDL SOAP binding.
HTTP http://schemas.XMLsoap.org/wsdl/http/ WSDL namespace for

WSDL HTTP GET &
POST binding.

SOAP-ENC http://schemas.XMLsoap.org/soap/encoding/ Encoding namespace as
defined by SOAP 1.1.

SOAP-ENV http://schemas.XMLsoap.org/soap/envelope/ Envelope namespace as
defined by SOAP 1.1.

xsi http://www.w3.org/2000/10/XMLSchema-instance Instance namespace as
defined by XSD.

xsd http://www.w3.org/2000/10/XMLSchema Schema namespace as
defined by XSD.

tns namespaces defined by
developers

 Table 5-1: List of common name spaces

Figure 5-1 illustrates a WSDL document structure. It has a root element,
definitions, and six major elements.

• The definitions is the root element of the whole WSDL document. It is a
container for all other WSDL elements.

• The types specifies a container for new XML Schema type definitions

20-51

used in the service.

• The message is a specification of the data format to be transferred.

• The portType specifies a collection of operations used by a service.

• The binding is a description of the transfer protocol and data types used
by the operations in the Port Type part.

• The operation specifies an operation to be invoked. The operation gives
an abstract operation structure in portType and specifies the transform
protocol and style in the binding.

• The service is a collection of ports. Each port describes the network
address of a web service.

5.1 The types element

The types element is a description of the data types used for transferring
messages used in the message elements. For cross-platform and cross
developing language, WSDL normally uses XML Schema as the type system,
but it does not exclude using any other type system. XML Schema allows
developers to define arbitrary types. In this project we use XML Schema.

0..1 0..1

definitions

types message portType binding services

part operation port

input output fault

Figure 5-1: WSDL document structure

0..1 n n n n

n n n n

n

21-51

5.2 The message element

The message element represents arguments and results of an operation. Each
message element has an attribute name, and several part elements.

In SOAP RPC style, each part element represents a parameter of arguments
or results. It has three attributes:

• The name attribute specifies the name of the part. It is mandatory and
unique within the message.

• The element attribute describes the data type of the arguments or
results of an operation using the element declaration (section 3.4) in
XML Schema.

• The type attribute defines the data type of arguments or results of an
operation using the simpleType or a complex declaration (section 3.4) in
XML Schema. The element attribute and the type attribute are exclusive
in the part element. It means a part element only has one of these two
attributes.

5.3 The portType and operation elements

In a WSDL file, operation elements are grouped together as child elements of a
portType element that describes web service operations. A portType element is
treated as a service interface container in which functions to be invoked are
described. An operation element is treated as a method in Java or C/C++.

A portType element has one attribute, name. The value of this attribute is
mandatory and unique within the whole WSDL document.

An operation element has a name attribute. In the WSDL1.1 specification,
there is no restriction about naming an operation element, but the value of this
attribute is conventionally the name of the method implementing the operation.
No matter which programming language is used to realize the web service
operation, the operation element should include some or all following
elements:

• The input element:

• The output element:

• The fault element:

These three elements abstractly specify the arguments, results, and error
(exception) of one function respectively. They have two attributes:

22-51

• The name attribute specifies the name of the operation, which has to be
unique within the enclosing portType.

• The message attribute specifies the message element describing the
message of the operation element.

WSDL has four different operation types that a web service can support, as
listed in Table 5-2. In this project we use the Request-response operation only.

Type Description
One-way Operation The endpoint service just receives the message. A

one-way operation only has an input element. The
one-way operation in the endpoint service just
receives a request from the service requestor and
does not have any response.

Request-response
Operation

The endpoint receives a message and sends the
results to the client side. A request-response
operation has one input element, one output element,
and zero or more fault element. The order of these
elements is significant.

Solicit-response
Operation

The endpoint sends a message and receives the
results. A solicit-response operation has one output
element, one input element, and zero or more fault
element. Again, the order is significant. Compared
with the request-response operation, the endpoint
service first sends the message rather than receiving
a message if it is a solicit-response operation.

Notification Operation The endpoint just sends the message. There is only
an output element. The notification operation in the
endpoint service sends a message to the service
requestor and does not receive any message.

Table 5-2: Operation types

Only the request-response operation type is used in this project.

In some WSDL files, there may be no name attributes in the input or output
elements and then default names are used. The default names depend on the
operation name. If this operation is a one-way operation or a notification
operation, the default name is the name of the operation. If it is a
request-response operation or a solicit-response operation, the default is the
operation name appending “Request”/”Solicit” or “Response”/”Result”,
respectively [8]. The fault element however has no default name and must be
given a unique name among all of fault elements.

23-51

WSDL 1.1 supports operation overloading. Overloading is a type of
polymorphism in which some or all of functions with the same function name
are invoked based on the data type of the input parameters. WSDL 1.1 allows
overloading operations with the same operation name but these operations
must have different input and output names. In other words, the naming of an
operation is a combination of the operation name, the input name, and the
output name. The combination must be unique within the enclosing portType
element. In addition, we can also add parameterOrder attribute in the
operation element although this is optional in WSDL 1.1. The value of the
parameterOrder attribute is a list of message parts separated by a single space.
This list reflects the order in which the parameters appear in the operation
signature.

In this project overloaded operations represent overloaded Amos II functions.
These functions have the same operation name. Since the input name and
output name must be unique, the system generates unique input name and
output name by enumerating them.

5.4 The binding element

In a WSDL file, the portType and the operation elements just give an abstract
description of a service. They do not tell service users what protocol should be
used to transport the SOAP message and what style should be use during
transferring SOAP message. The binding element does this. The structure of a
binding element matches the structure of the portType element. It has a set of
operation elements and these operation elements have input, output, or fault
elements. A binding element has two mandatory attributes:

• The name attribute specifies the name of the binding. It must be
unique.

• The type attribute is mandatory. The value of the type attribute is a
QName that refers to the portType element in a namespace.

Since SOAP is the most commonly used communication protocol for hweb
services, the WSDL specification describes a set of extensibility elements used
to specify a SOAP binding. The extensibility elements specify the concrete
information about the binding and its operations. These extensibility elements
are defined in an XML namespace, http://schemas.xmlsoap.org/wsdl/soap. We
use QName to reference these elements .The WSDL specification also defines
other extensibility elements that binds a web service to the HTTP protocol [8].

In this work, the binding for SOAP 1.1 is the only one used. Figure 5-3 is an
example of a SOAP binding.

24-51

In Figure 5-3, three kinds of extensibility elements are used named
soap:operation, soap:body, and soap:binding, illustrating the generic rules of
extensibility elements for SOAP bindings.

Extensiblity
elements

Attributes Description

soap:binding style,
transport

Specifies the protocol information applied
to all operations in the portType element
being bound. Style is RPC or document
SOAP style mentioned in section 4.3.
Transport specifies what protocol is used to
carry the SOAP message. HTTP, SMTP, or
FTP could be candidates

soap:operation style,
soapAction

Specifies the protocol information applied
to the operation as a whole. Style is RPC or
document SOAP style mentioned in section
4.3. It will override the style defined in
soap:binding. SoapAction is placed in the
SOAPAction HTTP header as the part of an
http message.

soap:body parts, Provides the details on how the message

Figure 5-3: Example of SOAP binding

...
<wsdl:binding name="WebamosSoapBinding" type="tns:WebamosPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="ARGUMENTS">
 <soap:operation soapAction=""/>
 <wsdl:input name="ARGUMENTSRequestMsg0">
 <soap:body use="encoded" encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:WSAmos"/>

 </wsdl:input>
 <wsdl:output name="ARGUMENTSResponseMsg0">
 <soap:body use="encoded" encodingStyle=

"http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:WSAmos"/>

 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>
...

25-51

use,
encodingStyle,

namespace

parts appear in the SOAP body portion of
the SOAP message. The attribute parts
indicates which parts will appear within the
SOAP body portion of the message. If the
parts attribute is omitted, all parts of the
message are included. The attribute use
defines whether the message parts are
encoded using some encoding rules or not.
The encoding rules are given by the
encodingStyle attribute. The namespace
attribute supplies the URI for elements that
do not have an explicit namespace.

Table 5-3: SOAP binding extensibility elements

5.5 The service element and the port element

Up to now, we have described how service customers know how to send and
receive data about service calls. However, the address of our service is also
needed. The service and the port elements disclose this information.

The service element is a set of port elements that define the web service
address for a binding. A WSDL file can contain many service elements. Each
one has a distinct value of the name attribute.

The port element locates web service addresses using an extensibility element,
soap:address. This extensibility element has an attribute location, pointing to
the service’s URI. A port element has a name attribute and a binding attribute,
both of which are mandatory. The value of the name attribute must be unique
among all ports. The binding attribute refers to the relative binding element
using QName. For example, when a set of operations within the binding
element is bound to a network address the name of that binding element must
be equal to the type attribute in the port element.

6. Implementation of WSMOS

Figure 6-1 below illustrates the architecture of WSMOS:

26-51

The WSMOS system includes two parts, the WSDL generator and the
WSMOS web server. They are shown as two dark boxes in Figure 6-1.

The WSDL generator is a plug-in (foreign function) to an Amos II server that
automatically generates WSDL documents for given exported Amos II
functions in the Amos II database server. The export description is a WSDL
document that describes the web service operation interfaces of the exported
functions. When a function is exported it is automatically deployed immediately
as a web service operation. A client application can call any such exported
function as an invocation of a web service operation. The programmer simply
needs to know the URL of the export description describing the signature of the
exported function to call. To construct the communication messages a SOAP
stub interface is needed. The SOAP stub can be automatically generated from
the export description by stub generating tools like WSDL2Java [17], which
generates web server Java interfaces from a WSDL document. When the

Figure 6-1: The architecture of WSMOS

SOAP stub

Client application

WSMOS
web server

Amos II
database server

WSDL generator

WSDL2Java

Export
description

Server-side SOAP

Callin

Callout

HTTP

Call
Generate

Read

Client-side

27-51

operation of an exported function is called by the SOAP stub, a SOAP
message will be transferred to the WSMOS web server. The WSMOS web
server parses the message and constructs an AmosQL query sent to the Amos
II database server using the callin interface. The database server evaluates the
function call and returns the results to the WSMOS web server. The WSMOS
web server converts the function call result to a SOAP message sent back as
the result of the invocation of the operation. The SOAP stub parses the
response SOAP message and extracts the result of the web service operation
call.

6.1 The WSDL generator

Export description

Amos II
kernel

Figure 6-2: WSDL Generator modules

Exported functions

WSDL creator

Function registrar

WSDL exporter

Function analyzer

Exported signatures

Exported signatures

Internal export descriptions

 WSDL generator

Operation mapping table

call

write

28-51

The structure of the WSDL generator is shown in Figure 6-2. Amos II invokes it
as an external Java application using the callout interface. The WSDL
generator consists of four modules, function analyzer, function registrar, WSDL
creator, and WSDL exporter.

The function analyzer receives a set of exported functions. The function
analyzer first checks whether the exported functions are allowed to be
exported by looking up a system table. This enables the database
administrator to control what functions are exportable, which improves security.
It then queries Amos II meta-data for the signature of each function to export
and generates exported signatures as Java data structures. The signatures
consist of the names and types of the functions’ arguments and results. They
are passed to the function registrar and the WSDL creator.

The function registrar stores the signature of each exported function in its
operation mapping table. This table is later used when the server constructs a
response message for client operation calls. Table 6-1 illustrates the structure
of the operation mapping table for a function having the signature info(Person
p)-> <Charstring name, Integer age>.

funName argsType argsName rettype Retname
INFO PERSON P CHARSTRING.INTEGER NAME.AGE

...

Table 6-1: Operation mapping table

In the operation mapping table, the combination of funName and argsType
constitutes the compound key. Several system functions are defined to update
and query the operation mapping table given funName and argsType.

The WSDL creator dynamically builds the internal export description as a DOM
data structure in main memory using the WSDL4J Java toolkit [19]. The rules
for transforming signatures to WSDL operation descriptions will be discussed
in section 6.1.3.

The WSDL exporter transforms the DOM representation of the export
description into the final deployed export description, i.e. the WSDL file
describing the exported function interfaces as operations.

29-51

6.1.1 SOAP message specification

The WSMOS server is implemented as a web server and we therefore use
SOAP over HTTP transport protocol. We always use the SOAP RPC encoding
style of message passing since functions are invoked remotely by clients. With
this encoding style all data elements are tagged with predefined XML Schema
data types. This is required to distinguish between different data types passed
as arguments and results from functions. Other styles, such as RPC-literal and
document-literal do not provide the required functionality.

6.1.2 Data type mappings

There are two data type mappings needed. First Amos II data types are
converted to Java data types using the standard mapping between Amos II
and Java [4] as illustrated by Table 6-2. The Java class Oid represents any
Amos II object.

Amos II data type

Java class

INTEGER Integer
REAL Double

CHARSTRING String
Collection types Tuple

Others types Oid

Table 6-2: Data mapping between Amos II and Java

Second the Java data types need to be converted to XSD data types allowing
the SOAP RPC encoding style to transfer the messages as XML documents.
Table 6-3 illustrates the mapping between the used Java data types and
corresponding XSD data types. Java object of class Tuple are first converted to
Vector objects.

Java class XML data type

Integer xsd:int
Double xsd:double
String xsd:string
Vector tns:VectorofAnyType or

other vector types

30-51

Oid xsd:string with special
syntax

Table 6-3: Data mapping between Java and XML

As mentioned in section 3.4, the XML Schema document
http://www.w3.org/2001/XMLSchema defines many primitive build-in data
types provided by W3C. In order to use these predefined primitive data types
in that standard namespace, we should use QName [20]. For example, xsd:int.

If the Java class is Vector, we have to map it to our own XML Vector type. For
this, some new vector types are defined using XML Schema within the types
element of the WSDL files. The five predefined WSMOS vector types are
VectorofanyType, VectorofOID, VectorofINTEGER, VectorofREAL, and
VectorofCHARSTRING. VectorofanyType in XML Schema is a generic vector
type that can contain any data type. VectorofOID is a set of objects of the
Amos II surrogate type Oid. VectorofINTEGER, VectorofREAL and
VectorofCHARSTRING respectively represent a set of integer, a set of real,
and a set of string. We judge the vector kind based on the definition in Amos II
where, e.g., Vector-Integer is a sequence of integers. As the Vector type in
Amos II represents any ordered set that can contain objects of any Amos II
type, it will be mapped to VectorofanyType. Figure 6-3 illustrates the data
structure of VectorofanyType.

31-51

The Java class Oid is a reference class for any Amos II surrogate data type. In
the SOAP message and the WSDL file, we convert the Oid object to a special
proxy string, beginning with a prefix, “[OID”, and ending by a postfix, “]”.
Between the prefix and the postfix it is the ID-number of the surrogate object.
For example, “[OID 1080]” refers to an object stored in the Amos II database
whose OID is 1080. In contrast, when the web server receives a string with that
particular format, “[OID 1080]”, it must convert that string to the corresponding
Oid Java class referring to the “#[OID 1080]” object in Amos II. After the web
server parses the string and gets the ID-number (1080), it calls Amos II to
obtain the corresponding Oid Java object representing the Amos II object
having the given ID.

6.1.3 Describing an Amos II function as a WSDL operation:

Assuming that we have a function:

create function info(Person p)-> <Charstring name, Integer age>

 as select name(p),age(p);

Its signature is info(Person p)-> <Charstring name, Integer age>. The
semantics of this function is to retrieve a specified person’s name and age.

<definitions>
<types>
<schema >

...
<xsd:complexType name="VectorofanyType">

 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="member"
type="xsd:anyType" />

 </xsd:sequence>
 </xsd:complexType>
...
</schema>
</types>
...
</definitions>

Figure 6-3: The definition of VectorofanyType

32-51

The corresponding WSDL code to describe the signature of the function info
looks like this:

<wsdl:definitions ...>
<wsdl:types>

<xsd:schema>
...
<xsd:complexType name="INFOReturn0"><xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="row">

 <xsd:complexType><xsd:sequence>
 <xsd:element name="NAME" type="xsd:string"/>
 <xsd:element name="AGE" type="xsd:int"/>
 </xsd:sequence></xsd:complexType>
</xsd:element>

</xsd:sequence></xsd:complexType>
...

</xsd:schema>
</wsdl:types>

<wsdl:message name="INFOResponseMsg0">
 <wsdl:part name="results" type="tns:INFOReturn0"/>

</wsdl:message>
<wsdl:message name="INFORequestMsg0">

 <wsdl:part name="P" type="xsd:string"/>
</wsdl:message>

<wsdl:portType name="WebamosPortType">

<wsdl:operation name="INFO" parameterOrder="P">
 <wsdl:input name="INFORequestMsg0" message="tns:INFORequestMsg0"/>
 <wsdl:output name="INFOResponseMsg0"

message="tns:INFOResponseMsg0"/>
 </wsdl:operation>
 </wsdl:portType>
...
</wsdl:definitions>

Figure 6-4: WSDL codes for signature of function info

In Figure 6-4 we define an operation called INFO within the portType element.

33-51

The INFO operation contains an input element and an output element. The
input element has an attribute message referred to an input message named
INFORequestMsg0. Figure 6-5 illustrates the structure of the message.

The index is used to support overloading. According to the specification of
WSDL 1.1, the combination of the operation name, the input name, and the
output name must be unique within the portType element. To achieve this, if
there are any other operations with the same function name, the WSDL
generator will increase the index by one for each new overloaded function
resolvent. For example, if there had been another info resolvent we would
have increased the value of the index to 1, INFORequestMsg1.

The output element also has an attribute message linked to an output
message and its name is INFOResponseMsg0. The constant string
RepsonseMsg corresponds to RequestMsg to indicate that this is a response
message.

The INFORequestMsg0 message contains one part element since the info
function has only one argument named p and its type is Person. Since Person
is a user defined type, it is represented as an OID proxy string (see section
6.1.2 Data Type Mappings). Therefore, we set its name attribute to P and its
type attribute to xsd:string in the part element.

The output message contains one part element that is linked to a new data
type INFOReturn0 defined in the schema element.

INFO RequestMsg 0

The index

Figure 6-5: The structure of the input element

A constant string
showing it is a request

message

The function
name

34-51

The INFOReturn0 data structure has a sequence element named row. Each
row element represents a function call result. Since the result of the info
function is a 2-way tuple, <Charstring name, Integer age>, the row element
contains two child elements. The first one is named NAME and its type is
mapped to xsd:string since the type of the first result parameter is Charstring.
The other is named AGE and its type is mapped to xsd:int.

In general, the WSDL creator has the following conventions in order to
correctly describe an (overloaded) Amos II function as an operation in the
WSDL document:

1. The name attribute of the operation is the generic function name

(capitalized). The parameterOrder attribute is a list of function argument
names (capitalized) separated by spaces.

2. The names of the input element and the input message consist of the

function name, the constant string RequestMsg, and an index. The index
distinguishes overloading functions in the WSDL document. It starts from 0
and is increased by adding one for each new resolvent.

3. The input message contains several part elements which represent

function arguments. All part elements keep the same order as the function
arguments. The value of the name attribute in each part element is the
name of the corresponding function argument. The type attribute uses the
data type mapping between Java and XML in section 6.1.2.

4. The names of the output element and the output message consist of the

function name, the constant string ResponseMsg, and an index. This index
corresponds to the index that appears in the input element and the input
message.

INFO Return 0

The function
name

A constant string
showing it will be a

return type

The index to support
overloading functions.

Figure 6-6: The structure of the input element’s name

35-51

5. The output message contains one part element named results. Since the
result of the function call normally is a collection, the output message
structure is more complex than the input message. We can not directly set
the result parameters as part elements as for input messages. Instead, we
define the corresponding result structure in the types element in the WSDL
document. The part element within the output message using the type
attribute refers to the complex XML Schema data structure defined in the
types element in the WSDL document. The value of this type attribute is the
function name plus the string Return and the index of overloaded functions.

6. The complexType collection data type holds one query result tuple. It has

one attribute, name. Each result tuple is represented as an element named
row. The row element also is a complexType element. All result parameters
are listed under it and keep the same order as the function result tuple
specification. For instance, in Figure 6-4 the results tuple of function info is
<Charstring name, Integer age>. Two child elements representing name
and age are added within the row element. Figure 6-7 illustrates the generic
structure of results.

7. The child elements of a row element have the two attributes, name and

type, and a text node containing the result value. The value of the name
attribute is equal to the name of the function result parameter. The value of
type refers to the data type mapping in section 6.1.2.

...
<xsd:complexType name="FunctionName + ‘Return’+Index">

<xsd:sequence>
<xsd:element maxOccurs="unbounded" minOccurs="0" name="row">

 <xsd:complexType>
<xsd:sequence>

 <xsd:element name="Result parameter 1" type="xsd:datatype"/>
 <xsd:element name="Result parameter 2" type="xsd:datatype "/>

...
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>
...

Figure 6-7: WSMOS result structure

36-51

6.2 The WSMOS web server

As we are using the HTTP protocol to carry SOAP messages, the WSMOS
web server is a Java HTTP SOAP server. Its purpose is to immediately deploy
specified Amos II functions as web service’s operations when the database
administrator exported the specified functions, without restarting the web
server or deploying any Java code.

Figure 6-8 illustrates WSMOS web server components.

SOAP stub

SOAP request
envolope

SOAP response
envolope

SOAP

communication server

XML parser XML writer

DOM

DOM decoder DOM encoder

Amos II database server

AmosQL
function call

The results

DOM

Figure 6-8: The WSMOS web server components

WSMOS web server

37-51

The WSMOS web server consists of a communication server, an XML parser
and writer, a DOM decoder, and an encoder.

The communication server first receives a remote call from the client interface.
The remote call is a RPC SOAP call via the HTTP protocol. The
communication server extracts the message content and passes it to the XML
parser. The XML parser uses the input SOAP envelope to generate a DOM
data structure. A DOM decoder using the data type mapping rules between
XML and Java in section 6.1.2 decodes the DOM data structure, and extracts
the function name, along with names, types and values of the function call
arguments. When decoding, we use the type information provided by the
SOAP message. Thus we do not use the operation mapping table here. After
getting results from Amos II, the XML encoder uses the operation mapping
table and data type mapping rules between XML and Java to encode the result
to another result DOM structure. The XML writer prints the result DOM
structure to the communication server as a SOAP response message and the
communication server sends back the SOAP message to the client interface
over HTTP protocol.

6.2.1 The communication server

The WSMOS web server is an HTTP SOAP server. Two version of the
WSMOS communication server are developed, either a modified JSoapServer
[16] or the Apache Tomcat web server [11].

JSoapServer [16] is a lightweight standalone SOAP web server using two
libraries, Apache Axis [17] and QuickServer [18]. Axis contains an XML
parser/writer, a DOM decoder, and a DOM encoder. The QuickServer is a
library for handling the HTTP protocol. To construct a simple communication
server we modified the code of JSoapServer by removing the Apache Axis
library and just use the QuickServer library. We call our communication server
AmosSoapServer.

Tomcat [11] is another free standalone and cross-platform web server that
supports servlets and JSP. A servlet is an object that receives a request
(ServletRequest) and generates a response (ServletResponse). Sun
Microsystems provides an API package Javax.servlet.http to define HTTP
subclasses of generic Java servlet classes for requests (HttpServletRequest),
responses (HttpServletResponse), and sessions (HttpSession). When using
WSMOS with Tomcat we use the servlet mechanism to handle the HTTP
SOAP request and response.

Comparing Tomcat and AmosSoapServer, the latter is a lightweight system

38-51

which is simple and uses less memory and CPU time. One AmosSoapServer
only supports one web server while Apache Tomcat can deploy several web
servers simultaneously. Only one web server is needed in this project. A
problem with Tomcat is that the whole system will crash when one of web
servers crashes. Therefore, we recommend using AmosSoapServer as the
communication server for WSMOS.

6.2.2 The XML parser

The communication server transfers a string representing a SOAP request
envelope to the XML parser for building a DOM data strucure. Conversely, the
XML writer will convert a DOM data structure to a string as an output of
operation when the DOM encoder returns the results.

In order to analyze, create, and modify SOAP messages, we use a public Java
library called SAAJ [13], which stands for SOAP with Attachments API for Java.
SAAJ enables programmers to quickly produce and consume SOAP
messages conforming to the SOAP 1.1 specification. It is developed by the
JSR 67 export group [23].

6.2.3 The DOM decoder

In order to invoke the correct function, we must analyze a received SOAP
message. The XML parser converts the SOAP message to DOM. The
following example is a SOAP message envelope using RPC/Encoding style:

39-51

In the SOAP message example in Figure 6-9, the first immediate child element
of the body is INFO. It has a single child element named P. The text node of P
is [OID 1048]. Therefore, we know that the function is named INFO and the
argument name is P. The xsi:type attribute of element P is xsd:string and its
text node is a proxy string that starts with a “[OID” and ends with “]”. A new
Java Oid object is created, which is a surrogate for the Amos II object “#[OID
1048]“ using the Amos II Java interface [4].

Figure 6-10 shows the generic structure of a SOAP request message using
RPC/encoding:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/xmlschema"
xmlns:xsi="http://www.w3.org/2001/xmlschema-instance">

<SOAP-ENV:Body
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<tns:INFO xmlns:tns="urn:WSAmos">

<P xsi:type="xsd:string">[OID 1048]</P>
</tns:INFO>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 6-9: A WSMOS SOAP message

A function name

An argument’s name An argument’s type An argument’s value

40-51

The body element only contains one child element which is named by the
name of the function to be invoked. That element consists of zero or more child
elements that represent the input parameters.

Elements using primitive data types have an attribute “xsi:type” and one text
node. They have no child element. The value of “xsi:type” is an XML data type.
We use the data type mapping mechanism in section 6.1.2 to decode XML
data types as Java data types.

In difference to the primitive data types, the parent element of a collection data
type does not have any “xsi:type” attribute or text node. It contains a number of
child elements. These child elements can be primitive data types or collection
data types. If the child element is a primitive data type, we decode them by the
rules mentioned in the previous paragraph. If it is a collection data type, we will
recursively parse it.

6.2.4 The DOM encoder

Function results are sent back to the DOM encoder as a Java Tuple object
through the Amos II Java interface. The DOM encoder will convert it to a Java
Vector type. The SOAP response message in Figure 6-11 is based on the
result of info function call. The function call result is <Milena, 30>.

< Envelope ...>
 <Header...> ... </Header>

< Body >
<FunctionName>
 <Argument1 xsi:type=“xsd:datatype“...> value1 </Argument1>

<Argument2 xsi:type=“xsd:datatype“...> value2 </Argument2>
<Argument3>

 <element1 xsi:type=“xsd:datatype“ ...> value < /element1 >
 <element2 xsi:type=“xsd:datatype “...> value < /element2 >
 ...
</Argument3>
.....

</FunctionName>
</Body>

<Envelope>

Figure 6-10: Generic structure of WSMOS SOAP request message

41-51

Using the convention of SOAP RPC communication style, the DOM encoder
will first insert an INFOReturn element in the body element as its immediate
child element. Under that element, the DOM encoder will build the results
using the structure described in the WSDL file. The element results and its
child row are added. The row element refers to a result tuple. A tuple of result
parameters will be stored in a row element. In order to retrieve the signature of
the function call, the DOM encoder queries the operation mapping table in the
Amos II database server. It contains all necessary meta-data about the
function call signature. The signature of info function is info(Person p)->
<Charstring name, Integer age>. Using the operation mapping table, the DOM
encoder thus knows that the name of the first result parameter is NAME and its
type is Charstring, while the second parameter name is AGE and type is
Integer. Consequently, the DOM encoder creates two corresponding child
elements within the row element.

<soapenv:Envelope
xmlns:soapenv=http://schemas.XMLsoap.org/soap/envelope/
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/encoding/">

<soapenv:Body>
<tns:INFOReturn xmlns:tns="urn:WSAmos">

<tns:results>
<tns:row>

<tns:NAME xsi:type="xsd:string">Milena</soapenv:NAME>
<tns:AGE xsi:type="xsd:int">30</soapenv:AGE>

</tns:row>
</tns:results>

</tns:INFOReturn>
</soapenv:Body>
</soapenv:Envelope>

Figure 6-11: A SOAP response message

One result

A result’s name A result’s type A result’s value

A Function Return

42-51

The generic structure of a SOAP response message is shown in Figure 6-12.

The following rules are applied when the DOM encoder builds a SOAP
response message:

1. The immediate child element in the body element is a function name plus a
postfix string “Return”.

2. The function call result is a sequence of elements named results. Thus, the
immediate child element of the body has only a child element named results.

3. The results element contains zero or more elements named row. If the query
is an empty scan, there is no row element.

4. Each child element of the row element represents one function result tuple
element. The names and types of the function results are stored in the
operation mapping table. The DOM encoder queries these meta-data and uses
them to build all child elements of the row element. The encoder will map the

< Envelope>
< Body>

< FunctionName+”Return” >
<results>

<row>
 < parameter1 of result1 > value1 </ parameter1>

< parameter2 of result1> value2 </ parameter2>
...

</ row>
<row>
 < parameter1 of result2> value1 </ parameter1>

< parameter2 of result2> value2 </ parameter2>
...

</row>
...

</ results>
</ FunctionName + “Return”>

</Body>
</Envelope>

Figure 6-12: Generic structure of WSMOS SOAP response message

43-51

Java data type of each result parameter to an XML data type. It follows the
mappings in section 6.1.2.

6.2.5 Handling exception:

In most programming languages there is a mechanism to throw exceptions.
For example, Java has the try and catch statements to catch exceptions.
SOAP has a similar mechanism. It uses the fault element to send back an error
or exception code via a SOAP message to the SOAP stub when an exception
occurs. The fault element is contained in the body element and a body element
may have only one fault element. When the client interface receives the error
message, the clients will know where the problem is and can fix the problem.

Figure 6-13 illustrates a SOAP error message.

If, when the client invokes a function, the information of info function does not

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/xmlschema"
xmlns:xsi="http://www.w3.org/2001/xmlschema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/encoding/">

<soapenv:Body>
<soapenv:Fault>

<faultcode xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
SOAP-ENV:Server

</faultcode>
<faultstring>callin.AmosException</faultstring>
<faultactor></faultactor>
<detail>

<tns:FaultDetail xmlns:tns="urn:WSAmos">
ERROR BAD_REQUEST. Function, info, is not exported.

</tns:FaultDetail>
</detail>

</soapenv:Fault>
</soapenv:Body>
</soapenv:Envelope>

Figure 6-13: A SOAP error message

44-51

exist in the operation mapping table the server will throw an Amos exception
and build a fault element. In the FaultDetail element, the error message
is ”ERROR BAD_REQUEST. Function INFO is not exported“. The client
system can read the error message to know that the info function is not
exported. The error message is constructed following the specification of
WSDL 1.1 [8].

7. Summary and future works

The WSMOS project implements a mechanism of automatic deployment of
web services for data access. The WSDL generator creates a web service
interface description (WSDL document) for specified exported Amos II
functions conforming to the WSDL 1.1 specification. The WSDL document
defines the signature of exported functions, the service URI, and how to
transfer SOAP messages. It does not limit the client to use a particular platform
or programming language. For example, a C++ client can invoke the operation
of the WSMOS web server written in Java via the SOAP message, or the client
can be running on a different operating system. On the server side, the
WSMOS web server receives incoming SOAP messages sent by an operation
call, dynamically interprets the received SOAP message, and queries Amos II
through the callin interface. From the result of the function call the system
builds a SOAP response message and sends it back to the client.

Web services include not only WSDL and web server applications but also a
service to publish WSDL files. The Universal Description, Discovery, and
Integration (UDDI) registry provides a place to store different WSDL files from
different web service providers. Web clients can easily find their web service
through the UDDI. UDDI registries are provided by IBM, Microsoft, Sun, and
other technology companies. They contain a programmatically accessible
description of services and define the programming model and schema. Future
work could include developing an automatic application to render the WSDL
file to some UDDI registries.

Other future work would deal with security since every system have sensitive
resources that can be accessed by many users, or resources that traverse
unprotected and open networks, such as the Internet. We can add security at
the transport layer, the message layer, and the application layer.

45-51

Appendix A: A WSDL document with
overloading operations

Assume the following two resolvents of the overloaded Amos II function info with signatures
(Amos II function names in small letters, while types has first letter capitalized):

info() -> <Charstring name,Iinteger age>.

info(Person p) -><Charstring name, Integer age>

The corresponding generated WSDL document is:

<?xml version="1.0" encoding="UTF-8" ?>
<wsdl:definitions name="Webamos" targetNamespace="urn:WSAmos"

xmlns:tns="urn:WSAmos"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<wsdl:types>
<xsd:schema targetNamespace="urn:WSAmos"

xmlns="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="VectorofanyType">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="member"

type="xsd:anyType" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="VectorofOID">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="member"

type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>

<xsd:complexType name="VectorofINTEGER">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="member" type="xsd:int"

/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="VectorofREAL">
 <xsd:sequence>

46-51

 <xsd:element maxOccurs="unbounded" minOccurs="1" name="member"
type="xsd:double" />

 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="VectorofCHARSTRING">

<xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="1" name="member"

type="xsd:string" />
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="INFOReturn0">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" name="row">
 <xsd:complexType>

<xsd:sequence>
 <xsd:element name="NAME" type="xsd:string" />
 <xsd:element name="AGE" type="xsd:int" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>

<xsd:complexType name="INFOReturn1">
<xsd:sequence>

<xsd:element maxOccurs="unbounded" minOccurs="0" name="row">
<xsd:complexType>

 <xsd:sequence>
 <xsd:element name="NAME" type="xsd:string" />
 <xsd:element name="AGE" type="xsd:int" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>
</wsdl:types>

<wsdl:message name="INFOResponseMsg0">
 <wsdl:part name="results" type="tns:INFOReturn0" />
</wsdl:message>
<wsdl:message name="INFORequestMsg0">
 <wsdl:part name="P" type="xsd:string" />
</wsdl:message>
<wsdl:message name="INFOResponseMsg1">

47-51

 <wsdl:part name="results" type="tns:INFOReturn1" />
</wsdl:message>
<wsdl:message name="INFORequestMsg1" />

<wsdl:portType name="WebamosPortType">

<wsdl:operation name="INFO" parameterOrder="P">
 <wsdl:input name="INFORequestMsg0" message="tns:INFORequestMsg0" />
 <wsdl:output name="INFOResponseMsg0" message="tns:INFOResponseMsg0" />
 </wsdl:operation>

<wsdl:operation name="INFO" parameterOrder="">
 <wsdl:input name="INFORequestMsg1" message="tns:INFORequestMsg1" />
 <wsdl:output name="INFOResponseMsg1" message="tns:INFOResponseMsg1" />
 </wsdl:operation>
</wsdl:portType>

<wsdl:binding name="WebamosSoapBinding" type="tns:WebamosPortType">
 <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />

<wsdl:operation name="INFO">
 <wsdlsoap:operation soapAction="" />

<wsdl:input name="INFORequestMsg0">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:WSAmos" />

 </wsdl:input>
<wsdl:output name="INFOResponseMsg0">

 <wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:WSAmos" />

 </wsdl:output>
 </wsdl:operation>

<wsdl:operation name="INFO">
 <wsdlsoap:operation soapAction="" />

<wsdl:input name="INFORequestMsg1">
 <wsdlsoap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:WSAmos" />

 </wsdl:input>
<wsdl:output name="INFOResponseMsg1">

 <wsdlsoap:body use="encoded"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
namespace="urn:WSAmos" />

 </wsdl:output>
 </wsdl:operation>
</wsdl:binding>

48-51

<wsdl:service name="WebamosService">

<wsdl:port name="WebamosPort" binding="tns:WebamosSoapBinding">
 <wsdlsoap:address location="http://130.238.11.189:8082/wsmos/service/AmosServlet" />
 </wsdl:port>
</wsdl:service>
</wsdl:definitions>

Appendix B: A SOAP request message

The following is a SOAP request message for the Amos II function, info() -> <Charstring name,
Integer age>:

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<SOAP-ENV:Body SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<tns:INFO xmlns:tns="urn:WSAmos"/>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Appendix C: A SOAP response
message

The following is a SOAP response message for the Amos II function, info() -> <Charstring name,
Integer age>.

<soapenv:Envelope

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/encoding/">

<soapenv:Body>
<tns:INFOReturn xmlns:tns="urn:WSAmos">

< tns:results>
< tns:row>

< tns:NAME xsi:type="xsd:string">Milena</ tns:NAME>
< tns:AGE xsi:type="xsd:int">38</ tns:AGE>

49-51

</ tns:row>
< tns:row>

< tns:NAME xsi:type="xsd:string">Johan</ tns:NAME>
< tns:AGE xsi:type="xsd:int">30</ tns:AGE>

</ tns:row>
< tns:row>

< tns:NAME xsi:type="xsd:string">Erik</ tns:NAME>
< tns:AGE xsi:type="xsd:int">29</ tns:AGE>

</ tns:row>
</ tns:results>

</ tns:INFOReturn>
</soapenv:Body>
</soapenv:Envelope>

References

[1]. Staffan Flodin, Martin Hansson, Vanja Josifovski, Timour Katchaounov,
Tore Risch, and Martin Sk¨old: Amos II Release 6 User’s Manual. UDBL
Technical Report, Dept. of Information Science, Uppsala University, Sweden,
March 27, 2004,
http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html

[2] G. Wiederhold, Mediators in the Architecture of Future Information Systems,
IEEE Computer, 25(3), 1992, pp 38-49

[3]. T.Risch: Amos II External Interfaces, UDBL Technical Report, Dept. of
Information Technology, Uppsala University, Sweden
http://user.it.uu.se/~torer/publ/external.pdf

[4] Elin, D, Risch, T: Amos II Java Interfaces, UDBL, Uppsala University,
Sweden, August 2000,
http://user.it.uu.se/%7Etorer/publ/javaapi.pdf

[5] T.Risch, V.Josifovski: Distributed Data Integration by Object-Oriented
Mediator Servers. Concurrency and Computation: Practice and Experience J.
13(11), John Wiley & Sons, September, 2001.

[6] XML Schema Part 1: Structures Second Edition, W3C Recommendation 28
October 2004.
http://www.w3.org/TR/2004/REC-XMLschema-1-20041028/structures.html

50-51

[7] Simple Object Access Protocol (SOAP) 1.1, W3C Note 08 May 2000.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[8] Web Services Description Language (WSDL) 1.1. W3C Note 15 March
2001, http://www.w3.org/TR/wsdl

[9] Olaf Zimmermann, Mark Tomlinson, and Stefan Peuser: Perspectives on
Web Services Applying SOAP, WSDL, and UDDI to Real-World Projects,
Springer, 2003, ISBN 3-540-00914-0.

[10] The introduction of XML in wikipedia,
http://en.wikipedia.org/wiki/XML#Features_of_XML

[11] Apache Tomcat, http://tomcat.apache.org/

[12] Frank Cohen: Discover SOAP encoding's impact on Web service
performance,
http://www-128.ibm.com/developerworks/webservices/library/ws-soapenc/

 [13] Java Web Services, SOAP with Attachments API for Java (SAAJ).
Sun Microsystems, Inc., http://Java.sun.com/webservices/saaj/index.jsp

[14] The Universal Description, Discovery and Integration (UDDI) specification
http://www.uddi.org/specification.html

[15] Web Services Activity, http://www.w3.org/2002/ws/

[16] JSoapServer, http://jsoapserver.sourceforge.net/

[17] Apache Axis, http://ws.apache.org/axis/

[18] QuickServer, http://www.quickserver.org/

[19] WSDL4J, http://sourceforge.net/projects/wsdl4j/

[20] Namespaces in XML 1.0 (Second Edition), W3C Recommendation 16
August 2006, http://www.w3.org/TR/REC-xml-names/

[21] XML Schema Part 2: Datatypes Second Edition, W3C Recommendation
28 October 2004, http://www.w3.org/TR/xmlschema-2/

[22] Russell Butek: Which style of WSDL should I use?
http://www-128.ibm.com/developerworks/webservices/library/ws-whichwsdl/

51-51

[23] The JSR 67 export group,
http://jcp.org/aboutJava/communityprocess/maintenance/jsr067/index2.html

[24] SAX (Simple API for XML), http://www.saxproject.org/

[25] DOM (Document Object Model), http://www.w3.org/DOM/

