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ANALYSIS OF ELASTIC FLEXURAL WAVES IN NON-UNIFORM BEAMS BASED ON MEASUREMENT OF STRAINS AND ACCELERATIONS

L. Hillström and B. Lundberg
The Ångström Laboratory, Uppsala University, Box 534, SE-751 21 Uppsala, Sweden

Elastic flexural waves in an unloaded and unsupported segment of a non-uniform beam were considered. A method based on Timoshenko’s model was established for evaluation of shear force, transverse velocity, bending moment and angular velocity at an arbitrary section from four independent measurements of such quantities at one to four sections. From the evaluated quantities, shear stress, normal stress, power transmission, etc. can be obtained. Experimental tests were carried out with an aluminium beam which had an abrupt change in height from 15 to 20 mm and was equipped with strain gauges and accelerometers at four uniformly distributed measurement sections and at three evaluation sections. The distance between the two outermost measurement sections was 600 mm, corresponding to 1.12 wave lengths at the upper end of the frequency interval 2-500 Hz considered. Bending moments and transverse velocities evaluated from four measurements of any one of these quantities agreed well with those measured at evaluation sections located (i) centrally among the measurement sections and (ii) at a distance of 100 mm, or 0.17 wave lengths, outside. When it was located (iii) at a distance of 500 mm, or 0.83 wave lengths, outside, there was relatively large disagreement as expected from error analysis.

INTRODUCTION


Generation of elastic flexural waves in beams occurs in different technological processes, often as a side effect. In percussive drilling of rock, e.g., use is made of elastic extensional waves, but due to eccentric impacts, drill rods that are not perfectly straight [1], unsymmetrical loading of the drill bit [2], etc., flexural waves are also generated. This gives rise to, e.g., leakage of energy from the extensional waves, increased stress levels and increased generation of noise. If the predominant wavelengths are at least of the order of the transverse dimensions of the beam, the motion of flexural waves can be examined by using the Timoshenko beam model. If they are much longer, the wave motion can be studied also by using the Euler-Bernoulli beam model [3].


In various applications, and for different purposes, it is interesting to know the histories of shear force, transverse velocity, bending moment and angular velocity associated with flexural waves at one or several sections of a beam. From them, histories of other important quantities such as shear stress, deflection, normal stress, rotation of a cross-section and power transmission can also be determined.


For elastic extensional waves, Lundberg and Henchoz [4] showed that histories of normal force and particle velocity at an arbitrary section E of a uniform bar can be evaluated from measured strains at two different sections A and B by solving time-domain difference equations which are exact in relation to the one-dimensional theory used. A similar method was used by Yanagihara [5] to determine impact force. Lagerkvist and Lundberg [6], Lagerkvist and Sundin [7] and Sundin [8] used the method to determine mechanical point impedance. The method was used also by Karlsson et al. [9] in a study of the interaction of rock and bit in percussive drilling. It was extended to non-uniform bars by Lundberg et al. [10], and this version of the method was used for determination of force-displacement relationships for different combinations of drill bits and rocks by Carlsson et al. [11] and for high-temperature fracture mechanics testing by Bacon et al. [12, 13]. The use of the method was extended to visco-elastic extensional waves by Bacon [14, 15].


The aim of the present paper is to develop a method for evaluation of the histories of shear force, transverse velocity, bending moment and angular velocity at an arbitrary section E of a non-uniform beam from measurements of such quantities at different sections A, B, C and D. It will be shown that, for an unloaded segment of the beam, this can be achieved through measurement of altogether four such quantities which differ from each other in terms of either section (A, B, C and D) or type of quantity (shear force, transverse velocity, bending moment and angular velocity), or both.


First, the method will be developed on the basis of Timoshenko’s beam model. Then, experimental impact tests with a non-uniform beam made of aluminium and equipped with strain gauges and accelerometers will be presented, and comparisons will be made between (i) bending moments and particle velocities evaluated at section E on the basis of measurements at sections A-D and (ii) the same quantities measured at section E.

1. THEoretical basis

1.1. FORMULATION OF THE PROBLEM


Consider a segment of a non-uniform Timoshenko beam with cross-sectional area 
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 is a co-ordinate along the straight centre line of the beam. For a rectangular cross-section, as in the experimental part, 
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 is the height. The shear modulus is related to the Young’s modulus by the relation 
[image: image11.wmf])

1

(

2

/

n

+

=

E

G

, where 
[image: image12.wmf]n

 is Poisson’s ratio. Within the beam segment, there must be no loads, supports, joints or spots of contact. Outside, where there are no such restrictions, the beam is assumed to interact with supports, structures and loads. The supports and structures may have linear or non-linear responses, and they are assumed to have the capability to absorb energy associated with vibrations. Furthermore, the loads are assumed to act during finite time. Otherwise, nothing needs to be known about supports, structures or loads outside the beam segment under consideration.

The beam is quiescent for time 
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 it is subjected to a transverse load with finite duration. As a consequence, there will be a deflection of centre-line 
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. In the beam segment considered, these deflections and rotations are governed by the equations of motion
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respectively, where 
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The deflections and rotations are related to each other through the compatibility-type relation
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where 
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 is the shear strain on the centre-line, see Figure 1. The terms 
[image: image23.wmf]f

-

 and 
[image: image24.wmf]0

g

 on the right-hand side represent the contributions to the slope of the centre-line of the beam from bending and shear, respectively, and they are related to the bending moment and the transverse shear force through the constitutive-type relations
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where 
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 is a dimensionless quantity which depends on the shear stress distribution and therefore on the shape of the cross-section. According to beam theory, this quantity can be determined from the relation 
[image: image28.wmf][

]

1

2

2

2

d

)

/

(

)

/

(

-

ò

=

A

W

S

I

A

k

, where the static moment 
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 depend on the vertical co-ordinate 
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 from the centre-line. For a rectangular cross-section, this formula gives 
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, which is the value to be used in the experimental part. According to another definition, 
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 may depend also on Poisson’s ratio.


Equations (1) - (3) provide five relations between the five unknown functions 
[image: image34.wmf])

,

(

t

x

Q

, 
[image: image35.wmf])

,

(

t

x

w

, 
[image: image36.wmf])

,

(

t

x

M

, 
[image: image37.wmf])

,

(

t

x

f

 and 
[image: image38.wmf])

,

(

0

t

x

g

. Through elimination, these relations can be transformed into, e.g., a system of two second-order partial differential equations (PDEs) for 
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. Here, it will be more convenient to consider the system of four first-order PDEs
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for the four quantities 
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The problem to be solved is as follows. Consider the four elements 
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 at four different sections A, B, C and D of the beam segment, i.e., altogether sixteen elements. Let four out of them, constituting the elements of a vector 
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 (which is assumed to exist) at any section E of the beam segment. See Figure 2, where it is indicated that the variation of the geometrical and material properties along the beam segment may be continuous or discontinuous.

1.2. SOLUTION IN THE GENERAL CASE


Fourier transformation of relations (4) gives
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is the system matrix,
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is the Fourier transform of the state vector 
[image: image67.wmf]s

, i.e., 
[image: image68.wmf]ò

¥

¥

-

-

=

t

t

x

x

t

d

e

)

,

(

)

,

(

ˆ

i

w

w

s

s

, and 
[image: image69.wmf]x

¶

¶

=

¢

/

ˆ

ˆ

s

s

.


The state at any section 
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 is related to that at the fixed section 
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Here, by equations (5) and (8), the transition matrix 
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where 
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 is the identity matrix. In particular, equation (8), with 
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for the segments AA, BA, CA and DA, and
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for the segment EA. In equation (10a) it should be noted that 
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The problem of determining the state vector 
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 from knowledge of four out of the sixteen elements of the state vectors 
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 is determined from equation (11). It should be noted that the physical order of sections A-E along the beam must not be alphabetical and also that all sections A-D must not be involved in the measurements.


As a first illustration, consider measurement of the bending moment 
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 at each section A-D. In this case, the third scalar equation from each of the matrix equations (10) give the system
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where subscript m denotes measurement. It can also be written
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As 
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As a second illustration, consider measurement of the transverse velocity 
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 at each section A-D. In this case, the second scalar equation from each of the matrix equations (10) give the system
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which can also be written
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As 
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In the general case, equations (13) and (15) take the form
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or
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where
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Here 
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 is a matrix with elements 
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Equations (11) and (17) give the state vector
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in terms of the vector 
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in 
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1.3. BEAM WITH PIECEWISE CONSTANT PROPERTIES


If the beam has piecewise constant properties as indicated in Figure 3, the transition matrices in equations (10b-d) and (11) can be expressed as the products
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respectively, of transition matrices 
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The eigenvalues 
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Thus, there are the two pairs of eigenvalues
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where
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are both real and positive provided that
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which is presumed. According to Cayley-Hamilton’s theorem, equation (24) for the eigenvalues of the matrix 
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Multiplication by 
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 from the right and use of relations (23b, d) gives the fourth-order differential equation
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Furthermore, relations (9b) and (23a-c) give the conditions
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for 
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2. EXPERIMENtal tests


The experimental set-up is illustrated in Figure 4. A beam made of aluminium (AA 6061-T6; 
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) with rectangular cross-section and length 2250 mm was used. The width 
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 of the beam was 20 mm, while its height 
[image: image209.wmf]H

 was 15 mm in the central third and 20 mm in the two outer thirds. The beam was held in position by three supports with positions as shown. Each of these supports was realised with a pair of 15 mm wide clamps clad with 1.5 mm thick rubber plates. The beam was impacted laterally by a spherical steel ball which was guided by a tube and dropped from a height of 600 mm. The diameter of the ball was 50 mm, and its mass was 535 g. A 3 mm thick rubber plate at the impacted spot of the beam served to reduce the excitation at high frequencies.


The beam was instrumented with strain gauges and accelerometers at the sections A-D and 
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-
[image: image211.wmf]3

E

 as shown in Figure 4. The positions of the strain gauges coincided with these sections, while those of the accelerometers were displaced 20 mm to the right, i.e., away from the spot of impact. The strain gauges (TML FLA-5-23-1L) were glued (Tokyo Sokki Kenkyujo Co, Ltd, Adhesive CN) to the beam in pairs with one on the top and one on the bottom. The gauges of each pair were connected to a bridge amplifier (Measurement Group 2210) in opposite branches, so that the output of the amplifier was proportional to the difference between the two strains, and therefore to the bending moment 
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 at the section. Shunt calibration was used. Accelerometers (Brüel & Kjær, three Type 4374 and two Type 4393) were attached with thin layers of wax. The accelerometers were connected to charge amplifiers (three Kistler Type 5011 and two Brüel & Kjær Type 2635). Ideally, there should have been one type of accelerometer and one type of charge amplifier only, but it was judged that the use of different types would not have any noticeable effect upon the results.


The amplified strain and accelerometer signals were fed to analogue aliasing filters (DIFA Measuring Systems, PDF) with cut-off frequency 17.5 kHz. The filtered signals were recorded in a time interval 
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 s, by two synchronised four-channel digital oscilloscopes (Nicolet Pro 20 and Pro 40) which used a sampling interval of 20 s. At the end of this time interval, the amplitudes of the recorded signals were reduced to about a tenth due to the damping action of the supports. The recorded signals were transferred to a computer for evaluation of the state vector 
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Four test cases, labelled 1 - 4, are defined in Table 1. In Case 1, bending moments 
[image: image222.wmf]M

 at sections A-D (
[image: image223.wmf][

]

T

3

,

3

,

3

,

3

=

e

, 
[image: image224.wmf][

]

T

D

C,

B,

A,

=

c

) and 
[image: image225.wmf]1

E

-
[image: image226.wmf]3

E

 were determined from measurements of strains at the same sections. In Case 2, bending moments 
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 were determined from measurements of accelerations at the same sections. In Case 4, finally, transverse velocities 
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 at 
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 were determined from measured accelerations and strains, respectively, at the same sections. In this case, the signals representing accelerations and strains were passed through 8-pole Butterworth high-pass filters with cut-off frequency 10 Hz. In each of the four cases, bending moments 
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, corresponding to the measurements made at these sections, were also determined from those measured at A-D according to equation (19). All tests were carried out at room temperature.

RESULTS


Figure 5 shows for Case 1 the sensitivity 
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. It should also be noted that the sensitivity to error is very high around a frequency of approximately 850 Hz. Similar results were obtained for other cases and other sensitivities.


Figure 6 shows results in the time and frequency domains at section 
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 for Case 1. In Figure 6(a), the results in the time domain are based on frequencies up to 500 Hz, which means that frequencies around 850 Hz are excluded, while in Figure 6(b) they are based on frequencies up to 2000 Hz. Evidently, there is a significantly better agreement between evaluated and measured bending moments in the former case. For this reason, the results for Cases 1-4 shown in Figures 7-10 are based on frequencies up to 500 Hz.

3. DISCUSSION


It has been shown how the elements 
[image: image256.wmf]Q

, 
[image: image257.wmf]w

&

, 
[image: image258.wmf]M

 and 
[image: image259.wmf]f

&

 of the state vector 
[image: image260.wmf]s

 at any section E of an unloaded segment of a non-uniform beam can be determined from measurement of four such elements at up to four different sections A, B, C and D of the same unloaded segment of the beam. This has also been demonstrated experimentally. Once the state vector has been determined, several quantities of importance can be obtained from its elements. Thus, e.g., the shear stress 
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The combination of sections, among A, B, C and D, and types of quantities to be measured, among 
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, can be chosen in a large number of ways, some of which may be more interesting than others. Thus, it is convenient to determine bending moment 
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 from measured accelerations, as was done in the experimental part, while it is less straightforward to determine 
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 from measurements. Also, it seems preferable to place at most two types of transducers at any section A-D of the beam, and to make the same kind of measurement or measurements at each instrumented section. Therefore, two interesting possibilities are measurement of (i) 
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For the aluminium beam used in the experimental tests, the highest frequency normally considered, 500 Hz, corresponds to the wavelengths 0.606 m and 0.525 m in the segments with heights 20 mm and 15 mm, respectively. Similarly, the frequency 2000 Hz, considered in Figure 6 only, corresponds to the wavelengths 0.300 m and 0.260 m, respectively. Thus, in the tests carried out the wavelengths were much larger than the heights of the beam, and 
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The determination of errors at section E due to errors of measurement, including noise, at one or several of sections A-D according to relation (20) can be split into the two steps (i) 
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In the first step, which involves inversion of the matrix 
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 is ill-conditioned. In the case represented by equation (12), this may occur at low frequencies corresponding to long wave lengths which make the four scalar equations nearly the same. It may also occur at high frequencies corresponding to short wave lengths which make the magnitudes of the elements in the different rows of the matrix 
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 very different. Thus, e.g., the ratio of the exponential factors of the fourth row in equation (12) to those of the first row is 
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 may be ill-conditioned also near discrete frequencies which make several distances between adjacent sections A-D equal to an integral multiple of a half wave length. In Case 1, the distances AB and BC in the thinner central section of the beam are one half wave length at a frequency of about 860 Hz which may explain the high sensitivity to errors around 850 Hz illustrated in Figure 5. This problem was avoided in the experimental tests by only considering frequencies below 500 Hz. 

The effects of noise in the measured data may be reduced by use of Wiener filtering techniques [16]. Also, a conceivable way of avoiding integral multiples of half wave lengths between adjacent sections A-D, which might allow frequencies considerably higher than 500 Hz, would be to make use of more than four measurements, so that the system (17) for the elements of 
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 would be over-determined, and of a non-uniform distribution of instrumented sections. This way of eliminating critical frequencies has been found to be effective in an application involving viscoelastic extensional waves [17]. 

In the second step, which involves multiplication of the error 
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For Case 1, Figure 7 shows that there is excellent agreement in the frequency range 2-500 Hz between (i) the bending moment evaluated at section 
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For Case 2, Figure 8 shows that there is good agreement in the frequency range 10-500 Hz between (i) the transverse velocity evaluated at section 
[image: image357.wmf]1

E

 from measurements of bending moments at sections A-D and (ii) the transverse velocity measured at the same section 
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Cases 1 and 2 show that the quality of the evaluated results is generally high when section E is located within the segment AD, whereas it rapidly decays outside. This is consistent with the rapid increase in sensitivity to errors outside the segment AD shown in Figure 5 for Case 1. The large disagreement near 
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 which was mentioned in the experimental part. Thus, where the large errors occur, information from section 
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[image: image368.wmf]re

t

 and 
[image: image369.wmf]ev

t

 can be considered to be arbitrarily large.


For Case 3, Figure 9 shows that there is a fair agreement in the frequency range 20-500 Hz between (i) the transverse velocity evaluated at section 
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 from measurements of transverse velocities at sections A-D and (ii) the transverse velocity measured at the same section 
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. For Case 4, Figure 10 shows that there is a fair agreement in the same range of frequencies between (i) the bending moment evaluated at section 
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 from measurements of transverse velocities at sections A-D and (ii) the bending moment measured at the same section 
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It should be noted that the accelerometers used are quite inaccurate below 10 Hz. This inaccuracy is reflected by the disagreement between evaluated and measured quantities below 10-20 Hz in Cases 2-4. The fair agreement in Case 4 was obtained by using the Butterworth high-pass filters which reduced this disagreement.


Comparison of Figures 7(b) and 10 shows that the bending moment evaluated at section 
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 is more accurate if the evaluation is based on measured bending moments at sections A-D than on measured transverse velocities. Similarly, comparison of Figures 8(b) and 9 shows that the transverse velocity evaluated at section 
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 is more accurate if the evaluation is based on measured transverse velocities at A-D than on measured bending moments. This is partly explained by Figure 6 which shows that when the quantity evaluated at E is the same as that measured at A-D, the sensitivity to errors is relatively low within and near the segment AD of the beam. This is not necessarily the case when the quantity evaluated at E is different from that (or those) measured at A-D. 


The method of this paper makes use of transition matrices which relate the state vectors at the two ends of a beam element. It would be possible, as an alternative, to make use of the corresponding dynamic stiffness matrices which relate the generalised forces to the generalised velocities at the two ends of the beam element. For the beam segment considered, this approach would result in a system 
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 is the dynamic stiffness matrix, 
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 is the nodal generalised velocity vector, and 
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 is the nodal generalised load vector. If the number of nodes of the beam segment considered would be 
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 generalised velocities (
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 velocities and 
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 angular velocities). Also, the vector 
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 would contain four nodal generalised forces (one transverse shear force and one bending moment at each end node of the beam segment considered) in addition to zeroes. Thus, there would be a system of 
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 relations between 
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 generalised velocities and forces. If four of these quantities are measured, the system 
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 can generally be solved for the remaining ones. Although there may be differences in ease of establishing the system to be solved, in ease of obtaining the desired elements of the state vector, in ease of interpretation of the wave phenomena involved, in computational efficiency, etc., it should be emphasised that the approaches involving transition matrices and dynamic stiffness matrices are equivalent.
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Table 1. Cases of experimental tests.
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Figure 1.
Angles 
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Figure 2.
Unloaded section of non-uniform beam in the general case. Sections of measurement A-D and of evaluation E. 
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Figure 3.
Unloaded section of beam with piece-wise constant properties. Sections of measurement A-D and of evaluation E. 
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Figure 4.
Experimental set-up. Dimensions in mm. 
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Figure 5.
Sensitivity 
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Figure 6.
Bending moment 
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 (dotted curves) in Case 1. Results for frequencies up to (a) 500 Hz and (b) 2000 Hz. 
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Figure 7.
Bending moments (a) 
[image: image428.wmf]1

E

M

 vs. time 
[image: image429.wmf]t

 and 
[image: image430.wmf]1

E

ˆ

M

 vs. frequency 
[image: image431.wmf]f

, (b) 
[image: image432.wmf]2

E

M

 vs. time 
[image: image433.wmf]t

 and 
[image: image434.wmf]2

E

ˆ

M

 vs. frequency 
[image: image435.wmf]f

, and (c) 
[image: image436.wmf]3

E

M

 vs. time 
[image: image437.wmf]t

 and 
[image: image438.wmf]3

E

ˆ

M

 vs. frequency 
[image: image439.wmf]f

. Comparison between bending moments at 
[image: image440.wmf]1

E

-
[image: image441.wmf]3

E

 evaluated from bending moments measured at A-D (solid curves) and bending moment measured at 
[image: image442.wmf]1

E

-
[image: image443.wmf]3

E

 (dotted curves) in Case 1. Results for frequencies up to 500 Hz. 
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Figure 8.
Transverse velocities (a) 
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 (dotted curves) in Case 2. Results for frequencies up to 500 Hz. 
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Figure 9.
Transverse velocity 
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 (dotted curves) in Case 3. Results for frequencies up to 500 Hz. 
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Figure 10.
Bending moment 
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 (dotted curves) in Case 4. Results for frequencies up to 500 Hz. 
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