Graduate course on Stochastic Dynamic Systems – Problems for Homework Assignement 1

- 2.1 Consider a random variable ξ .
 - (a) Let ξ be uniformly distributed in the interval (-a, a). Derive its moments $\mathbf{E} \xi^k$ for k = 1, 2, 3, 4.
 - (b) Let ξ be Gaussian distributed, $\xi \sim N(m, \sigma^2)$. Derive its moments $\mathbf{E} \xi^k$ for k = 1, 2, 3, 4.
- 2.3 Let ξ and η be jointly Gaussian

$$\begin{pmatrix} \xi \\ \eta \end{pmatrix} \sim \mathbf{N} \left(\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 & 2\rho \\ 2\rho & 4 \end{pmatrix} \right).$$

- (a) Under what conditions on ρ is the covariance matrix positive definite?
- (b) Sketch the contour levels of the joint pdf. Show that if $\rho \approx -1$, then (with high probability)

$$\eta \approx 4 - 2\xi$$
.

- (c) What is the conditional pdf $p_{\eta|\xi=x}(y)$? Compare this with the findings of (b).
- 2.4 Let v and e be two random vectors of zero mean that are jointly Gaussian. Let e have a positive definite covariance matrix. Show that there exists a unique matrix B, such that

$$v = Be + w$$

with e and w being independent.