Torsten Söderström October 30, 2013

Torsten Söderström: Discrete-Time Stochastic Systems, second edition, Springer-Verlag, 2002.

Below, pa.b denotes page a, line b (pa.b- denotes page a, line b from below).

Errata

p26 A more unambiguous formulation of Exercise 2.4 is the following.

Let v and e be two random vectors of zero mean that are jointly Gaussian. Let e have a positive definite covariance matrix. Show that there exist a unique matrix B and a random vector w such that

- (i) v = Be + w
- (ii) e and w are independent

p114 A more unambiguous formulation of Exercise 4.1 is the following.

Give a simple example of two stochastic processes, say $y_1(t)$ and $y_2(t)$, that fulfil the following:

(i) The first and all second order moments are the same, that is

$$\mathbf{E} y_1(t) = \mathbf{E} y_2(t)$$

$$\mathbf{E} y_1(t)y_1(t+\tau) = \mathbf{E} y_2(t)y_2(t+\tau) \text{ all } \tau$$

- (ii) The realizations (outcomes) of $y_1(t)$ and $y_2(t)$ look significantly different. From a measured data record $y(1), y(2), \ldots, y(N)$, it should be possible to tell if $y_1(t)$ or $y_2(t)$ is observed.
- p134 A more unambiguous formulation of Exercise 5.1 is the following.

Let $x \sim \mathbf{N}(m_x, R_x)$ and $e \sim \mathbf{N}(0, R_e)$ be independent Gaussian random vectors. Suppose one observes

$$y = Cx + e$$
.

- (a) Determine the mean square optimal estimate of x based on the observation y.
- (b) What is the covariance matrix of the estimation error? What is the covariance matrix of the estimate?
- 265.2 This line is missing and should read: to let the correct model in operation have a probability close to one.
- 265.4- Read

$$\hat{x}(t) \stackrel{\Delta}{=} \mathbf{E}\left[x(t)|Y^t\right] = \int x(t)p(x(t)|Y^t) \, \mathrm{d}x(t)$$

268.5- Read

$$\hat{x}(t) = \mathbf{E}\left[x(t)|Y^{t-1}\right]$$

268.4-, 3-, 1- Replace N by M, totally 6 times.

p367.6 Read (c)
$$p_{\eta|\xi=x}(y) = \gamma(y; 2-2\rho+2\rho x, 4-4\rho^2)$$

p368.10 The answer to Exercise 4.19, last line should read

$$H^{(2)} = (H^{(1)} I), R_2^{(2)} = 0.$$

p368.8- The answer to Exercise 5.1 should read:

(a)
$$(x|y) \sim \mathbf{N}(\hat{x}, P)$$
, $\hat{x} = m_x + R_x C^T (CR_x C^T + R_e)^{-1} (y - Cm_x)$.

(b)
$$cov(x - \hat{x}) = P = R_x - R_x C^T (CR_x C^T + R_e)^{-1} CR_x,$$

 $cov(\hat{x}) = cov(x) - P = R_x - P = R_x C^T (CR_x C^T + R_e)^{-1} CR_x.$