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Abstract 
New demands are put on query processing in 
Object-Oriented (00) databases to provide effi- 
cient and relationally complete query languages. 
A flexible 00 data model requires overloading 
and late binding of function names. Relational 
completeness requires capabilities to handle que- 
ries where functions are inverted, i.e. where it is 
possible to select those objects y that satisfies 
fn(y)-x where x is known. A system that supports 
both late binding and inverted functions must be 
able to solvefn(y)-.x for a given x and unknown y 
whenfn is late bound, i.e. the resolvent (imple- 
mentation of a function name) to apply on y is 
selected based on the type of y. This combination 
of late binding and inverted function calls require 
novel query processing capabilities to fully uti- 
lize indexes referenced in late bound function 
calls. This paper presents an approach to the 
management of late binding in query processing. 
The main result is a query processing method 
where late bound function calls are efficiently 
executed and optimized for both inverted and 
regular execution. The proposed solution is based 
on substituting each late bound function call in 
the execution plan with a special function, DTR, 
which dynamically selects the actual resolvent to 
call. We define the inverse of DTR and its cor- 
rectness. We show a dramatic execution time 
improvement by making DTR invertible and by 
defining its cost model for query optimization. 
The improvements are verified by performance 
measurements. 
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1 Introduction 
The evolution of relational databases into Object-Rela- 
tional databases has created the need for relationally com- 
plete and declarative Object-Oriented (00) query 
languages. Development of such query languages has 
prompted research on new query optimization methods, 
e.g. [5] [21]. Good query optimization is as important for 
00 query languages as it is for relational query languages. 
A powerful 00 data modelling language permits the con- 
struction of more complex schemas than for relational 
databases. Thus, query processing over these 00 data 
models is at least as demanding as relational query 
processing. 

Flexible 00 data models require overloading and late 
binding of function’ names [l]. Overloading of function 
names means having the same name to denote different 
implementations, where each implementation is called a 
re,soZvent. Late binding, as opposed to early binding, is 
choosing the resolvent at runtime instead of at compile 
time. Late binding is necessary in a flexible 00 data 
model, e.g. when querying sets of objects of different 
types. 

Another characteristic of flexible 00 queries is the 
ability to invert functions, i.e. the problem of asking for 
which objects y a given functionfn returns a specific value 
X, i.e. retrieving all y that satisfiesfi(y)-x. For example, if 
we have a function reports_to(employee)->manager 
we not only want to know the manager of a given 
employee, but also all employees that report to a given 
manager. Of particular interest is the problem when the 
inverted function is overloaded and the type of its argu- 
ment does not uniquely identify the implementation of the 
overloaded function, i.e. a late bound function call. For 
example, the function reports-to for managers may be 
different than for employees and we want to find all 
employees or managers that report to a given manager. 

I. In this paper the term function is used in favour of the term 
method. 
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To give the optimizer more transformation choices, 
relational query optimization techniques first expand all 
views referenced in a query and then apply cost-based 
optimization strategies on the fully expanded query [16] 
[22]. This expansion allows the query optimizer to con- 
sider all indexes on relations referenced in a query. Rela- 
tional optimizers thus do global optimization by looking 
inside all referenced views. The same principle can also be 
applied to 00 queries. This requires that the optimizer can 
inspect the function definitions in the database schema [5] 
rather than treating them as black box routines as in C++ 
models [3]. However, the requirements on 00 query lan- 
guages to allow both late binding and powerful query opti- 
mization are in conflict, since late binding obstructs the 
full expansion of function definitions. 

In this paper we focus on the management of such late 
bound function calls in an Object-Relational DBMS with a 
relationally complete query language. We propose a com- 
bination of solutions to the management of late bound 
function calls. We have also made performance measure- 
ments of our method in our research platform, AMOS, 
where it is shown that our method is superior to conven- 
tional late binding when indexes are available. Our 
approach address the following issues: 

*To support global query optimization, the query compiler 
determines at compile time the cases when early binding 
cannOt be used and only then it uses late binding. 

*When late binding is required for some function call, the 
query compiler will insert a special function, DTR 
(Dynamic vpe Resolver), in the execution plan. Based 
on the type of the object bound to the argument, DTR 
chooses the correct resolvent to apply from a minimal set 
of possible resolvents computed by the compiler. 

*The DTR function and its inverse are defined in terms of 
the resolvents that are possible to apply. 

*The cost based query optimizer needs to know the cost 
profile of each DTR call. DTR is regarded as an 
expensive predicate [lo] where the cost model of DTR is 
defmed in terms of the costs of the possible resolvents of 
the late bound function call. The cost model is defined 
for both DTR and its inverse. 

*Since the binding policy is made transparent to the user, 
the system must incrementally recompile functions 
whose execution plans become invalidated due to the 
introduction or deletion of a resolvent. 

This paper is organized as follows: In section 2 related 
work is discussed. In section 3 the terminology is intro- 
duced and the rules for late binding are defined. The prob- 
lem of optimizing queries with inverted functions is 
presented in section 4. The definition, correctness and 
cost model for DTR and its inverse is defined in section 5. 
In section 6 the performance measurement is presented, 

and finally section 7 summarizes our experiences and out- 
lines future work. 

2 Related work 
Object-Oriented query processing has gained much atten- 
tion recently [51 [17] [20] [21] [23]. However, to the best 
of our knowledge, the problem of using inverted late 
bound functions has not been dealt with. The problem of 
having late bound function calls in execution plans was 
identified in the Revelation project [5] as a problem that 
“still presents a challenge”. 

A problem is that late bound function calls obstruct 
global optimization. Our approach is to do local optimiza- 
tion of the resolvents of late bound functions and then 
define DTR in terms of the locally optimized resolvents. 
Another approach to this problem is to use dynamic query 
optimization [4] where the original query plan is split into 
separately optimized chunks (e.g. one for each resolvent 
of a late bound function), and where the total query plan is 
generated at start-up time of the application program. We 
have chosen not do use dynamic optimization to avoid 
high overhead of optimization at runtime. 

In the EXTRA/EXCESS project [25] the problem of 
optimizing regular! late bound function calls is discussed. 
They planned to use a combination of two approaches; a 
runtime dispatch on the dynamic type and a more complex 
method where the result was obtained by taking the multi- 
set union of running several preoptimized functions. Their 
proposal did not address the problem of having inverted 
late bound function calls. 

In C++ based systems [3] the management of late 
bound functions is controlled by the C++ compiler and 
indexes used inside the resolvents cannot be utilized by 
the compiler. 

3 Type resolution in Object-Oriented 
queries 

Our data model, AMOS [7], is an Object-Relational data 
model based on the functional paradigm of DAPLEX [ 181 
and Jiis [8]. Functions model object attributes and rela- 
tionships between objects through three basic function 
types: Stored functions store properties of objects in the 
database. Derived functions, defined as queries, corre- 
spond to views in the relational model that’are parameter- 
ized, and Foreign functions are defined using an external 
programming language [ 111. Our model extends the Iris 
data model with rules [19] [15]. AMOS has a query lan- 
guage, AMOSQL, a deviate of OSQL [ 121. 

In the AMOS data model the types are organized in a 
hierarchy where subtypes inherit all of their properties 

2. By regular call we mean the not inverted call 
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from their supertypes. In a subtype it is possible to rede- 
fine inherited properties and to add properties. We denote 
‘ti subtype of 5’ as ti < 5. 
Consider the following example of a schema. 

person 4 name: 
person-xharstring 

Figure 1 A type hierarchy 

The types are represented as ellipses and properties are 
modelled as functions. The name property is inherited 
from type person to its subtypes, i.e. employee, stu- 
dent and manager.The property reports-to isdefined 
intype employee andredefined intypemanager. 

Polymorphism in AMOS is controlled by the type 
compatibility rule [14] which says that a binding refco 
where the reference ref is of type A and the object o is of 
type B, is legal only if B is a subtype of or equal to A. 
Therefore we have a static type and a dynamic type: 

*The static type [ 141 of a reference ref is the declared type 
of the reference. We denote the static type of a reference 
ref as S(rej). 
The static type of a reference to a function resolvent is 
the static type of its argument. For example the static 
type of the function resolvent person.name, 
S(person.name), is the type person since the function 
is declared to take objects of type person as argument. 

*The dynamic type [14] of a reference is the type of the 
object refereked at runtime. We denote the dynamic 
type of a reference ref as D(refi. 

l W& deline the dynamic type sefof a type t to be the set of 
all possible dynamic types of a reference with the static 
type t. Constrained by the type compatibility rule we 
have in the dynamic type set exactly t and all subtypes of 
t. The dynamic type set of a type t is denoted Z’(t). For 
any reference refit holds that D(rej) E T(S(rej)). 

To exemplify these notions recall the schema of figure 
Figure. 

The static type of a resolvent person. Name is the type 
person. The dynamic type set of type person is the set 
oftypes {person, employee, student, manager}. 

Because of the type compatibility rule all instances of a 
type are also instances of all supertypes to that type, called 
inclusion polymorphism in [2]. This means that retrieving 
all the instances of a type implies retrieving all the 
instances of all subtypes of that type. This is a very impor- 
tant characteristic that is fundamental to the AMOS data 
model. To give a more precise description we need the 
notion of the extent of a type. The set of all instances of a 
type t that is not also a member of any subtype of type t is 
called the extent of type t denoted ext(t) [20] [6]. The deep 
extent [20] of a type t, denoted ext*(t), is the union of the 
extents of each type in the subtree of the type hierarchy 
rooted at type t. If a type ti is a subtype of type 9 then the 
deep extent of tyy 9 will cfntain the deep extent of type 
ti, i.e. ti C 5 H ext (tJ E ext (9). When properties of some 
type t are queried the entire deep extent, ext*(tJ, is consid- 
ered. 

Function name overloading is permitted in AMOS 
which is the possibility to give one function name several 
implementations where each implementation is called a 
resolvent of the name. Each resolvent is identified by its 
signature, i.e. an annotation of the name with the type of 
the argument3. For example the function named 
reports-to in figure Figure is overloaded with two 
resolvents defined on the types employee and manager. 
The resolvent names are employee.reportsfo and 
manager.reports-to, respectively. 

Let resoZvent(fn,ti) be a function that returns the resol- 
vent t$n of the function namefi to be applied on objects 
bound to a reference with static type tb For the returned 
resolvent, t#t, there must not exist any other more spe- 
cific resolvent, t&t, that is applicable to objects of type ti, 
i.e. 

Now consider the following AMOSQL query in the con- 
text of figure 1: 

SELECT name(p) FOR EACH person p; (1) 

which selects the names of all persons. It returns a set 
where the resolvent person. name is applied to every ele- 
ment in ext*(person). 

Then consider another query in the context of figure 
Figure 

SELECT reports-to(e) FOR EACH employee e;(2) 

3. Our implementation allows several arguments but here we 
assume one argument and one result for simplicity. 
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Sincereports-to isdefinedforthetype employeeand 
redefined for the type manager, selecting the 
reports-to of all employees returns a set where 
employee.reports-to is applied to all elements in 
ext(employee) v ext*(student)andmanager.reports-to 
is applied to the elements in ext*(manuger). 

In the AMOSQL statement (2) above, the result of the 
query is the union of the results of applying two different 
resolvents to two disjoint subsets of ext*(employee). By 
contrast, in AMOSQL statement (1) a single resolvent is 
applied to the entire ext*(empZoyee). Therefore, in 
AMOSQL statement (2) late binding must be used 
whereas in AMOSQL statement (1) early binding can be 
used. 

Whenever possible, early binding should be used, but, as 
just shown, late binding is required sometimes. For this, 
the query compiler must decide at compile time, the cor- 
rect binding of a function call and selects late binding if 
required. 

4 Queries with inverted functions 
A desirable feature of Object-Oriented query processing 
supported in the AMOS data model is the ability to invert 
functions. By inverting functions we refer to the problem 
of finding all arguments, arg, that satisfies fn(arg)-value 
where value is bound, i.e. those arg+~‘(value). 

The inverses of the three function types in our data model 
are processed as: 

*The inverse of a stored function is provided by the 
system; the function and its inverse can be declared 
indexed for fast access. 

*The inverses of foreign functions are definable by the 
programmer [ 111. 

*The inverses of derived functions are inferred by the 
system. 

Derived functions are optimized using global optimiza- 
tion, which means that derived function calls are substi- 
tuted by their bodies; the optimizer has full insight in the 
implementation of all derived functions. Global optimiza- 
tion corresponds to the revealer in the Revelation project 
[5] [13] or view expansion in relational optimization [22]. 
Thus, globally optimized queries contain only stored and 
foreign functions, and therefore only stored and foreign 
functions need to be invertible. 

The following definition of the function supervises 
retrieves all managers ml that report to a certain manager 
m. It uses the inverse of the resolvent manager. repark-ta 

CREATE FUNCTION 
supervises(manager m)->>manager 
AS 
SELECT ml FOR EACH manager ml 
WHERE m=reports-to(m1); (3) 

Since there exists no redefinition of the function 
reports-to inthe dynamic type set of type manager it 
cm be bound early to resolvent manager. reports-to 
and the function call can therefore be substituted by the 
resolvent body. 

By contrast, if function supervises is defined to 
return employees instead of managers as 

CREATE FUNCTION 
supervises(manager m)->>employee 
AS 
SELECT e FOR EACH employee e 
WHERE m=reports-to(e); (4) 

then the inverse of the function reports-to must be 
bound late. Here there is an ambiguity what resolvent 
body to substitute for the function call to reports-to. 
To efficiently manage such late bound calls, our approach 
is to substitute the call by a DTR function that will select 
the resolvent at runtime. The problem is then how to 
define such a DTR function that is invertible and optimiza- 
ble and utilizes indexes whenever possible. 

5 An approach to management of late 
binding 

One way of combining late and early binding is to have 
the programmer declare those function calls that are to be 
bound late, similar to virtual functions in C++ [24]. This 
is not a good solution for databases since it is very difficult 
to know what functions should be bound late as the data- 
base schema evolves. 

Our approach is to make the binding policy transparent 
to the user by having the query compiler resolve when late 
binding must be used. When the query compiler infers that 
a function call in the execution plan must be bound late, it 
replaces the call by a function DTR. The DTR function is 
a general algebraic construct that can be used in any con- 
text in the execution plan. It is thus not dependent on any 
specific join method. The DTR function is given the set of 
all possible resolvents of the late bound function call. The 
set of possible resolvents of a call, fi(urg), is the set of 
resolvents of fn defined for types in the dynamic type set 
of the static type of the argument arg. Furthermore, if the 
resolvent applicable to the static type of the argument is 
inherited, it must also be added to the set. Let res*ti, 
S(arg)) denote the possible resolvents of a function call 
fi(arg). For res*(fn. S(arg)) it must thus hold that: 
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vKfi[r.fiEres*(fn, S(arg)) + 
S(r$z>ET(S(arg)) v r.jiz-resolvent(fb, S(arg))] 

The DTR call is constructed as DTR(rs, arg) where rs - 
[&jk..ti.fn] is the resolvent sequence. The resolvent 
sequence is r-es*@, S(urg)) sorted into a partial order with 
more specific resolver& preceding less specific ones, i.e. 
S(ti.fn)<s(t,frt)+kj, where i, j are the positions of the 
resolvents in rs. 

For example the AMOSQL statement (4) where func- 
tion reports-to is bound late will be transformed to: 

CREATE FUNCTION 
supervises(employee m)->>employee 
AS 
SELECT e FOR EACH employee e 
WHERE m=DTR([manager.reports-to, 

employee.reports-to],e); (5) 

We have chosen not to globally optimize calls to DTR. 
Instead we separately optimize for each DTR call the pos- 
sible resolvents and their inverses and then define the DTR 
call in terms of these execution plans. A globally opti- 
mized DTR would result in a large and complex execution 
plan where all possible resolvents are inlined with their 
type dispatch expressions. 

5.1 Transparent binding policy 
A function must be bound late when there exists more than 
one resolvent in the dynamic type set to the argument of 
the function, i.e. 

lutebinding(fn(urg)) H curd(res*(fn,S(urg)))>l 

where curd(p) is the number of elements in the set P. Con- 
sider the following example 

SELECT fn(arg) FOR EACH i arg; (i) 

SELECT fn(arg) FOR EACH k arg; (ii) 

SELECT fn(arg) FOR EACH j arg; (iii) 

Figure 2 Qpe hierarchy 

In (i) and in (ii) the function f n must be late bound since 
f n is redefined in T(S(arg)). 

In (iii) no redefinition of f n exists in the dynamic type 
set of the type j and the function f n can be bound early to 
the resolvent j . f n. If later, a resolvent m . f n is created 
then (iii) becomes invalidated and must be recompiled to 
bind fn late. Thus, the query compiler must function 
incrementally to provide transparency of binding policy as 
the schema evolves. Our incremental query compiler [9] 
supports schema evolution by recompiling the affected 
functions when new resolvents are introduced or existing 
resolvents are deleted or modified. 

5.2 Regular late bound calls 
For a regular late bound function call, fn(urg), where the 
argument, urg, is bound the resolvent is selected based on 
the dynamic type of the argument. Thus the resolvent to 
apply is obtained by computing resoZvent(fn,D(urg)). 

Recall that the first argument of DTR is a sorted 
sequence of resolvents with more specific resolvents early. 
The DTR function implements the computation of resol- 
vent& D(urg)) by selecting the first resolvent, t.jk in the 
sorted sequence that satisfies S(t.fi) 2D(urg). In this way 
the overhead of resolvent resolution is O(n), where n is the 
cardinality of the DTR resolvent sequence. n is always 
less than or equal to the total number of resolvents of a 
given function name in the database schema. The algo- 
rithm for DTR is: 

resolvents=DTR resolvent sequence 
resoZvent=first(resoZvents) 
while resoZvent!-NULL 

if D(urg)<S(resoZvent) 
return(apply(resoZvent,ag)) 

end if 
resolvents=resolvents-resolvent 
resoZvent=Iirst(resoZvents) 

end while 

Figure 3 The DTR algorithm 

Compile time cost based optimization is used in AMOS, 
i.e. the costs andfanout of calls are estimated at compile 
time. The fanout of a function call is the estimated number 
of result tuples [ 111. 

The execution cost of a late bound call must be esti- 
mated based on the possible resolvents that can be applied. 
For example, estimating the cost of (ii) in figure Figure is 
done based on the cost and fanout of the resolvents i . f n 
andn.fn. 

Avoiding bad execution plans is more important than 
finding the optimal plan. Therefore, we adopted the con- 
servative approach to use the maximum cost and the max- 
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DTR-’ [t$n-‘,...~f”-~]. vu1 - $+R 1 rfn-’ (val), [tJ”-l,...,tnfn-‘]) 

Figure 4 Result of DTR-’ 

imum fanout of the possible resolvents as estimates of the 
cost and fanout, respectively, of a DTR call. 

5.3 Inverted late bound calls 

Consider again AMOSQL statement (4) containing a late 
boundcallto reports-to. 

An inverted late bound function call, R-fn-‘@al), is 
considered as correct if each object in the result set, R, 
when used as argument to the function fi produces the 
value val. 

If the function reports-to was uninvertible the only 
way of executing this query would be to apply the 
reports-to function on each object in ext*(employee) to 
check if the result is equal to m. The execution cost of the 
query would then be O(curd(ext’(empZoyee))). 

Furthermore, consider the following query: 

Definition of correctness 

Let R-(01 02. ..o,}, where R-fn-‘(val) is the result of exe- 
cuting the inverse of fn(arg)-vd. 
An inverted late bound function call R-jX’(vuZ) is correct 
if and only if 
Vo Zlt.fn[o~R A t.fi=resoZvent@z, D(o)) + @n(o)-vul] 

Definition of DTR” 

SELECT y FOR EACH number y 
WHERE addl(y)=9; (6) 

The derived function add1 is overloaded on argument 
types number and real where real is a subtype of number. 
The call to add1 in this query will be an inverted late 
bound call. 

Executing this query without the possibility to invert 
add1 would mean browsing through ext*(number) which 
is equal to ext*(integer) v ext*(real) since integer and real 
are subtypes to number. Obviously such a query is not 
executable in finite time. 

To execute DTR-’ means to execute the inverses of all 
resolvents in its resolvent sequence. Therefore, to be able 
to optimize DTR-’ all resolvents in the resolvent sequence 
must be optimized for inverse execution. If any resolvent 
in its resolvent sequence lacks an inverse then the DTR-’ 
is also lacking an inverse and is considered uninvertible. 

The result of DTRml([tl.fnml,..., t&t-‘], vul) is the union 
result of a special execution strategy, EDTR, applied to the 
result of each of the possible resolvents, figure 4. 

To handle (4) and (6) efficiently late bound calls must 
be replaced by an inverted call to DTR, DTR-’ . 
If DTR([tl.j%,..., t .fn], arg)-res then 
arg~D~-‘([tl.~-~,..., t&km’], res) 4. Thus, the execution 
strategy of DTR-’ is defined in terms of the inverses of the 
elements in its resolvent sequence. The following must be 
addressed to define DTR-I: 

We introduce EDm to remove the objects in the result 
of a resolvent that belongs to the deep extent of a more 
specific resolvent. Without ED~ the previously defined 
correctness will be violated. Before EDTR is defined the 
idea is illustrated by an example: 

Consider the following two definitions of reports-to:' 

CREATE FUNCTION 

*The correct result must be defined. 

*An efficient execution strategy must be devised. 

*A cost model must be defined. 

manages(manager m)->department AS 
SELECT d FOR EACH department d 
WHERE mgr(d)=m; (7) 

CREATE FUNCTION 
reports-to(employee e) -> manager AS 
SELECT mgr(dept(e)); (8) 

Correctness 
CREATE FUNCTION 

In AMOSQL statement (6) the function add1 should pro- 
duce all numbers y that satisfy add1 ( y) =9. That is, all 
objects in ext*(nu~er) that satisfies the condition. Analo- 
gously in AMOSQL statement (4), the desired result is all 
objects e in ext*(empZoyee) that satisfies r--to(e)% 

reports-to(manager m) -> manager AS 
SELECT mgr(super(manages(m))); (9) 

4. By tI.Jii’ we mean (tJn)- 5. The function super returns the next higher department. 
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Qpe Inst 

employee el 

manager ml 

department dl 

Properties Inst 

dept(el)=d2 e2 

dept(ml)-dl m2 

super(dl)-d2, d2 
mgr(dl)-ml 

Properties 

dept(e2)-d2 

dept(m2)=d2 

mgr(d2)-m2 

Figure 5 Example database population 

Type manager is a subtype to type employee. In addi- 
tion to these types there is a type department. The data- 
base is populated with two employees, two managers and 
two departments as show in figure 5. 

The query: 

SELECT e FOR EACH employee e 
WHERE reports_to(e)=m2; (10) 

will be rewritten as 

SELECT e FOR EACH employee e 
WHERE e IN DTR-1 ( [manager. reports-to-i, 

employee. reports-l] , 
m2); (11) 

According to the formula in figure 4 the result of DTR-’ 
will then be the combined result of the two resolvents 
where manager. reports-to-‘(m2) = {ml} and 
employee. reports-to-l(m2) - {m2, el, e2). 
Notice that m2 has to be removed from the result of 
employee. reports-to-‘(m2). If not removed m2 is 
violating the cormtness definition since 
reports-to(m2 )#m2. The result of the query will be the 
set {ml, el, e2). 

Execution of resolvents in DTR” 

To satisfy the formula in figure 4 the result of executing 
each resolvent in the resolvent sequence must not include 
any object o that is in the extent of the static type of a 
more specific resolvent in the resolvent sequence. Thus, 
for each $.fn“ in the resolvent sequence, rs, the result of 
E&t&-‘@al), rs) the following must hold: 

Let R-(01 02.. .on}, where R-ED&.fnd(val), rs). 

Vo Vt#n[o~R A t#nws,^ S(t@z) < S(t,.f”),+ 
oeext (S(ti*fi)) A oeext (S(Q.fi))] 

DIX1 algorithm 

From the above, an execution algorithm can be devised for 
DTR-‘. The algorithm uses a function instance-of that 
given an object returns the most specific type of the object. 
By having the sequence of resolvents in DTR sorted into a 
partial order with more specific resolvent early, the DTR-’ 
execution algorithm is: 

resolvents-DTR-1 resolvent sequence 
result- { } 
For Each resolvent in resolvents 

trnpres=apply(resoZvent res) 
For Each o ln ttnpres 

validresult=TRUE 
For Each t in types 

If instance-oflo) 5 t 
then vaZidresuZt=FALSE 

end if 
end For Each 

If validresult then resuZt=resuZtv o 
end For Each 
types-typesuS(resolvent) 

end For Each 
retum(res) 

Figure 6 Di’K’ algorithm 

The above algorithm executes every resolvent in the DTR 
resolvent sequence and removes those objects that should 
be the result of a more specific resolvent. The removal is 
done with the if statements, where the set result is 
extended with the object o if that object is an instance of a 
type that is not a suptype to or equal to any type in the ,set 
types. 

DTR” cost model 

The cost of DTR-‘, C, is the sum of the costs of the possi- 
ble resolvents plus the cost of executing DTR-’ itself. The 
fanout, F, is estimated as the sum of the fanouts of the pos- 
sible inverse resolvents. Let cl.. x,, be the execution costs 
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name:department-xharsking 
super:department-sdepartment 
mgr:department->manager 

depkemployee->department 

reports-to:employee->manager 

manages:manager->department 
reportsJo:manager->manager 
supervises:manager->>employee 

Figure 7 Test database schema 

and fi . . & the fanouts of tpfn-‘@es). . .t,,.fnm’(res), respec- 
tively. The cost and fanout of DTR-’ is then estimated as 
shown in figure 8. The k in the cost formula is the over- 
head of checking the type of every object o emitted from 
each resolvent. The cost and fanout are used in the cost 
based optimizer to decide when D’IKl favourable com- 
pared to DTR. 

n n n 

c = pxfi+ pi F- c& 
i-l i-l i-l 

Figure 8 DTR-’ execution cost and fanout 

6 Performance measurement 
The performance of having only DTR was compared 
experimentally to the performance of having both DTR 
and DTR-’ for the AMOSQL function (4). The test data- 
base schema is pictured in figure 7 where bold names 
denote stored functions and the other functions are derived 
functions. All stored functions have indexes on their argu- 
ment and their result. 

The derived functions in the schema are defined previ- 
ously in the AMOSQL examples (4), (7), (8) and (9). 

The function supervises binds late the inverted call to 
the function reports-to. What this test shows is that 
inverted late bound calls with index utilization can 
decrease the execution time considerably. 

The database was populated automatically where all 
objects are given unique names. The stored functions 
Super:department->department, Mgr:depart- 
ment->manager and Dept:employee->department 
were populated randomly. The performance measure is the 
normalized execution time of function supervises with 
a randomly chosen manager as argument. The two strate- 

gies were tested on the same database with the same man- 
agers as argument to function supervises. The database 
was scaled up in each test for managers / employees as l/ 
10 U40 5/100 25/500 50/1000 250/5000 500/10000. The 
result is pictured in figure 9. 

Figure 9 shows that the cost of executing supervises 
using DTR-’ is constant when there are more than 40 
employees as it should be, since there are constantly 20 
employees per department and the cost of DTR-’ is pro- 
portional to the fanout of the resolvents plus the fixed exe- 
cution cost. The cost of executing each resolvent is 
constant since hash indexes are used. By contrast, the exe- 
cution of supervises using DTR in the forward direc- 
tion is linear to ext*(empZoyee) as expected. Note that it 
will be marginally cheaper to choose DTR in favour of 
DTR-’ when card(ex?(empZoyee))-c50. With a proper k 
value in the cost model of DTR-‘, figure Figure, the opti- 
mizer will choose the correct strategy. 

7 Summary and future work 
Having late binding in the query language is necessary @ 
the presence of inheritance and operator overloading. In 
database query languages late binding is somewhat prob- 
lematic since good query optimization is very important to 
achieve good performance. Late bound function calls can- 
not be fully optimized at compile time; thus some work 
has to be done at run time. It is important to do as little as 
possible at runtime. 

In this paper we have given a solution to the manage- 
ment of late binding. We have shown how to decide when 
late binding must be used, and that schema evolution in 
presence of a transparent binding policy requires an incre- 
mental query compiler. We introduced a DTR function to 
handle late bound function calls. We also defined its 
inverse, DTR“, and its correctness criteria were formal- 
ized. Cost models for DTR and DTR-’ were defmed and 
used in a cost based query optimizer. We proved that DTR 
needs to be invertible and optimizable for efficient execu- 
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Figure 9 Test result graph 

tion of queries with late bound function calls. As verified 
in the performance measurement example, the perfor- 
mance is drastically improved by using DTR-’ when 
appropriate. 

We have chosen to do local optimization of the resol- 
vents in the DTR resolvent list. This is due to the compli- 
cated nature of their execution and their type dispatch. The 
DTR is then viewed by the optimizer as an expensive 
predicate. Subject of future work is to investigate optimi- 
zation methods that produce better plans than the present 
local optimization. It might for example be beneficial to 
find common subexpressions among the resolver& and 
move these subexpressions to the enclosing function body, 
thus going further towards global optimization. Along 
with improved optimization techniques the cost model 
might prove to be too conservative and a good heuristic 
estimate based on the cost and fanout of the possible resol- 
vents might prove to be the best solution. The problem is, 
however, to find such a heuristic. 
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