
Monitoring Database Objects

Tore Risch
Hewlett-Packard Laboratories

1501 Page Mill Rd., Palo Alto, CA94303

Abstract

A method is described for actively interfac-
ing an Object-Oriented Database Manage-
ment System (OODBMS) to application pre
grams. The method, called a database moni-
tor, observes how values of derived or stored
attributes of database objects change over
time. Whenever such a value change is ob-
served, the OODBMS invokes tracking pro-
cedures within running application programs.
The OODBMS associates tracking procedures
and the object attributes they monitor, and it
invokes appropriate tracking procedures when
data changes. Use is made of atomic transac-
tions in the OODBMS.
The applicability of monitors is localized both
in time and space, so that only a minimal
amount of data is monitored during as short
a time as possible. Such localization reduces
the frequency of tracking procedure invoca-
tion, makes it easy to add and remove mon-
itors dynamically, and permits efficient imple-
mentation.
To demonstrate these ideas, an implementa-
tion is described for the Iris OODBMS [lo].
The implementation uses a technique of partial
view materialization for efficient implementa-
tion.

1 Introduction

Database monitors are computer programs that observe
changes in the contents of database objects, e.g. the
current price of some commodity or the location of some

Permission fo copy without fee all or pari of this mate&l is

granted provided that the copies are not made o+ distributed for
direct commercial advantage, the VLDB copyzighl notice and
the Me of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Dolo Base
Endowment To copy otherwise, or Lo republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

ship. In addition to stored facts one often wants to mon-
itor derived information, e.g. the highest paid employee
in a department or the expenses of a department rela-
tive to its sales. Other monitoring applications include
real time systems where a process is invoked or where
a user is alerted upon pre-specified data changes. The
need for similar concepts has been indicated by others
[7, 18,, 20, 30, 311.

The monitoring mechanism described in this paper is
integrated with the Iris object-oriented database system
[lo]. In Iris, both derived and stored object attributes
can be defined using functions expressed by an object-
oriented query language, OSQL [3].

A tracking procedure is a procedure in a running ap
plication program to be invoked if the value of an as-
sociated object attribute has changed because of state
changes to the database. We use OSQL to specify the
derived or stored associated attribute. The DBMS does
not transmit monitored data to tracking procedures;
it merely signals that the state of derived data has
changed by invoking tracking procedures. It is up to
the tracking procedures to retrieve data by accessing
the database. Possible tasks for tracking procedures in-
clude notifying the end user that data have changed, re-
freshing data browsers, or passing information to other
systems. In case the application program caches data
retrieved from the DBMS, tracking procedures can be
used to inform the application that pieces of the cached
data have been invalidated by database updates, so that
caches can be refreshed and computations dependent on
the old caches can be undone.

.

In the architecture presented here, the DBMS
stores associations between tracking procedures, the at-
tributes they monitor, identifiers of application pr+
cesses, and the physical workstations in which they re-
side. After the DBMS has detected changes in moni-
tored data it uses this information to call the appropri-
ate tracking procedures. We then say that the appli-
cation process has been notified or that the DBMS has
sent a notification to the process.

In conventional database interfaces the DBMS be-
haves as a ‘passive object’ in that an application pro-
gram always must request service from the DBMS. With

Amsterdam, 1989

- 445 -

monitors, the DBMS becomes an ‘active object’; a re-
quest from an application process to the DBMS may
result in procedure invocations in other application pro-
cesses.

Tracking procedure invocations can be either local or
external. An invocation is local if the process contain-
ing the invoked tracking procedure also requested the
triggering database updates. An invocation is external
if it is the result of a database update by some other
process. External tracking procedure invocations do
not occur until after the updates have been committed,
while local invocations occur before the commit. Thus
at the end of an update transaction, the DBMS first in-
vokes local tracking procedures in the updating process
and then immediately after the commit, the DBMS in-
vokes external tracking procedures. The local tracking
procedures are invoked synchronously, i.e. the system
waits for them to return, while the external tracking
procedures are invoked asynchronously and the system
does not wait for them to return. Since a process may
be performing unrelated work when the tracking proce-
dure is invoked asynchronously, the system provides a
no-interrupt option. In this mode the DBMS accumu-
lates notifications and the application process can check
for them synchronously.

2 Related work

This section discusses related techniques from several
research areas. The database field has the notions of
alerters, triggers, and integrity constraints, while the
programming language field has the idea of active val-
ues. These ideas are somewhat related to data driven
expert systems.

In [7] it is proposed that alerters be displayed when
database updates cause certain boolean conditions to
become true. This is a common special caSe of mon-
itoring a boolean value. The RETRIEVE ALWAYS
mechanism of Postgres [30] re-retrieves the results of
queries into ‘portals’ associated with each client when-
ever there is a data change. Our monitoring mechanism
is different from the above methods because the DBMS
calls procedures in the client processes instead of send-
ing data. In addition we employ methods, described
below, that localize the applicability of monitors both
in time and space.

Some DBMSs, e.g. System R [l], use database pro-
cedures called ‘triggers’ that are invoked upon updates
of either user-specified base relations or by other ac-
tions [8, 161. The ECA model [8] is a generalization
of triggers in which the programmer can declare a pre-
condition for the trigger. Triggers can be chained so
that one update triggers another. This is useful for
maintaining integrity constraints. However, the compli-
cated cascading of triggers can make the database struc-
ture tangled and difficult to understand and maintain.
Moreover, improper use of cascading triggers may slow
down database updates considerably. In contrast, the

invocation mechanism described here is non-procedural.
The user specifies a database query whose value states
are to be monitored, leaving the system to keep track
of actions that may change a monitored state. In ad-
dition, the system creates an optimized mechanism to
invoke tracking procedures when appropriate.

The technique called access-oriented programming, or
‘active values’, used in object-oriented programming
languages such as Loops [28] is similar to traditional,
procedural database triggers. But unlike DBMSs, ac-
tive values are restricted to a single-user environment.
Active values typically set properties or display some
value. It is important that active values can be dynam-
ically added to and removed from running systems [21],
so that their use does not interfere with the logic of the
rest of the system.

Declarative integrity constraint methods [4, 11, 18,
20, 23, 27, 291 are related to the monitor model in that
they monitor boolean conditions, typically cancelling
the updating transaction if the boolean conditions are
unsatisfied at commit time. Tracking procedures, by
contrast, are local to the application program process,
are active during limited time periods, are triggered by
value changes of any data type, can perform many tasks,
and can be invoked both locally inside the updating
transaction and asynchronously in processes outside the
transaction. The tracking procedure may cancel the
transaction only when invoked locally.

Database integrity constraints typically have perfor-
mance problems [2]. The reason for this is that they
may be very expensive to check for every update. Sev-
eral techniques have been proposed to attack this prob-
lem, e.g. limit the assertions so that only those relevant
to the updates of the particular file are checked [ll, 191;
symbolically simplify the constraints checked per file
[7, 111; maintain intermediate aggregation data [4, 151;
exploit semantic constraint simplification [23]; simplify
and check all constraints after many updates [12]; dis-
tribute constraints over several processors [24]; or auto-
matically generate consistency maintenance code from
declarative integrity constraints [18, 19, 20, 231. These
techniques are applicable to the monitor model as well.
The monitor model avoids the efficiency problems of
global integrity constraints, by being localized both in
time and in the amount of data monitored, and by al-
lowing asynchronous execution outside updating trans-
actions.

Cactis [13] is an OODBMS to support software en-
vironments in which each data item is time stamped
when updated. This allows the system to know what
to recompile when the user retrieves an object. By con-
trast, our method checks if monitored data have actu-
ally changed, in which case the tracking procedures are
invoked.

We may also contrast the present work with some
data driven expert system tools like Syntel [Q, 25, 261
and OPS5 (61. Syntel is a tight integration of a
database, an expert system tool and a user interface,

- 446 -

specialized for financial applications. Syntel monitors
a moderate amount of virtual memory data retrieved
from persistent data and user input. In Syntel all shared
data is passive, and there is no feedback from the persis-
tent data to Syntel. By contrast, the method presented
here monitors interactions between multiple users and
their active and shared persistent large database inde-
pendent of applications and user interfaces. The meth-
ods presented here may be used to extend the scope
of data-driven systems like Syntel or forward chaining,
rule-based systems like OPS5, making it possible to de-
sign systems where several expert systems cooperate.

3 An example

The following example of an Iris database will be
used later to illustrate the monitor model. Assume a
database of ‘Person’ and ‘Department’ objects with the
attributes Name, Income, and Dept for objects of type
Person and the attributes DeptName and Manager for
objects of type Department.

The objects types can be defined by the OSQL state-
ments:

create Type Person;
create Type Department;

The attributes of the above types are accessed using
eztensional Iris functions with OSQL definitions:

create Function Name(Person) -> String;
create Function Income(Person) -> Integer;
create Function Dept(Person) -> Department;
create Function DeptName(Depaxtment) -> String;
create Function Manager(Depsutment) -> Person;

For example, given an object identifier (i.e. a surro-
gate), p, for a person, we may access its income and
department name by the OSQL queries:

select Income(p);
select DeptName(Dept (p>) ;

We may also set the value of an attribute by OSQL
statements, e.g.:

set Income(p) = 41000;

These statements define the object types Person and
Department. Iris also allows different views of objects
by defining intensional Iris functions. For example, we
may want to work with a view of the Person object with
the attributes Name, Income, DeptName (as a string),
MgrName (as a string), EarnsMoreThanManager (as a
Boolean), and ColleaguesEarningMore (as a set of tu-
ples of their names and incomes).

Such view of a Person object can be defined by the
following Iris functions:

create function Name(Person) -> String;
/* extensional */

create function Income(Person) -> Integer;
/* extensional */

create function DeptName(Person p) -> String
as select DeptName(Dept(p));

/* intensional */
create function MgrName(Person p) -> String

as select Name(Manager(Dept(p)));
/* intensional */

create function EarnsHoreThanManager(Person p)
-> Boolean

as select where
Income(Manager(Dept(p))) < Income(p);

/* intensional */
create function ColleaguesEarningMore(Person p)

-> <Person, Integer>
as select each Person ~011, Integer inc
where inc = Income(col1) and

inc > Income(p) and
Dept(col1) = Dept(p);

/* intensional */

Thus an application may have the above view of the Per-
son object, not even knowing how attributes are physi-
cally stored.

Iris functions can also have more than one argument,
e.g. to retrieve those persons earning more than agiven
income in a given department:

create function HighInc(Department d, Integer i)
-> Boolean

as select each Person p
where Income(p) > i and Dept(p) = d;

4 Design overview

We will now continue by discussing some critical aspects
of the architecture:

Efficiency is gained by minimizing the amount of
monitored data and by allowing monitors to be ac-
tive only while applications need them.

We also gain efficiency by separately performing
the expensive process of compiling monitor defini-
tions, and storing the analyzed definitions in the
database for later use.

Application processes may’ receive asynchronous
notifications while performing an unrelated task.
Such processes will be interrupted by the DBMS
to invoke the tracking procedures asynchronously.
The DBMS does not wait for such asynchronous
calls to return, to maximize system performance.

Notifications of external tracking procedures must
be delayed until just after transactions are commit-
ted.

The DBMS must handle distributed notifications
to client processes executing on separate machines.

Finally, we must efficiently detect when values of
monitored queries have changed.

- 447 -

4.1 Localizing Monitors

The monitor model handles common situations occur-
ring in a serverized, shared, object-oriented DBMS such
as Iris. Efficient execution is obtained from a relatively
simple implementation.

One common situation involves monitoring values of
properties of a given object. The properties may be
either stored or derived from other properties. Often,
monitoring is needed only during the execution of par-
ticular sections of an application process.

For example, we may wish to monitor the values of
attributes Income, ColleaguesEarningMore, and
EaxnsMoreThanHanager of a Person object view, p, in-
voking the tracking procedures Mpl, Mp2, and Mp3, re-
spectively, when any of these values changes.

We provide restricted monitors for efficient execution
of common situations, as follows:

l The monitors can be time localized so they are ac-
tive only during a limited time, e.g. when a seg-
ment of an application program requires them to
be active. We must therefore provide for efficient
activation and deactivation of monitors.

l The monitors can be client localized by associating
monitors with client processes. The system deacti-
vates monitors when no client needs them.

l The monitors can be object localized by monitoring
values of particular, or focused database objects,
e.g. properties of specific persons. During the ex-
ecution of an application program the monitor’s
focus may change from one object to another, i.e.
the functions will be monitored for different argu-
ments. Therefore the system should be reasonably
efficient in refocusing from one object to another.

l The monitors can be property localized so that not
every property of a database object is monitored.
In the example, only the attributes Income, Col-
leaguesEarningMore, and EarnsMoreThanMan-
ager are monitored, not, e.g. Manager and Name.
This restriction is important, since an object view
may have many attributes.

In Iris, all the above localizations are supported.

4.2 Monitor Definition and Activation

Time localization requires efficient monitor activation
and deactivation. This is achieved by separating mon-
itor activation and deactivation from monitor creation
and deletion, thereby performing as much work as early
as possible at monitor creation time.

Monitor creation analyzes the monitored query and
dynamically builds persistent tables and indexes to sup-
port efficient tracking. Monitor creation is therefore
relatively slow. Monitors remain in the database un-
til they are explicitly deleted. Monitors are generic in
that they may be subsequently activated for different
sets of arguments; we say that there are many monitor
instances for a given monitor definition.

An application program typically focuses on differ-
ent database objects during different time periods. The
system thus has to support efficient changes in the set
of focused objects. In Iris this amounts to an efficient
method to vary arguments of monitored Iris functions.
To refocus a monitor from one object to another we
simply deactivate the monitor for one object and then
activate it for another object.

Iris also supports overloaded functions. These cur-
rently cannot be monitored.

The following functions are provided for monitor cre-
ation and activation:

DefineMonitor(creates a new monitor; Iris
data structures are created to support subsequent
activation of the created monitor. Any Iris query
can be monitored by first defining it as an Iris func-
tion and then defining a monitor for that function.

ActivateMonitor(Fn,Arglist,Proc), activates a
monitor for a given Iris function, set of arguments,
and tracking procedure within the current applica-
tion process. The system will subsequently invoke
the tracking procedure on changes to monitored
object values.

DeactivateMonitor(Fn,Arglist), deactivates a
monitor for the given Iris function and arguments
in the current process.

DeleteHonitor(Fn), deletes a monitor definition
permanently.

Def inenonitor creates a new table for each monitor,
definition called the instance client table. The instance
client table is later updated by ActivateMonitor to
store the network address and process identifier of each
application process monitoring a given instance. The
system also assigns a unique tracking procedure iden-
tifier to each tracking procedure in each process and
stores it in the instance client table. Thus, by loot-
ing up the instance client table, the system will know
which tracking procedures in which processes in which
machines to notify when the instance is changed.

4.3 Notifying clients

After the database has been updated, one or more track-
ing procedures may be invoked in case their monitored
function values were changed. The database server
must detect value changes of monitored Iris functions,
and notify client processes to invoke their tracking pro-
cedures.

The system only sends notifications after it has de-
tected change to monitored data.

The actual time to check if updates make notifica-
tions necessary may vary. The most common case is
that monitor notifications are checked only at the end
of a transaction, when the database is in a consistent
state. Therefore, in the current implementation, checks
for notifications are made at transaction commit. How-
ever, the system provides an option for the application

- 448 -

program to check for notifications even before a trans-
action is committed, by explicitly calling a procedure,
CheckMonitors.

If CheckMonitors is called before a transaction is
committed, and there have been updates to values mon-
itored by that process, the system will invoke local
tracking procedures of the application process. How-
ever, notifications of monitors activated by other pro-
cesses will always be delayed until just after the transac-
tion is committed. The system works this way because
transactions hide updates from other clients until they
are committed. (If ‘dirty reads’ were allowed we could
eventually relax this delay.)

Another option is to defer checking monitors alto-
gether. Instead, CheckMonitors is called explicitly af-
ter any number of transactions have been committed,
or perhaps in some separately running process. This
option has not been implemented.

Local tracking procedures are invoked because of lo-
cal database updates. By contrast, external tracking
procedures are invoked because of database updates by
other processes. The external invocation may happen
at any time, even when the application process is do-
ing unrelated work. The notified client process is inter-
rupted asynchronously when the notification arrives, in
order to invoke the tracking procedure.

It is important to have the option of ignoring exter-
nal monitor notifications, e.g. while processing a crit-
ical section of code. When external notifications are
accepted, we say the application process is in listening
mode. The system provides a procedure to toggle be-
tween listening mode and not listening mode.

When an application process is not in listening mode
its monitor notifications will be collected by the system.
Tracking procedure invocations will then be delayed un-
til the procedure CheckMonitors is explicitly called or
the process is toggled to listening mode.

4.4 Distributed Notification

Since the application process may run on a worksta-
tion other than the Iris server, we need a mechanism
to handle the network communication involved in noti-
fying a client. Such a communication architecture has
been designed, by using the Network File System proto
co1 for remote procedure calls. Figure 1 illustrates this
architecture. 1

The basic idea is that every workstation running an
Iris client must also run a monitor aeruer that takes care
of receiving notifications and interrupting application
processes az appropriate.

Given a notification, a remote procedure call,
NotifyMonitor(ProcId,NonId), is made to the af-
fected monitor server, informing the monitor server that

‘The inter process communication in the current imple-
mentation is slightly more complicated than illustrated in
Figure l., because the code to detect ‘changes is actually
implemented as part of the client interface to Iris.

a notification has occurred to the monitor identified by
Monid of the process identified by ProcId .

The monitor server saves the tracking procedure iden-
tifiers for a given process in a main memory data struc-
ture. It then interrupts the appropriate application pro-
cess, signalling that some of its tracking procedures have
been activated. In case the notified process has been
terminated the system deletes the tracking procedure
identifiers of that process from the monitor server and
deactivates the monitor. When control returns back to
the Iris server, the DBMS knows that the application
process has been notified, but it is up to the application
process to do something when the notification interrupt
arrives.

If the application process is not in listening mode
the interrupt signals are ignored. A later call to
CheckMonitors first does a remote procedure call,
GetNotifications(ProcId,MonIds), to the moni-
tor server to access the tracking procedure identi-
fiers activated for the application process identifier.
GetNotifications then deletes the tracking procedure
identifiers from the global data structure of the monitor
server.

Given these tracking procedure identifiers,
CheckMonitors knows which application process proce-
dure to invoke for the activated monitors.

If the application process is in listening mode,
it catches all notification interrupts and then calls
CheckMonitors immediately to asynchronously invoke
notified tracking procedures.

If one or more notification interrupts arrive while an-
other tracking procedure is running, the system will call
CheckMonitors again after the first tracking procedure
has finished executing. By this sequentialization, pro-
grammers need not worry about recursive notifications
of tracking procedures.

4.5 Change detection

The purpose of the change detection algorithm is to de-
termine if the values of a monitored Iris function have
changed since the last time its monitoring clients were
notified. This process is initialized by notifying the
monitoring client at the end of the transaction in which
the monitor was activated. Then the system determines
if the value of the monitored function has changed since
the previous notification.

The current algorithm is rather simple, assuming that
only a few objects are monitored per function and that
the values of monitored properties are not very volumi-
nous. It also assumes that the definitions of Iris func-
tions are simple and fast to evaluate, a reasonable as-
sumption if the functions are used to do simple deriva-
tions such as those in the example.

The algorithm is designed to minimize the overhead
of database operations when no monitor is created or
active. It also minimizes the notification traffic; in par-
ticular, notification occurs only when there is actually
a value change and then only at monitor checking time.

- 449 -

I nnr

/

w3

GetNotifications calls
NotifyMonitor calls

‘ReadA4ritelCommit .

Interrupt

Workstation

Program

Figure 1: Inter process communication

- 450 -

The algorithm can be viewed as a variant of view
materialization [5, 15, 171 whereby only the monitored
instances of an Iris function are materialized, rather
than the complete function traditionally materialized;
thus we call the method partial view materialization.
When an Iris function is defined, the system will also
access-path-optimize the query to retrieve function val-
ues given that all arguments are known. If there has
been an update invalidating some partial view mate-
rialization, the algorithm re-executes the access-path-
optimized monitored function call for each monitored
instance and compares the new values with the materi-
alized values. If they are different, the new values are
cached and the monitoring application processes are no-
tified.

The change detection algorithm has four steps:

l A local update detection procedure is called for ev-
ery Iris operation that updates the value of a stored
Iris function [lo], independent of whether the func-
tion is monitored or not. For every transaction,
the system keeps track of Iris functions that have
been updated. This procedure holds no locks and
is very fast, associating with each transaction a
virtual memory table of update-detected Iris func-
tions. The size of this table is limited by the num-
ber of Iris functions updated by the transaction.

l At monitor checking time, for every update-
detected Iris function, a monitor detection test is
made to see if the updated functions participated
in some monitor for some set of arguments. This
is done by referring to a table, SupportsMonitors,
that is updated by the system when monitors are
created. This table maintains relationships be-
tween updatable Iris functions and their associated
monitored Iris functions. For example these are
some value sets of SupportsMonitors:

SupportsMonitors(Income) =
{Income, EarnsMoreThanManager,

ColleaguesEarningMore)
SupportsMonitors(Dept) =

{EarnsMoreThanManager,
ColleaguesEarningMore)

SupportsMonitors(Manager) =
{EarnsMoreThanManager)

SupportsMonitors is of limited size and can be
kept in main memory.

l For every Iris function that was monitor-detected,
a more expensive instance detection is done to test
if its value changed. This detection is much slower
than the previous ones, requiring re-execution of
the pre-defined (and access-path-optimized) moni-
tored Iris function in order to materialize the mon-
itored instances and compare the new and old ma-
terialized values.
The materialized values are stored in a system-
generated table called the instance cache table. For

example, the monitor for ColleaguesEarningMore
will generate an instance cache table

-MCA-ColleaguesEarningMore(Person)
-> (Person, Integer>

l For every instance detection, a notification is sent
to the client processes that had activated that in-
stance. The process identifier is found in the in-
stance client table that maps each monitored in-
stance to a list of its client processes and track-
ing procedures. Three levels of identification are
needed :

A client ident$eridentifies the name (network
address) of the workstation running each ap-
plication process.

A process identifier identifies each (Unix) pre
cess per workstation.

A tracking procedure identifier identifies each
tracking procedure in each process.

4.6 Fetching notified data

The notification mechanism does not transmit any data
to the client. Instead the application process may decide
to re-retrieve monitored instances. This can be done
using the standard Iris query language. However, since
the partial view materialization algorithm also caches
monitored instances, we make use of the instance cache
table when fetching notified data. This is implemented
by an interface between the notification mechanism and
the Iris query language, so that queries are modified to
make use of the instance cache table.

For example, assume that the application program
makes the OSQL query:

select ColleaguesEarningMore(p);

and that ColleaguesEarningMore is monitored for Per-
son p. The system wiIl modify the above query to access
the instance cache table:

select JlCA~ColleaguesEarningMore(p);

thus avoiding any access path search. That is
ColleaguesEarningMore is a derived function defined
in terms of the stored Iris functions Income and Dept.
It is not required to compute the derived value again
since it is already cached. This simple query modifica-
tion can be made in the client process without accessing
the Iris server.

When a tracking procedure is invoked, the system
passes the system-created tracking procedure identifier
and a flag indicating whether the tracking procedure
is invoked locally or externally. By passing the track-
ing procedure identifier, it is possible to write generic
tracking procedures that can be used for many monitor
definitions. A special primitive is provided to fetch the
monitored data given such a tracking procedure identi-
fier, using the instance cache table.

451 -

5 Summary and Discussion

We have proposed and implemented a method to in-
terface application programs to the Iris object-oriented
database system by using monitors that activate ap-
plication program tracking procedures whenever values
of derived or stored attributes of objects change. The
attributes are specified declaratively, using an object-
oriented query language. Monitors are localized both
in space and time by limiting the amount of monitored
data to be object attribute values, and by being active
only while application processes need them.

The time localization strategy requires fast methods
to turn monitors on and off. Therefore we separate the
(slow) process of defining monitors from their activa-
tion and deactivation. Thus, monitor definition involves
creation and update of database tables as well as opti-
mizations for later monitor activations. A monitor that
is created but not activated generates little overhead to
database operations.

The application may run on a client workstation other
than the database server. The system keeps track of
which application processes on which workstations mon-
itor which data, and automatically notifies application
processes when monitored data change. Notification
is done by invoking tracking procedures; external in-
vocations may interrupt application processes and exe-
cute asynchronously, without the DBMS waiting for the
tracking procedures to terminate.

Monitors may improve the concurrency of object-
oriented database systems by allowing for very short
transactions instead of long transactions, and letting
the notification mechanism broadcast notifications to
affected clients when database updates are committed.

The monitor model is also useful for the construction
of systems of data-driven cooperative processes by let-
ting the DBMS activate processes given data updates,
rather than letting the cooperative processes directly
call each other. In this way concurrent process invoca-
tions can be stated declaratively.

It is important that monitors execute efficiently and
do not slow down the database server for applications
not using them. The current implementation is effi-
cient enough for some typical uses of database objects,
where attribute definitions are specified using simple
(thus fast) queries. More research is needed to extend
the technique to handle complex queries.

The present change detection strategy could be com-
bined with other strategies, such as those used for in-
tegrity constraint checking [4, 7, 11, 12, 15, 18, 19, 20,
23,241. Sometimes the system should not need not save
values to determine that a change has occurred. For ex-
ample if a monitored query specifies the sum of a set of
values of which only one has changed, we may deduce
that the sum has changed without doing any material-
ization.

The methods presented here are also applicable to
relational DBMSs, by regarding Iris functions as re-

-4

lational views. The method proposed by Wiederhold
[32] can be used to define derived objects by relational
views. (Iris has many additional object features, includ-
ing a persistent hierarchical type system, and persistent
object identifiers.)

The ‘monitor model could be generalized to handle
integrity constraints, which can be regarded as uni-
versal monitors activated continuously for all applica-
tions. The tracking procedure for an integrity con-
straint would always be locally invoked whenever the
constraint is violated and it would always cancel the
transaction. However, more research is needed to get
good performance for such integrity constraint moni-
tors, since they would not be localized and since they
could not use asynchronous tracking procedure invoca-
tions.

ACKNOWLEDGEMENTS:

I wish to thank Dan Fishman, Bill Kent, David Beech,
and Waqar Hasan for helpful comments on earlier ver-
sions of this paper.

References

Ill

PI

[31

141

PI

PI

PI

PI

PI

M.Astrahan et al: System R: A Relational Ap-
proach to Database Management, ACM tinsac-
tions on Database Systems, 1 (2) June 1976.

D.Badal, G.Popek: Cost Performance Analysis
of Semantic Integrity Validation Methods, Proc.
ACM SIGMOD Conf., 1979, pp109-115.
D.Beech: A Foundation for Evolution from Rela-
tional to Object Databases, Advances in Databare
Technology - EDBT ‘88, Lecture Notes in Com-
puter Science, Springer-Verlag, 1988, ~~251-270.

P.Bernstein, B.Blaustein, E.Clarke: Fast Mainte-
nance of Semantic Integrity Assertions Using Re-
dundant Aggregate Data, Pn-x. 6th VLDB Conf.,
1980, ~~126-136.
J.A.Blakeley, P.A.Larson, F.W.Tompa: Efficiently
Updating Materialized Views, Proc. SIGMOD,
Washington D.C., 1986, ~~61-71.
L.Brownston, R.Farell, E.Kant, N.Martin: Pro-
gramming Ezpert Systems in OPS5, Addison-
Wesley, Reading, MA, 1985.

O.P.Buneman, E.K.Clemons: Efficiently Monitor-
ing Relational Databases, ACM Tmnsactions on
Database Systems 4, 3 (Sept. 1979), ~~368-382.

U.Dayal, A.P.Buchmann, D.R.McCarthy: Rules
Am Objects Too: A Knowledge Model FOT An Ac-
tive, Object- Oriented Databwe System, Advances
in Object-Oriented Database Systems, 2nd Intl.
Workshop on Object-Oriented Database Systems,
Sept. 1988, pp129-143.
R.O.Duda, P.E.Hart, R.Reboh, J.Reiter, TRisch:
Syntel: Using a functional language for financial

[lOI

IllI

WI

1131

WI

PI

WI

1171

I181

WI

PI

WI

WI

risk assessment, IEEE Expert 2, 3 (Fall 1987),
~~18-31

D.H.Fishman, D.Beech, H.P.Cate, E.C.Chow,
T.Connors, J.D.Davis, N.Derrett, C.G.Hoch,
W.Kent, P.Lyngbaek, B.Mahbod, M.A.Neimat,
T.A.Ryan, M.C.Shan: Iris: An Object-Oriented
Database Management System, ACM TOOIS, 5,
1 (Jan 1987), pp48-69

M.Hammer, D.McLeod: A Framework for
Database Semantic Integrity, Proc. 2nd Int. Conf.
on Software Engineering, San Fransisco, 1976,
pp498-504.

A.Hsu, T.Imielinski: Integrity Checking for Multi-
ple Updates, Proc. ACM SIGMOD Conf., Austin,
1985, ~~152-168.

S.E.Hudson, R.King: Object-Oriented Database
Support for Software Environments, Proc. ACM
SIGMOD Conf., San Fransisco, 1987, pp491-502.

W.Kim, D.S.Reiner, D.S.Batory: Qzlery Process-
ing in Database Systems, Springer-Verlag, New
York, 1985.

S.Koenig, R.Paige: A transformational framework
for the automatic control of derived data, 7th
VLDB Conf., 1981, ~~306-318.

A.M.Kotz, K.R.Dittrich, J.A.Mulle: Supporting
Semantic Rules by a Generalized Event/Trigger
Mechanism, Advances in Database Technology -
EDBT ‘88, Lecture Notes in Computer Science,
Springer-Verlag, 1988, pp76-91.

B.Lindsay, L.Haas, C.Mohan, H.Pirahesh,
P.Wilms: A Snapshot Differential Refresh Algo-
rithm, Proc. SIGMOD, Washington D.C., 1986,
~~53-60.

M.Morgenstern: Active Databases as a Paradigm
for Enhanced Computing Environments, 9th
VLDB Conf., Florence, 1983, ~~34-42.

M.Morgenstern: CONSTRAINT EQUATIONS:
Declarative Expression of Constraints With Auto-
matic Enforcement, Proc. 10th VLDB Conf., Sin-
gapore, 1984, pp291-300.

M.Morgenstern: The Role of Constraints in
Databases, Expert Systems, and Knowledge Rep-
resentation, in L.Kerschberg ed.: Ezpert Database
Systems, Benjamin Cummings, Menlo Park, CA,
1986.

K.Osterbye: Active Objects: An Access Oriented
Framework for Object-Oriented Languages, Jour-
nal of Object-Oriented programming, Vol. 1, No 2,
(June/July 1988), ~~6-10.

J.Park, A.Segev: Using Common Subexpressions
to Optimize Multiple Queries, Proc. 4th Intl. Conf.
on Data Engineering, Los Angeles, 1988, pp311-
318.

P31

1241

P51

PI

WI

PI

PI

[301

1311

WI

X.Qian, G.Wiederhold: Knowledge-based Integrity
Constraint Validation, Proc. 12th VLDB Conf.,
Kyoto, Japan, 1986, ~~3-12.

X.Qian: Distribution Design of Integrity Con-
straints, Proc. 2nd Intl. Conf. on Ezpert Database
Systems, Virginia, 1988, ~~75-84.

R.Reboh, T.Risch: Syntel: Knowledge pro-
gramming using functional representations, Proc.
AAAI-86 (Philadelphia, PA, Aug), Morgan Kauf-
man, Los Altos, CA, 1986, pp1003-1007.

TRisch, R.Reboh, P.Hart, R.Duda: A Functional
Approach to Integrating Database and Expert Sys-
tems, Communications of the ACM 31, 12 (Dec.
1988), ~~1424-1437.

A.Shepherd, L.Kerschberg: PRISM: A knowledge
based system for semantic integrity specification
and enforcement in database systems, Proc. ACM
SIGMOD Conf., Boston, MA, 1984, ~~307-315.

M.J.Stefik, D.G.Bobrow, K.M.Kahn: Integrating
access-oriented programming into a multiparadigm
environment, IEEE Software 3, 10 (Jan. 1986),
~~10-18.

M.Stonebraker: Implementation of Integrity Con-
straints and Views by Query Modification, Proc.
ACM SIGMOD Conf., San Jose CA, May 1975.

M.Stonebraker: The Design of POSTGRES, Proc.
ACM SIGMOD Conf., Washington, D.C., 1986,
pp340-355.

M.Stonebraker: Future Trends in Data Base Sys-
tems, Proc. 4th Intl. Conf. on Data Engineering,
Los Angeles, 1988, ~~222-231.

Wiederhold, G.: Views, objects, and databases,
IEEE Computer 19(12) 1986, pp.37-44.

- 453 -

- 454 -

