
PRODUCTION PROGRAM GENERATION IN A FLEXIBLE DATA DICTIONARY SYSTEM

Tore Risch

University of Uppsala, Sweden

Abstract

A data dictionary system with a query compiler
is implemented in a symbol manipulation langua-

ge, separate from the underlying database sys-
tem. The query compiler (or program generator)
generates COBOL programs for database access.
These programs are optimized at generation time
using information from the data dictionary. The
implementation technique makes it possible to
combine pilot implementation with production
implementation of database application programs.
Furthermore, an example is given of how the
architecture of the system is convertible to
different underlying database systems.

Key concepts: data dictionary, program genera-
tor, query language compilation, query language
interpretation, non-procedural query language.

I. Introduction

I wi 11 discuss the architecture and other as-
pects of a data dictionary system with a query
language handler. The basis for the paper is a
working system called LIDAM (LISP Data Manager),
which has been used since September 1977 at our
computer center.

The system works with an existing database sys-
tem, at resent a relational database system call

';3 ed MIMER f . It is however, viewed by the opera-
ting system as a separate program. The contents
of the data dictionary is represented as data
structures (lists, trees, tables) in a high level
symbol manipulation language (LISP).

An important feature of the system is a program
generator (query language compiler) to which the
user can specify database accesses in a high
level query language. The system then automatic-
ally generates production programs in COBOL which
efficiently perform the specified searches. The
programs are optimized at generation time. There
is a detailed description of the optimization
algorithm in18. I wi 11 give a short summary of
the optimization method used. The production pro-
grams are interactively used by end users, who do
not have to master any query language or have de-
tailed knowledge of the database contents. For
detailed specification of the output layout, a
report generator is integrated into the program

generator, as well as conventional programming
features such as assignment statements and con-

ditional statements.

The system design has made it possible to combine
query language compilation with interpretation. In
this way pilot implementations can be automatically
converte into production programs. Berild and
Nachmens t have shown the need for pilot implemen-
tations when designing database application systems.
The idea has been used for the extension o a query
language handler for MIMER written in LISP &I . This
is discussed in section four.

Furthermore, the design of the system makes it
little dependent on the underlying database system.
Thus, an earlier version of the system’* worked
with lMS8g”. At the end of this paper I will give
a summary of the experiences of the conversion
from IMS to MIMER.

2. System overview

An important property of the LIDAM system is the
separation of LIDAM from the underlying database
system, and therefore of the LIDAM data dictionary
from the database system’s data dictionary.Another
important decision was to implement the system and
the data dictionary in the hiqh level symbol mani-
pulation language LISP. I will first give a summa-
ry of the motivations for the design decisions.The
relation between LIDAM and the database system is
shown in Figure 1. In section 2.2 I describe brief
ly the program modules available in LiyAt’$ There
is a more detailed system overview in ’ .

2.1 Motivations for the design

L;: t3
implementation I have used the INTERLISP
, which is a dialect of the programming

language LISP. A number of properties of this sys-
tem have simplified the implementation.An overview
of these and other properties of LISP is given by
Sandewall22.

The logical data structures I needed, lists and

trees , are well supported in LISP. These data
structures are very useful for internal representa-
tion of program code. Since it is possible to
associate procedures and data with each symbol, the
manipulation of the internal representation is
simplified.

Some properties of LISP together with the system
architecture have made it possible to combine com-
pilation of the query language with interpretation.

CH1534-7/80/0000-0343$00.75 @ 1980 IEEE 343

() Data i-1 Program

Figure 1 .

The disadvantage of the programming system chosen
is that such a flexible system as INTERLISP natur-
ally will not have as good performance as conven-
tional programming languages. However, I have not
regarded the efficiency considerations as critical,
since the system generates production programs
(which are as efficient as possible of course) and
this generation is made only a few times.

The reasons for separating the LIDAM data diction-
ary from the data dictionary of the underlying
database system are in brief:

First, the system becomes less dependent on the
underlying database system. Second, the data struc-
tures used in a detailed data dictionary has a
complicated structure which is extensively manipu-
lated. LISP is very convenient for representing
such data structures. Since LISP is equipped with
predefined I/O for its data structures, it is easy
to make programs to save the internal list struc-
ture representation of the data dictionary on an
external file and load it later.

The drawback of having the data dictionary separa-
ted from the database system is that the informa-
tion stored in the data dictionary may become out-
dated as the physical database is modified. This
problem is partially solved by programs which
transform the contents of the data dictionary in
the underlying database system into data structu-
res in the LIDAM data dictionary and vice versa.

2.2 Program modules

The LIDAM top loop is the center of LIDAM. The
different program modules in LIDAM are activated
from this top loop by user commands.

Entry of the data dictionary: The data dictionary
is normally created by a special data dictionary
entry program. It is an interactive program that
prompts the user for name, size, type, etc. of
databases, fields and files. From the answers to
these questions new parts of the data dictionary
are created.

The DML program generator is described later.

The structure editor: A specially designed editor
for the data dictionary is available. The editor
checks that all changes are correct and admissib-
le, in order to keep the data dictionary consist-
ent.

LIDAM as documentation tool: An important use of
LIDAM is as a documentation tool. The system can
be used to answer queries about database items,
e.g. which file descriptions are stored in the
data dictionary, sizes of files and fields, rela-
tions between files, statistical values etcr..

Views: LIDAM contains a module to define views (or
external schemes). A view in LIDAM consists of a
number of fieldsfrom some of the files in the
database. From that view, the user may regard all
of the database as a flat file with these fields.
The program generator automatically maps the view
onto the current database by using the data dic-
t i onary .

The view definitions may be stored symbolically
in external files. When such a file is loaded the
logical references in the view definition are
connected to the corresponding physical descrip-
tion. Views may be defined in terms of other views.
The design of the view feature makes view defini-
tion linkable to different LIDAM data dictionaries.
In this way the same query can access different
databases with similar content but different data
structure.

3. Production program generation

I will give an overview of the program generation
process in LIDAM, starting with a survey of the
query language and the report generator. Finally,
I will describe the internal functioning of the
program generator.

344

3.1 The query language

The query language I use, LIDAM Request Language

(LRL) , is of a type similar to the relational data-
base languages. In some respects, however, LRL is
more powerful than many of the relational database
languages available to-day. For instance, LRL
al lows mu1 ti relational queries, i .e. queries where
the logical access paths are not specified by the
user, but are determined automatically by the sys-
tern. Simi lar te@niques are u2eda$n;a;:;znsan;n
Kaplan , Osborn , Sagalowicz
certain other respects it is less powerful, as my
intention has not been o construct a relationally
complete query language f but to make a language
which is user-oriented and solves practical .prob-
‘ems. In LIDAM the database administrator regards
the database as a network database, while the user
has the relational view of the data.

A typical simple LRL statement has the form:

;RETRIEVE <output fields> WHERE <predicate>;

For example:

;RETRIEVE DEPARTMENT,SALARY WHERE EMPLOYEE=“SMITH”;

The output fields (DEPARTMENT, SALARY) and the
predicate (NAME=“SMITH”) may contain references to
attributes in several different files (relations).
The system automatically selects what intermediate
files will be accessed and what access paths to be
used.

In addition to query language constructs, LRL con-
tains a programmable report generator, a simple
dialogue generator to specify the form of the in-
put to the programs generated, and conventional
programming language constructs such as loop state-
ments and procedures.

The users of the system have inf 1 uenced the design
of LRL, and part’cularly motivated the need for the
report generator; the dialogue generator; multi-
relational queries; and views.

3.2 The report generator

For detailed specification of the output layout,
there is a programmable report generator integrated
into the query language. The reports are compiled
into sections of the production programs from de-
scriptions in high level report generator state-
ments. By way of an example, in order to generate
a program which repeatedly reads department names
and prints the names and salaries of the employees
of these departments, the statements will be:

REPORT SALARlES(DEPT,EMP,SAL)=(
CHANGE DEPT(“SALARIES FOR DEPARTMENT”;DEPT;//;

“EMPLOYEE”;20;“SALARY”;//)
EMP;20;SAL;
SUMMARY DEPT(20;“-----“;/;20;SUM(SAL)));

REPEAT SALARIES RETRIEVE DEPARTMENT,EMPLOYEE,
SALARY WHERE DEPARTMENT=PROMPT (” INPUT

DEPARTMENT NAME”) ;

‘20’means tabulation to position 20 and ‘/‘means
line feed. The specifications after ‘CHANGE DEPT’
are executed only when the value of DEPT is changed.
In the same way, the specifications after
‘SUMMARY DEPT’are executed at the end of a group
of DEPT names. The other specifications are execu-
ted for each tuple retrieved.

PROMPT(“INPUT DEPARTMENT NAME”)
generates code for reading the compare value from
the terminal prompted by the specified prompt
string. The formal parameters (DEPT,EMP,SAL) are
bound t0 the output fields (DEPARTMENT,EMPLOYEE,
SALARY) of the query to which the report is applied.

An example of an end user interaction with the pro-
gram generated is:

INPUT DEPARTMENT NAME
?TOYS
SALARIES FOR DEPARTMENT TOYS

EMPLOYEE SALARY

SMITH 1000
JONES ’ 750
BROWN 980

- - - -

3730

INPUT DEPARTMENT NAME
? etc.

Other features of the report generator are conven-
tional programming language features such as as-
signment statements, arithmetic expressions and
conditional expressions. The report generator can
be us.9: in a similar manner to the generators og
RIGEL . For example, a report to calculate and
print the average value of some field can have the
definition:

REPORT AVG(X)=(
INIT(SUM:=O; CNT:=O)
SUM:=SUM+X; CNT:=CNT+I;
FINISH(“THE AVERAGE OF”;NAME(X) ;” IS”;

SUM/CNT))

The specifications after ‘INIT’are executed initial-
ly before the retrieval, and the specifications
after ‘FINISH’are executed finally.

3.3 The program generator

LRL is a compiled language. The user gives a number
of LRL statements to the LRL compiler, which are
transformed into a COBOL program containing calls
to the database system. The COBOL program is com-
piled by the COBOL compiler and executed the normal
way.

A comparison is given in l7 of compilation versus
interpretation of high level languages. The reasons
why I have chosen to compile the query language are
in brief: A more extensive optimization can be done,
the generated programs will be of limited size, and
the system will be less dependent on the underlying
database system. In section four I will describe

345

how my design has made it possible to combine com-
pilation and interpretation. Another example of a

;Y$Yzy haviYj
a compiled query language is System

Katz has measured the considerable effici-
ency improvements for different levels of compi
tion of the query language in the INGRES system B- .

The method used encourages the specification of
programs.working over the database answering spe-
cialized queries by prompting the user for desired
values of specific fields. The programs are very
simple to use,and those who use them do not have
to master any query language. It is my intention
that the programs shall be used by casual users.

The original LRL statements are successively trans-
formed by the program blocks in the program gene-
rator into new representations or data blocks.
The program generator has three steps. They are
illustrated by Figure 2, which illustrates the data
flow from box one via box four to box seven in
Figure I.

Data blocks Program blocks

Parsing & checking

Figure 2.

Parsing and checking

The LRL statements are parsed in this program block
and thei r syntactic and semantic correctness is
checked. Incorrect statements must be rewritten.
There is also a capability to correct some errors
interactively when LIDAM finds them, and to do
simple editing of the LRL statements. The output
data block from this step represents the LRL state-
ments parsed into an internal list structure form,
form F2, where references to database items (files
- and fields) are replaced by pointers to the corres-
pondi ng LIDAM descriptors. (A LIDAM descriptor is
a data structure describing a database item.) The
substitution of these pointers is done in parallel
with a check on whether the items referenced exist

in the data dictionary. This step also checks that
the user has the authority to access the referenced
database items, and the names of fields in the view
are replaced by the corresponding field descriptors.

Form F2 is saved together with the original LRL
statement. No further errors than those already de-
tected by the checker can occur. Concomitantly,
form F2 is guaranteed to be correct both syntactic-
ally and semantically.

The code generator

The form F2 data block is given as input to the
code generator. A special user command collects
all form F2 structures and gives them to the code
generator. The form F2 structures are translated
by the code generator into another data block, the
MACRO form. This data block is a LISP oriented con-
trol structure describing database manipulations
in the database system, and also describing other
normal program operations (arithmetics etc). The
structure of the MACRO form is thus independent of
target language (COBOL at present) but contains
special handles for the database system in use (at
present MIMER).

The optimization method is applied in this step. It
makes use of both indices and link tables of MIMER.
Given a set of tuple identifiers (TIDs) for some
database file, Fl, the link tables are used to
efficiently calculate theset of TlDs in another
file, F2, participating in the equijoin7 of the
files Fl and F2 over a particular domain. This cal-
culation .is done without accessing any database re-
cords.

Haerder describes an impementation method to com-
bine a similar link table feature with indices.‘O

The retrieval programs work in two phases, the col-
lection phase and the distribution phase. Accesses
to database records are avoided during the collect-
ion phase. In the ideal case, all accesses to data-
base records are postponed to the distribution
phase.

Among the files involved in the search, one file of
particular importance is chosen, the FOCUS file.
In the collection phase those TlDs of the FOCUS
file are calculated which satisfy as large parts of
the predicate (selection rule) as can be calculated
by using indices and link tables. In the distribut-
ion phase this set of TlDs is used for accessing
the records of the FOCUS file and the corresponding
records in the other files from which data is t
retrieved. A form of tuple substitution is used

2gbe .

Different selections of FOCUS file will result in
different access times: Using a combination of ana-
lytic and heuristic methods, LIDAM selects the
FOCUS file which seems to be the most promising.
The amount of data to be accessed for different se-
lections is estimated using methods similar to
those used in System ig.

Some extensions of the method are made, handling
cases where the preconditions for the method are

346

not ideal.

The LIDAM-COBOL compiler

The MACRO form is translated by a LIDAM-COBOL com-
pi into COBOL-source code. If other languages
than COBOL are preferred (e.g.FORTRAN or assembler)
this program module must be rewritten. The MACRO
form is designed in such a way that it is simple
to compile it into source code in any general pur-
pose language.

The COBOL programs contain both calls to the data-
base system and calls to a number of subroutines
to conduct dialogwes with the user and do report
generation. Thus, it is assumed that there is a
small runtime system for the generated programs.

Processing of generated programs

The generated COBOL code is written to a tempora-
ry file and the LIDAM system is exited. Then the
generated program is completed with control com-
mands. LIDAM generates control cards containing
references to the OS-datasets where the physical
database is stored and to the runtime system for
LIDAM generated programs. At this point the gene-
rated program can be compiled and executed.

4. Combining query language compilation with
interpretation

I will describe a method of combining compilation
with interpretationof the query language which has
been used in an implementation of a procedural
query (and gpdate) language for our database sys-
tem (MIMER) .

An important difference between LISP and most other
programming languages is that programs and data
have the same representation. As a matter of fact,
the programs are list structures of a particular
form. These programs, represented by list struc-
tures, are interpreted by the LISP interpreter.

This property facilitates the writing of programs
in LISP to manipulate other LISP programs. It is
also easy to make programs generate other programs,
and then immediately execute (interpret) the pro-
grams generated. This can be done without leaving
the LISP system, unlike normal programming langu-
ages which have to be recompiled before execution.

There are a few other lan,guages having this proper-
ty, among them APL, SNOBOL and pure machine langu-
age. In APL and SNOBOL the programs are represent-
ed as strings instead of list structures. APL pro-
gramming systems have also been constructed, even
though they are not as advanced as the LISP program
ming systems. I know of no similar programming sys-
tem in SNOBOL, although it is probably possible to
construct one.

One interesting extension of the system is to make
an interpreter in LISP for the MACRO form. When the
MACRO form is generated, instead of translating it
with the LIDAM-COBOL compiler (see Figure 2)) it
may be directly interpreted. It is possible to go

even further; the different MACRO expressions may
be defined as LISP functions. The normal LISP
interpreter may then perform the interpretation.

To make it possible to interpret the MACRO
form directly, handles must be built into
LISP to access the database (i.e. the database
system) . Thus, it must be possible to call the
database access functions directly from LISP. Once
the database system is accessible from LISP, the
LRL compiler can be used both to generate special-
ized programs (in COBOL at present) and to gener-
ate and directly execute the MACRO form.

MIMER is a portable database system written in
FORTRAN. In our department we hT?e also developed
a portable LISP system, LISP F3 . Since LISP F3
is written in FORTRAN it was relatively simple to
make an interface berween LISP and MIMER by link-
ing LISP F3 to MIMER and defining LISP functions
corresponding to the database access routines of
MIMER. This interface has thgn been used to imple-
ment a query language (MIMAN) for MIMER, w ‘tten
in LISP. MIMAN has a syntax similar to QUEL !a . At
present no optimizer is included in MIMAN. MIMAN
uses a technique to generate an executable LISP
program which is directly interpreted.

Since MIMAN is written in LISP and has a similar
design as parts of the program generator of LIDAM,
the transformation of program modules from LIDAM
to MIMAN is simplified. Thus, I have connected the
report generator of LIDAM to MIMAN, making it pos-

sible to define a large class of application pro-
grams for MIMER directly in MIMAN. I have further-
more adapted the LIDAM-COBOL compiler for MIMAN.

Now MIMAN can be run in two phases:

I.

2.

BY

During a pilot phase MIMAN is run interpretat-
ively. The user may interactively write and test
his application programs.

When the user is satisfied with the functioning
of his application program, a command is given
to generate the efficient production program in
COBOL. The COBOL program is then used by the
end user in a production phase.

combining interpretation and compilation in this
manner the program development is considerably
simplified for programs definable in MIMAN. In ad-
dition it is simple to regenerate modified produc-
tion programs previously generated. This improves
the possibilities for the end user to influence the
appearance of the programs.

5. Changing the underlying database system

I will give a summary of the experiences with the
change-over of LIDAM from IMS (the database system
used previously) to MIMER (the database system used

is
;; ;;“,y 7 3.

is described in greater detail in
Three types of system changes were

made:

First, old program modules were adapted to the new
database system.

347

Second, the system was gemeralized in order to fa-
cilitate adaption to new types of database systems
in the future. It should at least be adaptable on
both IMS and MIMER. Since the system has been
changed during the conversion, some work remains
to extend LIDAM to work also bith IMS.

Third, the system is extended with some wholly new
facilities.

One reason for storing the access paths implicitly
in the data directory (sec. 3.1) is to minimize
the dependence on the underlying database system
and on the database structure. My ambition has
been to make it theoretically possible to use
exactly the same LRL statement to specify a re-
trieval both for IMS and MIMER (and eventually al-
so another database system). The use of views
(sec. 2) makes it possible to have the same logi-
cal view of different databases that have the same
contents.

The program generator is the module which is the
most difficult to transform to work with different
database systems. The parser and the checker re-
main about the same, while the MACRO form must be
extended with new primitives for each new database
system. The code generation for database independ-
ent parts of LRL may remain the same when changing
database system. However, other code generation
will differ considerably. The most difficult prob-
lem in the conversion of the program generator is
the optimization algorithm. It is not only depen-
dent on the overall structure of the database
system but also on the detailed internal working
of the database system.

6. Summary

I have presented a data dictionary system where
the data dictionary is stored separately from the
underlying database system, and it is represented
as data structures in a high level symbol manipu-
lation language (LISP).

The system can generate interactive production
programs for end users from specifications in a
high level query language. The production programs
are optimized at generation time. The general
principles of the query language, LRL, are discus-
sed. Both the design and implementation are of
interest. The query language allows a powerful
type of queries, multi-relational queries, which
makes it user-oriented and little dependent on the
structure and type of the underlying database sys-
tem. My practical experiences with LRL have shown
the LRL-type of query language to be very useful
for solving practical retrieval problems, even
though LYL at present is not fully relationally
complete . Several LIDAM-generated programs are in
practical use, and many of the features of LRL are
developed from users’demands. The query language
includes a report generator which is a very useful
feature for practical production program specifi-
cation.

The architecture of the query languaqe compiler as

well as properties of the programming language
LISP has made it possible to use the query langu-
age both in compiling and interpreting mode. I
have shown how this idea has been aoolied to the
query language MIMANo for our underlying database
system.

The architecture of the system has made it possib-
le to work with different underlying database sys-
terns. It also makes it possible to generate prog-
rams in one computer and execute them on other
computers.

1.

2.

3.

4.

5.

6.

7.

8.

9.

REFERENCES

S.Altemark, M.Jainz, S.Johansson, A.Persson,
T.Risch and W.Schneider: "A Portable and User
Oriented Database Management System and Its
Applications in the Medical Field", 1980
Medinfo conf., Tokyo, Japan.

M.M.Astrahan, et. al.: VSystem R: Relational
Approach to Database Management", ACM
Transactions on Database Systems, June 1976.

A.Berghem, A.Haglund, S.G.Johansson, A.Persson:
"A Partially Inverted Database System With a
Relational Approach, MIMER (earlier RAPID)",
Uppsala University Data Center, Uppsala,
Sweden, 1977.

S.Berild, S.Nachmens: VS4: A Tool for Database
Design by Infological Simulation", Presented at
VLDB 3, Tokyo, Japan, 1977
Published in "Tutorial: Software Methodology",
IEEE Catalog No. EHO 142-0, IEEE Computer
Society, 1978.

C.R.Carlson and R.S.Kaplan: "A Generalized
Access Path Model and its Application to a
Relational Data Base System", Proc. of the
International Conference on Management of Data,
Washington D.C., 1976, pp 143-154.

M.Carlsson: "MIMAN - a query language for DBMS
Mimer", DLU 79/5, Datalogilaboratoriet,
Sturegatan 2B, Uppsala, Sweden, 1979.

E.F.Codd: "Relational Completeness of Database
Sublanguages", Data Base Systems, Courant
Computer Science Symposium 6, Ed. R.Rustin,
Prentice Hall, New York, 1972, pp 65-98.

C.J.Date: "An Introduction to Database
Systems", Addison-Wesley Publishing Company,
ISBN O-201-14452-2, 1975.

P.Griffiths Selinger, M.M.Astrahan,
D.D.Chamberlin, R.A.Lorie, T.G.Price: "Access
Path Selection in a Relational Database
Management System", ACM-SIGMOD 1979 Conf.,
Boston, Mass., 1979.

10. T.Haerder: **Implementing a Generalized Access
Path Structure for a Relational Database
System", Transactions on Database Systems
(TODS), September 1978.

348

11. IBM, Information Management System Virtual
Storage (IMS/VS) General Information Manual,
GH20-1260-1

Information Management System/360, Version 2,
Application Programming Reference Manual,
SH20-0912-4

Information Management System/360, Version 2,
Utilities Reference Manual, SHZO-0915-Z

12. M.Jainz, T.Risch(eds): "A Data Manager For the
Health Information System Berlin", Computer
Programs in Biomedicine 6, 1976.

13. R.H.Katz: l'Performance enhancement for
relational systems through query compilation",
National Computer Conference, 1979.

14. R.A.Lorie, B.W.Wade: "The compilation of a Very
High Data Language", IBM Research Report
RJ2008(28098), May 1977.

15. M.Nordstrom: "LISP F3 User's Guide", DLU 78/4,
Datalogilaboratoriet, Sturegatan 2B, Uppsala,
Sweden, 1978.

16. S.L.Osborn: "Towards a Universal Relation
Interface", Conference on Very Large Databases,
Rio de Janeiro, 1979.

17. T.Risch: "Compilation of multiple file queries
in a meta-database system", (Ph.D. Thesis),
Dept. of mathematics, University of Linkoping,
Linkoping, Sweden, 1978.

18. T.Risch: "Optimizing non-procedural multiple
file queries", DLU 79/l, Datalogilaboratoriet,
Sturegatan ZB, Uppsala, Sweden, 1979.

19. T.Risch: "A Flexible and External Data
Dictionary System for Program Generation",
International Conf. on Data Bases, Univ. of
Aberdeen, Aberdeen, U.K. July 2-4, 1980.

20. L.A.Rowe, K.A.Shoens: "Data Abstraction and
Updates in RIGEL", ACM-SIGMOD 1979 Conf.,
Boston, Mass., 1979.

21. D.Sagalowicz: "IDA: An Intelligent Data Access
Program", Conference On Very Large Databases,
Tokyo, act. 1977

22. E.Sandewall: "Programming in an Interactive
Environment: The LISP Experience", ACM
Computing Surveys, Vol 10, No 1, 1978.

23. M.Stonebreaker, E.Wong, P.Kreps, G.Held: "The
Design and Implementation of Ingrese, ACM
Transactions on Database Systems (TODS), Sept
1976, pp 189-222.

24. W.Teitelman: INTERLISP Reference Manual, XEROX
Palo Alto Research Center, Palo Alto, Calif.,
1974

25. E.Wong, K.Youssefi: wDecomposition - A Strategy
for Query Processing", ACM Transactions on
Database Systems (TODS), Sept 1976.

349

