
Evaluation of Join Strategies for Distributed
Mediation

Vanja Josifovski�, Timour Katchaounov, and Tore Risch

Uppsala Database Laboratory, Uppsala University, Sweden,
vanja@us.ibm.com, timour.katchaounov@dis.uu.se, tore.risch@dis.uu.se

Abstract. Three join algorithms are evaluated in an environment with
distributed main-memory based mediators and data sources. A streamed
ship-out join ships bulks of tuples to a mediator near a data source,
followed by post-processing in the client. An extended streamed semi-join
in addition builds a main-memory hash index in the client mediator. A
ship-in algorithm materializes and joins the data in the client mediator.
The first two algorithms are suitable for sources that require parameters
to execute a query, as web search engines and computational software,
and the last is suitable otherwise. We compare the execution times for
obtaining all and the first N tuples, and analyze the percentage time
spent in subsystems, varying the network communication speed, bulk
size, and data duplicates. The join algorithm leads to orders of magnitude
performance difference in different mediation environments.

1 Introduction

Integration of data from sources with varying capabilities has been intensively
studied by the database community in the recent decade. The Amos II system [8,
9,17] uses the wrapper-mediator paradigm to integrate data from several sources.
One of the salient features of Amos II is a distributed architecture where a num-
ber of interconnected mediator servers cooperate in providing the users and the
applications with the required view of the data in the sources. We believe that
a distributed mediator architecture is needed because it is unrealistic to assume
that a single mediator server can be deployed in an enterprise composed of mul-
tiple organizational units. When many mediator servers become available on the
network, composability will be required for designing new distributed media-
tor servers in terms of the existing ones, thus reusing mediation specifications.
Multiple mediators will also alleviate the performance bottleneck problems that
appear when all the queries are handled by a single mediator.
Having some of the basic assumptions different from the classical database

systems, query processing in a distributed mediator system requires some novel
strategies and solutions. One of the major reason for this is the different cost
model in this environment. The I/O and CPU costs used in the traditional query
optimization [14] are largely insignificant here compared to the cost of accessing

� Current address: IBM Almaden Research Center, San Jose, CA 95120, USA

A. Caplinskas and J. Eder (Eds.): ADBIS 2001, LNCS 2151, pp. 308–322, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Evaluation of Join Strategies for Distributed Mediation 309

data in external sources. While new cost models have been developed for use in
mediator frameworks with centralized architecture [18], no experimental results
are reported using a distributed mediator framework. In this work we quan-
tify empirically the relations among the different costs in a wrapper-mediator
environment, as for example, the network cost and the data source access costs.
Traditional data integration systems [11,16] send all data to the mediator

for joining. Such ’ship-in’ methods do not allow for integration of ’non-database’
data sources that require some input, since it is not possible to ship the pro-
gramming logic from these systems into the mediator. Also they are not good
for top-N queries where only a first few tuples are retrieved.
Three join algorithms for a distributed mediation environment are presented

and analyzed. An outer collection, generated as an intermediate result of a previ-
ous computation, is joined with an inner collection produced from a data source.
Two ship-out algorithms ship data toward the sources. In these algorithms, in-
termediate result tuples are shipped to the sources where they are used as pa-
rameters to precompiled query fragments (subqueries or function calls) of the
original query. The first algorithm is an order-preserving semi-join which is suit-
able when there are no duplicates in the outer collection. The second algorithm
uses a temporary hash index of possibly limited size to reduce the number of
accesses to the data sources. It is suitable when there are duplicates in the outer
collection. Both ship-out algorithms are streamed [6] and the data is shipped
between the mediator servers in bulks that contain several tuples to avoid the
message set-up overhead. Finally, for comparison, a ship-in algorithm is ana-
lyzed, which is suitable when the sources cannot accept parameterized queries
and when the data retrieved from the sources is small enough to be stored in a
temporary main-memory index in the mediator.
The algorithms are evaluated in an environment with an ODBC data source

and a mediator server running on Windows NT platforms, connected by ISDN
and LAN. Substantial performance gains were measured (up to factor 100) when
using our framework over an ISDN connection to access a relational database
server, as compared to accessing the relational database with ODBC directly
from the client, since bulk oriented join processing between the mediators mini-
mizes ISDN message traffic and eliminates all expensive remote ODBC calls.

2 Background

As a platform for the work in this paper we use the Amos II mediator database
system [8,9,17]. The core of Amos II is an open light-weight and extensible
DBMS. It is a distributed mediator system where both the mediators and wrap-
pers are fully functional Amos II servers, communicating over the Internet. For
good performance, and since most the data reside in the data sources, each
Amos II server is designed as a main-memory DBMS.
Some of the Amos II servers can be configured to wrap different kinds of

data sources, e.g. ODBC compliant relational databases [4] or XML files [12].
Other servers reconcile conflicts and overlaps between similar real-world entities

310 V. Josifovski, T. Katchaounov, and T. Risch

modeled differently in different data sources, using the mediation primitives [8,
9,17] of the query language AmosQL .
Users and applications can pose OO queries to any Amos II server. We call

the server(s) to which application queries are posed client mediator(s) for those
queries. The other Amos II servers involved in answering a query are called
mediator servers. The mediator servers may run on separate workstations and
provide data integration, wrapping, and abstraction services through which dif-
ferent views are presented in different mediators. For example, in a mobile envi-
ronment a portable computer could have a client mediator that integrates data
represented by several mediator servers on a company LAN. A mediator server
can have different types of data sources attached and access a number of other
mediator servers.
The AmosQL query below contains a join and selection over the table A at

the source DB1, and B at DB2, based on values of functions fa and fb:

select res(b)
from A@DB1 a, B@DB2 b
where fa(a) = fb(b);

The query is issued in a client mediator over data that can be either directly
stored in DB1 and DB2 or, if these are Amos II servers, retrieved from wrapped
data sources. Strategies to execute this equi-join will be the focus of this paper.
The queries are rewritten by the optimizer to eliminate redundant com-

putations. After the rewrites, queries operating over data outside the medi-
ator are decomposed into distributed query fragments, executed in different
Amos II servers and data sources. The decomposition uses heuristic and dy-
namic programming strategies in three stages [10]: query fragment generation,
fragment placement and fragment scheduling. Each Amos II server uses a single-
site cost-based optimizer to generate optimized execution plans for the query
fragments. The fragments for other types of data sources are handled by the
mediator if the source has no query processing capabilities, or by the source
otherwise.

3 Algorithm Descriptions

While a naive data source interface provides only execute functionality for queries,
Amos II also provides bulked ship-out and execute functionality where a remote
Amos II server accepts and store tuples locally in main-memory, and then ex-
ecutes a query fragment using them as an input. When joining directly to a
data source, the communication is directly with it and the processing is one
tuple at the time for the ship-out algorithms, assuming that storing bulks of
the intermediate results is not possible in data sources because of their auton-
omy.

Evaluation of Join Strategies for Distributed Mediation 311

3.1 Ship-Out Join Algorithms

In general, the ship-out algorithms can be described with the following steps:

1. preprocess and prepare the input collection for shipping
2. ship the input collection to a remote site
3. execute the query fragment over the collection at the remote site
4. return result of query fragment execution to the coordinating mediator
5. assemble the result collection to be emitted from the join

Steps 1, 4 and 5 are executed locally, while 2 and 3 are performed at another
Amos II server by its join request handler.
The input collection is a table where some columns are used as parameters

to the remote query fragment; other columns are passed through to the later
post-processing in the mediator, or are assembled as parts of the query result.
A straight-forward implementation of a ship-out equi-join operator would

ship the whole input bulk to the remote site, execute the remote query fragment
on the bulk appending its result to the input, and then ship this result back.
The first improvement of the naive strategy we propose is the project-concat
algorithm (PCA) in Fig. 11. It improves the naive strategy by the following two
data transformations based on the semi-join algorithm [2]:

– The input bulk is projected over the data columns that are actually used in
the remote query fragment, before shipping them there.

– After the query fragment is executed the result shipped back to the mediator
contains only the relevant columns from the query fragment result.

. . . .

. .
 .

.

Pr oject Deproxify
 OI Ds

Project Concat
Proxify

OIDs

Destr ingify
OIDs

Str ingify
 OIDs

Join Operator Join r equest handler

Materialized bulk from the input

output

1 2 3

8 7 6 5

Execute
 SF

4

Fig. 1. Project-concat ship-out algorithm

1 Amos II is object-oriented and steps 2, 3, 5, and 6 handle object identifier (OID)
conversions, which are not further elaborated here.

312 V. Josifovski, T. Katchaounov, and T. Risch

Table 1. Example execution of equi-join using the project-concat algorithm

r va
“T” 5

b1 “V” 4
“K” 5
“M” 3
“L” 5

b2 “M” 2
“G” 4
“Y” 4

πKS−→

va
5

b1 4
5
3
5

b2 2
4
4

to DB1−→ . . .

r
b1 “M”
b2 “M”

πRS←−
r va

b1 “M” 3
b2 “M” 2

concat←−

tmp
false

b1 false
false
true
false

b2 true
false
false

from DB1←− . . .

The difference between PCA and the classical semi-join is in the use of order for
matching the tuples from the joined collections.
The result of the join is assembled by a simple concatenation of the input

and the result shipped back from the remote Amos II mediator or data source.
Since the operations are order preserving, concatenation can be used instead of
a more expensive join.
Table 1 illustrates an execution of PCA between the results of query frag-

ments QF1 executed at DB1 and QF2 executed at DB2. The input is a collec-
tion of tuples with columns va and r produced by the execution of the fragment
QF2, and a collection of tuples produced by the execution of QF1 containing
va values and keys of table tB. The fragments are joined over va and the result
is represented by column r. Since there are no result columns that are shipped
back from DB1 to DB2, a boolean value is used to identify if the tuples produced
by QF1 have a matching va value in the tuples produced by QF2. We assume
that the fragment at DB1 produces the following table:

va

tB va
ib1 4
ib2 5
ib1 6

where ibk denotes a key of tB. The example illustrates the execution over 2
bulks of size 4, named in the example as b1 and b2. In the example, first the
projection strips the r values from the input bulks since they are not used in

Evaluation of Join Strategies for Distributed Mediation 313

the join. Next, the bulks are shipped to DB1 where the query fragment QF1 is
executed. The resulting set of boolean values is shipped back to the mediator.
The concatenation shown in the example is a special case where the executed
function does not return any data used later in the query processing. In this case,
the concatenation of the returned boolean values and the input tuples actually
filters the tuples for which the result is true. The final projection removes the
va values to form the requested result.
The PCA has the advantage of improving the naive implementation, while

preserving the simplicity of the processing. All operations have constant complex-
ity per data item and therefore cheap to perform. Nevertheless, it is inefficient
when there is a large percentage of duplicates in the input bulk(s), an expensive
query fragment, and/or expensive communication between the servers involved.
The traditional semi-join algorithm (SJA) [2] improves the performance of

the PCA when duplicates are involved. After projecting the input bulk over the
columns used as input to the remote query fragment, SJA performs duplicate
removal before shipping the data. When there is a large percentage of duplicates
within the bulks, this reduces both the size of the shipped data and the number
of executions of the remote query fragment. The result of the query fragment
execution is shipped back to the calling server where, as in the previous algo-
rithm, the shipped tuples are concatenated to the result of the query fragment
invocation. Next, an equi-join is performed over the input bulk and the result of
the concatenation. Here, because of the duplicate removal it is not possible to
match the tuples by their rank in the bulk.
The SJA benefits from avoiding shipping duplicate entries over the network

and executing the query fragment for them, but only for duplicates within a
single bulk and with the added costs of the two additional phases of duplicate
removal and equi-join.
To avoid duplicates over different bulks, the algorithm in Fig. 2, SJMA (semi-

join with materialized index algorithm) extends SJA by saving the index built
up for the bulks of the outer collection between executions for different bulks.
The shipped data is passed through an additional anti-join over the set already
pruned from duplicates and the temporary index. If a tuple is in the index, it
has already been processed in some of the previous bulks. The remaining tuples
are shipped to the remote site for query fragment execution as before. Next, new
entries are added to the index from the returned result. Finally, a join between
the input bulk and the index is performed as in the SJA. A comparative execution
of SJMA in the same scenario as for the PCA example is presented in Table 2.
Here, the second bulk is reduced to one tuple before shipping to DB1, since the
anti-join eliminates the two tuples present in the first bulk.
The size of the index in SJMA is proportional to the number of distinct

tuples in the outer collection. The algorithm can be used as a filter even in the
case when the whole index is too big to fit in the memory. When the memory
limit is reached, new entries replace old entries using some replacement criteria.

314 V. Josifovski, T. Katchaounov, and T. Risch

. . . .

. .
 .

.
Pr oject Duplicate

Removal
Anti-semi-join

Deproxify
 OI Ds

Project Equi-j oin
Update
I ndex

Proxify
OIDs

Temp.
Index

Join Operator Join r equest handler

Materialized bulk from the input

output

1 2 3 4

891011

Destr ingify
OIDs

Str ingify
 OIDs

5

7

Execute
 SF

6

Fig. 2. Streamed semi-join with a temporary index

Table 2. Example execution of the semi-join with materialized index algorithm

r va
“T” 5

b1 “V” 4
“K” 5
“M” 3
“L” 5

b2 “M” 2
“G” 4
“Y” 4

πKS−→

va
5

b1 4
5
3
5

b2 2
4
4

dup.
rem.−→

va
5

b1 4
3
5

b2 2
4

anti
semi
join−→

va
5

b1 4
3

b2 2

to DB1−→ . . .

r
b1 “M”
b2 “M”

πRS←−
r va

b1 “M” 3
b2 “M” 2

equi-
join←− �

index
update←−

tmp
false

b1 false
true

b2 true

from DB1←− . . .

SJMA does not add substantially to the cost of the SJA, while it offers the
possibility for performance improvements. In fact, it reduces to the SJA in the
case when the whole input is contained in only one bulk.

3.2 Ship-In Join Method

Unlike the previous two algorithms where the remote query fragment is executed
using parameters from the tuples of the intermediate result, with the ship-in join
method no intermediate result is shipped to the remote site. Consequently, the
query fragment is executed without parameters. This has two effects:

– Since the remote query fragment is executed once only, it may reduce the
number of accesses to the data source.

Evaluation of Join Strategies for Distributed Mediation 315

– The result size may increase since instead of a semi-join of the query fragment
result and the intermediate result, the whole query fragment result is sent
to the client to be joined there.

While the reduction of the data source accesses may improve the performance,
the increased volume of the data shipped and stored in the mediator are the
possible performance disadvantages of this algorithm. The algorithm is inappli-
cable when the query fragment result is too big for the mediator resources. This
is also the case when the query fragment contains predicates representing meth-
ods/programs in the data source that require parameters to be supplied from
the mediator. With the ship-out method, when there are sufficient resources, the
materialized index can persist between the execution of the algorithm for differ-
ent bulks, reducing further the query processing time. This case corresponds to
hash join algorithms where an index is built for the inner relation.

4 Performance Measurements

In the two scenarios used in the experiments the data source was an ODBC
data source. We performed experiments using both Microsoft Access ODBC and
IBM DB2 ODBC drivers with no significant differences in conclusions. Where
not specifically indicated, the measurements use the Access ODBC driver.
In the first scenario, we deployed an Amos II server at the same workstation

as the source. This server wrapped the source and exported it to the client medi-
ator running on another Windows NT workstation. We present test results using
this scenario and two different network connection speeds between the worksta-
tions: a 115Kb ISDN connection over the public telephone network in Sweden;
and a 100Mb departmental LAN. We also varied the speed of the workstation
that hosted the client mediator. In one experiment we used a 233 MHz, 32Mb
RAM PC, and in the other a 600 MHz, 256Mb RAM PC. In the second sce-
nario the data source was accessed directly from the client mediator through the
ISDN network connection using DB2’s ODBC interface. In this case the joins
are executed one tuple at a time. We also compared the effects of different bulks
sizes on the query execution time.
The inner collection is obtained from a table stored in the ODBC data source.

The table consisted of three columns: an integer primary key ID, and two tex-
tual columns A and B of fixed length strings with sizes 10 and 250. The outer
collection was stored in the client mediator, where it simulated an intermediate
result. During the execution, the outer collection is bulked and streamed into
the join algorithm one bulk at the time. Both the outer and inner collection had
the same attributes.
Figure 3 shows the results of the execution of the three join algorithms from

the previous section using a 233 MHzWindows NT workstation as a client and an
ISDN connection to the server computer. The X axes in the graphs show the sizes
of the outer collection in percentage of the size of the inner that always contains
30000 tuples; the Y axes marks query execution times in seconds. The outer
collection is scaled from 17% to same the size as the inner. In these experiments

316 V. Josifovski, T. Katchaounov, and T. Risch

0

50

100

150

200

250

0 20 40 60 80 100

project-concat
ship-in
SJMA

(a) Whole result

0

20

40

60

80

100

120

0 20 40 60 80 100

project-concat
ship-in
SJMA

(b) First 1024 tuples

0

50

100

150

200

250

0 20 40 60 80 100

project-concat
unique
20%
50%
75%
all same

(c) SJMA with different percent-
age duplicates

Fig. 3. Execution times when varying the outer collection size, ISDN, 233 MHz PC

the outer collection contained 20% duplicates. Each tuple of the outer matches
exactly one tuple of the inner. The graph on the left compares the execution
times for a complete evaluation of the join operation. The graph in the middle
compares the times to emit the first 1024 tuples. This coincides with he bulk
size used to execute the query. The graph on the right compares the SJMA with
PC for different percentages of duplicates in join columns of the collections.
We first analyze the execution times for the complete join operation. Since

the inner collection has constant size, the time spend in the Amos II server of
the inner and the network time are constant for the execution of the ship-in algo-
rithm. The only increase of execution time is noted in the client: from 8 seconds
for a 5000 tuple outer collection, to 16 seconds for a 30000 tuple outer collection.
This is due to the increase of the number of index searches. Nevertheless, this
increase in negligible in comparison to the total query execution time.

Evaluation of Join Strategies for Distributed Mediation 317

Table 3. Query execution time distribution, ISDN, 233 MHz PC

Time distribution
Client Server Source Access Net.

Ship-in 10% 1% 4% 85%
Ship-out, PC 5% 3% 43% 49%
Ship-out, SJMA 7% 3% 42% 48%

The ship-out algorithms show performance that is linear to the size of the
inner collection, outperforming the ship-in algorithm until the outer is about
50% of the inner. SJMA performs better than the PC algorithm. Figure 3c com-
pares the algorithms for different percentages of duplicates. The PC algorithm
performs exactly the same, regardless of the data distribution. SJMA improves
as the number of duplicates of the join columns increases. Note that even with-
out duplicates, the performance difference of these two algorithms is small. This
shows that in main-memory based mediator systems, the penalty of the addi-
tional steps of the SJMA is low.
Table 3 shows the portions of the time spent in the individual system compo-

nents. The data source access time includes the time spent in the ODBC interface
and the data source. The main portion of the execution of the ship-in algorithm
executed over ISDN is spent on shipping the inner to the client side, which was
consistently around 85% of the query execution time. We can also note that,
due to the main-memory architecture of Amos II, the index build time in the
client is relatively small, around 5% of the whole execution time. The first tuple
is not emitted until the index for the inner is finished, which is after 95% of the
processing time. This makes this algorithm unsuitable for top-N queries.
The ship-out algorithms spend less time on the network, but more in access-

ing the data source. They also emit the first tuple much faster than the ship-in
algorithm (Fig. 3b). The experiments show here the time to emit the first 1024
tuples. When the bulking factor is less than 10, the first tuple is emitted af-
ter less than a millisecond. Furthermore, the bulking factor also determines the
smoothness of the flow of the results. Smaller bulking factor will allow smoother
flow of the results to the application.
Table 4 compares the effect of the distributed Amos II architecture for the

ship-out algorithms. First we used SJMA to access a remote IBM DB2 data

Table 4. Direct access to an ODBC source and through Amos II servers

outer/inner
Inner size/outer size 17% 33% 66% 100%
through Amos II, all tuples 58 115 245 358
ODBC direct, all tuples 2769 5059 8552 12799
through Amos II, B=1024, first tuple 14 15 15 15
through Amos II, B=1, first tuple 0.7 0.72 0.68 0.71
ODBC direct, first tuple 1.1 0.9 1.2 1.04

318 V. Josifovski, T. Katchaounov, and T. Risch

Table 5. Query execution time distribution, 100Mb LAN, 233MHz PC

Time distribution
Client Server Data source acc. Net.

Ship-in 67% 7% 22% 4%
Ship-out, PC 8% 5% 86% 1%
Ship-out, SJMA 12% 5% 82% 1%

source using DB2’s ODBC interface over an ISDN connection. Due to the au-
tonomy of the data sources we assume that it is not feasible to materialize
intermediate results in the sources. Even if this was possible, due to the disk
based nature of the DBMS, we could not expect a comparable execution time as
with the main-memory storage used in Amos II. Therefore the join must be per-
formed one tuple at a time over the remote ODBC. However, when the source is
accessed through an Amos II server located on the same computer as the source,
the join between the client and server mediators is executed in a bulked man-
ner, using only the local ODBC connection between the server mediator and the
source, leading to performance improvements of orders of magnitude.
The time to emit the first tuple when the bulking factor is 1024 is notably

greater when the processing is done through an Amos II server. This actually
represents how long it takes to emit the first 1024 tuples. If fewer tuples are
required, a smaller bulking factor leads to better performance for the top-N
queries when an intermediate Amos II server is used. Even when the bulking
factor is 1 we can note that the use of an intermediate Amos II yields better
performance than accessing the source directly, due to communication protocol
differences. To achieve the best performance, the bulking factor should match
the number of tuples required immediately.
Figure 4 and Table 5 illustrates join execution time on the same client com-

puter connected with a 100Mb fast LAN to the data source. We can note that
the curves have similar shapes, while the scale is different. The network cost is
eliminated for almost all of the algorithms. In this executions most of the time
is spend in the data source (parameterized and unparameterized query execu-
tion) and in the client for the ship-in algorithm (index build-up and join). We
can also note that when the whole join result is required the ship-in algorithm
outperforms the ship-out in almost all the cases. When the first-N tuples are
required, however, the ship-out algorithms are more efficient. For the first 1024
result tuples the difference is about 50%. If the number of requested result tuples
is smaller, the difference can be a couple of orders of magnitude. We have also
varied the client computer from a workstation to a notebook. We noted that
the return time for the first tuple is almost constant for the ship-out algorithms
regardless of the power of the client computer. This can be explained by the fact
that in the case of ship-out algorithms, the server uses the larger share of the
workload than with the ship-in algorithms.

Evaluation of Join Strategies for Distributed Mediation 319

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

project-concat
ship-in
SJMA

(a) Whole result

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100

project-concat
ship-in
SJMA

(b) First 1024 tuples

Fig. 4. Join execution times for different outer collection sizes in percentage of the
inner size, 100Mb LAN, client 233MHz PC

5 Related Work

The System R* project [14] is one of the first distributed database prototypes.
In System R*, both ship-in and ship-out strategies are examined. In [15] a disk-
based ship-in strategy (named ship-whole) is implemented with a disk based
b-tree index. This type of implementation leads to considerably different results
where the ship-out method always outperforms ship-in.
Disk-based semi-join algorithms are described in [1,2,5,14]. A sort-merge join,

bloom filter semi-join, and sort-based semi-join are evaluated in [15] for a dis-
tributed database environment. A bloom filter phase can be added to the ship-
out algorithms described in this paper. Nevertheless, this would incur additional
query processing overhead and possibly shipping of some extra tuples of the in-
ner collection. Bloom filter strategies cannot be used with sources that cannot
enumerate the extent of the inner collection.
Most of the mediator frameworks reported in the literature (e.g. [7,16,19])

propose centralized query compilation and execution coordination. In [3] it is in-
dicated that a distributed mediation framework is a promising research direction,
but to the extent of our knowledge the results in this area are sketchy without
experimental support. The protocols for execution of joins between data in dif-
ferent sources are in most cases based on retrieving the data from the sources
and assembling the results in the mediator [16,19]. In the DIOM project [13],
a distributed mediator system is presented where the query execution is per-
formed in two phases: subquery execution and result assembly. The dataflow is
only from the sources to the mediator.
The Garlic mediator system [7] is the only mediator system known to us

that supports ship-out join strategies. The bind join in Garlic sends parameters
to the sources as single tuples of values. In Amos II the data sources are also
accessed one tuple at the time, but the distributed architecture allows for using
bulked protocols over high latency lines between Amos II servers to avoid most

320 V. Josifovski, T. Katchaounov, and T. Risch

of the processing cost. A Garlic wrapper that has two components, one local and
one remote, could achieve the benefits of the approach described in the paper.
Finally, join methods where bulk shipping is combined with hashing are not
applied in Garlic.

6 Summary and Conclusions

An efficient data integration system needs to be able to adapt to different envi-
ronments by using different algorithms. The algorithms presented in this paper
allow for balancing the workload between the client and the server, and for differ-
ent network use patterns that give wide range of options over different hardware
platforms.
The experimental results showed that for a complete query answer the ship-

in algorithms generally outperform the ship-out algorithms over fast networks.
Over slow networks and with very slow sources, the ship-out algorithms can give
orders of magnitude better performance than ship-in since ODBC over TCP/IP
calls are executed one tuple at a time while bulks of tuples are shipped between
the distributed mediators. For top-N queries where N is considerably smaller
than the result size, the ship-out algorithms with bulking factor N give the best
performance over all the range of hardware and network connections used in
the experiments. These outperform the ship-in algorithms by a few orders of
magnitude. Although the bulking factor greater than 1 provides benefits, too
large bulk sizes lead to reduced query execution efficiency.
In our environment, where the index operations are main-memory based and

relatively cheap, the penalty of SJMA (the Semi-Join with Materialized index
Algorithm) is small and it always performs nearly as well, or better than PCA
(the Project-Concat Algorithm). Nevertheless, PCA uses less memory and could
be much more efficient in memory-limited mediators. A compromise between
these two algorithm is the SJMA with a limited size temporary index that de-
generates to a SJA when the temporary index size is 0. Finally, if simplicity of
implementation is considered the PCA is the algorithm of choice.
Placing an mediator server close to the source allows for bulked execution of

the protocols that might change the query execution time by orders of magni-
tude, especially in networks with high latency. In cases when the sources lack
filtering capability, the mediator server can also locally filter the query fragment
result and reduce the communication cost even more.
A topic of our current work is a strategy to dynamically select between the

proposed algorithms during run-time. Statistics collected during the execution
can be used to determine if the default choice was the best one. Another open
issue is a method to determine the optimal bulking factor in a multi join query,
by taking in account the tuple sizes, join selectivities and the buffer pool size.

Evaluation of Join Strategies for Distributed Mediation 321

References

1. P. Apers, A. Hevner, and S. Yao: Optimization Algorithms for Distributed Queries.
IEEE Transactions on Software Engineering, 9(1), 57-68, 1983

2. P. Bernstein and D. Chiu: Using Semi-joins to Solve Relational Queries. Journal
of ACM 28(1), 25-40, 1981

3. W. Du and M. Shan: Query Processing in Pegasus, In O. Bukhres and A. El-
magarmid (eds.): Object-Oriented Multidatabase Systems. Pretince Hall, 449-471,
1996.

4. G. Fahl and T. Risch: Query Processing over Object Views of Relational Data.
The VLDB Journal, Springer, 6(4), 261-281, 1997.

5. P. Bernstein, N. Goodman, E. Wong, C. Reeve, J. Rothnie Jr.: Query Processing
in a System for Distributed Databases (SDD-1). ACM Transactions on Database
Systems (TODS), 6(4), 602-625, 1981

6. G. Graefe and W. J. MCKenna: The Volcano Optimizer Generator: Extensibility
and Efficient Search. 12th Data Engineering Conf. (ICDE’93), 209-218, 1993.

7. L. Haas, D. Kossmann, E.L. Wimmers, J. Yang: Optimizing Queries across Diverse
Data Sources. 23th Intl. Conf. on Very Large Databases (VLDB’97), 276-285, 1997

8. V.Josifovski and T.Risch: Functional Query Optimization over Object-Oriented
Views for Data Integration. Intelligent Information Systems (JIIS) 12(2-3),
Kluwer, 165-190, 1999.

9. V.Josifovski and T.Risch: Integrating Heterogeneous Overlapping Databases
through Object-Oriented Transformations. 25th Intl. Conf. on Very Large
Databases (VLDB’99), 435-446, 1999.

10. V. Josifovski and T. Risch: Query Decomposition for a Distributed Object-Oriented
Mediator System. To appear in J. of Distribued and Parallel Databases, Kluwer,
2001.

11. E-P. Lim, S-Y. Hwang, J. Srivastava, D. Clements, and M. Ganesh: Myriad: Design
and Implementation of a Federated Database System. Software - Practice and
Experience, Vol. 25(5), 553-562, John Wiley & Sons, May 1995.

12. H. Lin, T. Risch and T. Katchanounov: Adaptive data mediation over XML data.
To appear in J. of Applied System Studies (JASS), Cambridge International Science
Publishing, 2001.

13. L. Liu and Calton Pu: An Adaptive Object-Oriented Approach to Integration and
Access of Heterogeneous Information Sources. Journal of Distributed and Parallel
Databases 5(2), 167-205, Kluwer Academic Pulishers, The Netherlands, 1997.

14. G. Lohman, C. Mohan, L. Haas, D. Daniels, B. Lindsay, P. Selinger and P. Wilms:
Query Processing in System R*. In W. Kim, D. Reiner, D. Batory (eds.): Query
Processing in Database Systems, Springer-Verlag, 1985.

15. L. Mackert and G. Lohman: R* Optimizer Validation and Performance Evaluation
for Distributed Queries. In M. Stonebraker (ed.): Readings in Database Systems,
Morgan-Kaufmann, CA, 1988

16. F. Ozcan, S. Nural, P. Koksal, C. Evrendilek, and A. Dogac: Dynamic Query
Optimization in Multidatabases. IEEE Data Engineering Bulletin, 20(3), 38-45,
1997.

17. T. Risch and V. Josifovski: Distributed Data Integration by Object-Oriented Me-
diator Servers. To appear in Concurrency - Practice and Experience J., John Wiley
& Sons, 2001.

322 V. Josifovski, T. Katchaounov, and T. Risch

18. M. Roth, F. Ozcan and L. Haas: Cost Models DO MAtter: Providing Cost Infor-
mation for Diverse Data Sources in Fededrated System. 25th Intl. Conf. on Very
Large Databases (VLDB99), 599-610, 1999.

19. A. Tomasic, L. Raschid and P. Valduriez: Scaling Access to Heterogeneous Data
Sources with DISCO. IEEE Transactions in Knowledge and Data Engineering,
10(5), 808-823, 1998

	Introduction
	Background
	Algorithm Descriptions
	Ship-Out Join Algorithms
	Ship-In Join Method

	Performance Measurements
	Related Work
	Summary and Conclusions

