DATALOG | LABORATORIET
Inst for informationsbehandling
Uppsala universitet

1973-11-13

REMREC -
A program for

automatic recursion removal
in LISP

by Tore Risch

pLy

~1
(€]

Ny

1. Abstracts

It is well known that recursive functions are very common in LISP.
Recursive code is mostly the easiest to write and to analyse. How-
ever, situations often arise when it is preferable to let the com-
puter work with non-recursive functions. Examples of this are in
compiled code and on stack overflow. It is then very often possible
to remove recursion (at least partly) in the functions, without

therefore introducing stacks in the new code.

Remrec is a program, which automatically transfers some classes of
recursive LISP-functions into equivalent non-recursive ones, without

introducing stacks.

_—

2. Previous work

Earlier practical programs for recursive removal are the BEN-LISP-
compiler (4) and "'A system which automatically improves programs'
by Darlington and Burstall (2). Strong (2} has studied recursion

removal theoretically, but no implementations have been described.

3. REMREC

3.1 Recursion types

The type of recursion which REMREC can remove are divided into 7

classes, according to some simple schemes Iike

1f p(x) then r(x)
Ise h(... f(g(x))...)

g

f(x) = if
e

where the choice of h and the argument position in h where f appears

decides tHe recursibn type. The classes are:

R. Primitive recursion.
Scheme:
f(x) = if p(x) then r(x)
else f(g(x))

RCONS: REcursion under the last argument in functions which build

up list structures. (cons,append,list etc)

Scheme:
f(x) = if p(x) then r(x)
else h(g(x), f(g(x)))
where h is cons, append and others

RTIMES,RPLUS: Recursion under times and plus.

Scheme:
Like type RCONS, but h is plus or times, although f may appear

in any argument position in h.

RAPPEND,RNCONC: Reccursion under first argument to append and nconc.

Scheme:
f(x) = if p(x) then r(x)

else h(f(g(x)),q(x))
where h is append or nconc.

RFOA: Recursion under Functions with One Argument. This case has
been treated by Strong (3) page 3.
Scheme:
f(x) = if p(x) then r(x)
else h(f(g(x)))

where h is any function or nest of functicns each of which

has one non~constant argument.

Type R may be combined with any of the other recursion types.

REMREC can also handle recursion in nested conditicnal expressions,
functions with several arguments and some other more ccmpiicated

cases.

Often one function involves recursion of several classes, where
REMREC cannot remove both, but has to chcose. REMREC then removes
the recursion type that

1. appears the most frequently

2. usually generates the simplest non-recursion code.
In addition the user can direct REMREC to remove exactly the recur-

sion type he wants.

3.2 Methods used

REMREC works in two steps. During step 1 REMREC builds up an AND/OR-
tree which describes how and where the removable recursion appears in
the code. This '"recursion tree'' has the following properties:

1. The leaves are:

(a) Pointers to place in the code where '"legal'' recursion appears,

associated with markers for the recursicn type.

(b) Pointers to non-recursive branches in such conditional expres-

sions, where some other branch is recursive.

2. When OR-nodes appear it is possible to remove rccursion in several

ways.

3. The AND-nodes describe conditional expressions in a broad sensc.

{(cond, and, or and selectq-expressions)

Lk, There are also pointers with markers to other interesting places

in the code '‘on the way'' to a recursive call.
Example of a ''recursion tree'. Consider the LISP-function:

totreverse(x) == if null(x) then Vxﬁ"‘@
elseif atom (car(x))
then agpénd(totreverse(gg:(x)),
list(car(x)))
else append (totreverse(cdr(x)),

(:S list(totreverse(car(x))))

It has the ''recursion tree'':

(_mo)
® @)

value RAPPEND

®

RAPPEND

APPEND

LIST

@B RCONS

(REMREC can remove recursion under ''chains'' of function calls in

the last argument to append,list,conssnconcsrplaca and rplacd. In

the example we have a ''chain' of append and list)

A counter is associated with each recursion type. In the example
above the counter RCONS = 1 and RAPPEND = 2. During step 1 REMREC
also checks so that side effects will not prevent the recursion

removal.

During step 11 REMREC

1. Looks for the counter with the highest value, or (in case of a
tie) the one which appears first on a priority list. That counter

decides which recursion type shall be removed.

2. Cuts off those branches in the tree which are no longer of in-
terest. (E.g. ¥ in the example above). In the simplest case this
means that the unused branches in OR-nodes are cut off. After this
the tree contains pointers only to thc places in the code where

the code shall be changed.

3. Searches through the tree (preorder) and changes the code at all

nodes.

3.3 Use of REMREC

REMREC is constructed with the goal to be user friendly and that the
generated code shall be as efficient as possible, The appearance of
side effects can in many cases influence the recursicn removal. REMREC
therefore works in 4 modes, where the side effects are treated differ-
ently. Of these modes one is interactive, one is intended to be used at
calls from other programs and two are 'batch'-medes. in interactive
mode REMREC consults the user about side effcects at sensitive points.
The user can declare the functions with side effects. [mportant is that
the code, produced by REMREC will in all cases cive the same result as

the original ocne.

3.4 Examples of runs

Below there are examples of functions involvirng different recursion
types, to which REMREC has been applied. REMREC operates on the internal
LISP-representation for programs (S-expressions), but for readability

reasons the examnles are expressed in an Algol-like notation.

Recursion type R:

Original code:
even(1) == if null(1) then T

elseif null(cdr(1)) then NiL

else even(cddr(1))

After applying REMREC:
even(1) == proc (NIL

even: if null(1) then return(7)

elseif null(edr(1)) then return(NIL)

else begin 1:=cddr(1);

goto even;

end)

Recursion type RTIMES
Original code:
fak(n) == if n=0 then 1

cise fak(n-1) ¥ n;

After applying

REMREC:

fak(n) == prog((e0)

el:=1;

fak: if n=0 then return(e0)

else begin e0:=n%*el;

Recursion type

n:=n-1;
goto fak;
end)
RPLUS

Original code:

scount (x, 1)

After applying

scount(x, 1)

elseif x = car(1) then addl(scount(x,cdr(1)))

else scount(x,car(1)) + scount(x,cdr(1));

REMREC:

== prog ((EO)
E0:=0;

scount: if atom(1) then return(EO)

elseif x=car(1) then

begin E0:=addl(E0); 1:=cdr(1); goto scount

end
else begin E0 := scount(x,car(1)) + EO;
1:=cdr(1); goto scount;

end);
Recursion type RNCONC:
Original code:
reverse(x) == if null(x) then NIL

else nconcl(reverse(cdr(1)),car(1))

After applying REMREC:
reverse(x) ==prog((B2)
reverse: if null (x) then return(B2)

else begin B2:=cons(car(1),B2);
1:=cdr(1);
goto reverse;
end ;)

Recursion type RCONS:

Original code:
snitt(x,y) ==
if null(x) then NIL

elseif member(car(x),y) then cons(car(x),snitt(cdr(x),y))

else snitt(cdr(x),y)

After applying REMREC:
snitt(x,y) ==
prog((EO B1)
B1:=E0:=ggﬂ§(NlL,NlL);
snitt: if null(x) then begin rplacd(€0,NIL);

return(cdr(B1));
end

elseif member(car(x),y) then

begin rplacd(E0,cons(car(x),NIL)
Eo:=cdr(E0);
x:=cdr(x);

goto snitt;

end;

else begin x:=cdr(x);

goto snitt;

end)

L. Comparison with other programs

The BBN-LISP-compiler involves a simple recursion remover. It can

remove trivial recursion (type R).

The system made by Burstall and Darlington (2) handles more general
(and more difficult) cases than REMREC. it involves among others a
theorem prover and a pattern matcher. Each recursion type has:

1. A pattern which is matched against the actual function.

2. Some relations which shall be satisfied.
REMREC has two advantages compared to this system:

1. It works on full LISP, while (2) works on a subset.

2, Although the pattern method is quite general, some of the recur-
sion which REMREC can remove is very difficult to represent with
patterns. E.g. when recursion appears under nested function-calls,

or in several branches of a conditional expression.

5. Desirable developments of REMREC

It is relatively easy to add code to REMREC so that also other types
of recursion than those mentioned above can be removed. Today REMREC
removes the recursion types (except recursion under EIEE) which |
think are the most common in LISP and whose iterative code is not too

complicated. The following developments are desirable in REMREC:

1. Recursion under Prog, and other recursion types ought to be added

in REMREC. E.g. the type Strong (1) was given on page 8.

2. The treatment of side effects should be more advanced. Today the
user has to tell the systems the functions (sometimes forms)
which have side effects. In a later version REMREC could itself

find significaht side effects in many cases.
3. REMREC ought to be able to remove recursion in systems of functions.

L. REMREC could be a part of a bigger system for function improv-
ment and manipulation which would also contain REDFUN (3) and
other functiofi manipulation programs. In such a bigger system
some improvmefits are very easy to add directly in REMREC, E.g.,
changing of recursion under cons to recursion under rplacd ((2)

calls that "run-time garbage collection').

10
References

1. H.R. Strong
'""Flowchartable Recursion Specifications:'
IBM Thomas J. Watson Research Center,
memo No. RC3322 (April 1971)

2. J. Darlington and R.M. Burstall

"A System whichAutomatically Improves Programs''
1JCAL, 1973

3. Erik SandeWali, Anders Haraldson, Arne Tengvald
"Documentation of the REDFUN package'
(July 1971)

L. D.G. Bobrow et al
BBN-LISP TENEX reference manual
Bolt Beranek and Newman inc.
Cambridge, Mass. (July 1971)

11

Appendix: Efficiency messurements

| have made a number of tests to compare the execution times for some
simple LISP-functions before ahd after applying REMREC. The tests were
made at BBN-Uppsala-LISP in October 1973.

The fuhctions | have tested are a sort of ''type' functions for each
recursion type. The timings therefore ought to be some of the most
advantageous for REMREC.

First there follows a list of the definitions of the tested function
before and after applying REMREC. After that the execution times are
shown. (The numbers within parenthesis refer to the execution time

tables.

Type RCONS (1)
Original code:
copyl(x) == if null(x) then NIL

else cons(car(x),copyl(cdr(x)));

After REMREC:
copyl(x)

prog((B E)
B:=E:=cons(NIL,NIL);
copyl: if null(x) then begin cdr(e):=NIL;

return(cdr(B)); end
else begin cdr(E):=cons(car(x),NIL);
x:=cdr(x);

goto copyl' end; end;);

Type RPLUS (2)

Original code:

= if null(x) then 0
else addl(length(cdr (x)));

length (x)

After REMREC:
length(x) ==prog ((sum)
SUM:=0;
length: if null(x) then return(sum)
else begin SUM:=addl(SUM) ; X:=cdr(x);

goto length; end;);

Type RNCONC (3)

Original code:

rev(x) == if null(x) then NIL

————

else nconcl(rev(cdr(x)),car(x))

After REMREC:
rev(x) == prog ((B)

rev: 1f null(x) then return(b)

else begin B:=cons(car(x),B); x:=cdr(x);

goto rev; end)

Type RNCONC (4)

Original ccde:

rev(x) == if null(x) then NIL

else nconc(rev(cdr(x)),cons(car(x)))

After REMREC:
rev(x) == prog ((B)
rev: if null(x) then return(b)

else begin b:=nconc(cons(car(x)),L);

x:=E9£(x); goto rev; end)

Type RFOA (5)

Original code:

length(x) == if null(x) then 0

else adda(length(igf(x)))

After REMREC:
length(x) == prog((B E)
E:=0;
length: if Egll(x) then begin B:=0; goto L2; end

else begin E:=addl(e); goto length; end

L2: if zerop(e) then return(B)
else begin B:=adda(B); E:=subl(E); goto L2; end)

Definition of adda:
adda(x) == addl(x)

13

Execution timinas:

Each function is tested in 4 ways: Before/after applying REMREC and

before/after compiling.

At each test the time to execute the function a number of times (mostly
5) in a loop is noted 3 times. The number within parenthesis below show
the medium value of the 3 timings. The standard deviation is given within

parenthesis. This method is used to obtain an approximation of the timing

error.

UNCOMPILED COMPILED
(1)
Before applying RR 2696 290 (7)
After applying RR 2372 (35) 117 (3)
Time saving: 12% 38%
(2)
Before applying RR 5196 (62) 293 (14)
After applying RR 3527 (132) 96 (4)
Time saving 32% 67%
(3)
Before applying RR 3098 (18) 650 (12)
After applying RR 1974 (74) 96 (13)
Time saving 36% 85%
(4)
Before applying RR 3068 (79) 499 (6)
After applying RR 2259 (3k) 252 (8)
Time saving 26% 49%
(5)
Before applying RR 5091 (162) 592 (28)
After applying RR 7297 (126) 434 (15)

Time saving -43% 26%

