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Abstract
     Known parallel DBMS offer at present only static partitioning
schemes. Adding a storage node is then a cumbersome operation that
typically requires the manual data redistribution. We present an
architecture termed AMOS-SDDS for a share-nothing
multicomputer. We have coupled a high-performance main-memory
DBMS AMOS-II and a manager of Scalable Distributed Data
Structures (SDDS) into a scalable distributed system. SDDS provides
the scalable data partitioning in distributed RAM, supporting parallel
scans with function shipping. AMOS-SDDS couples both systems
using essentially the AMOS-II foreign function interface. The
scalability that appeared from our experiments abolishes the
cumbersome storage limits of a single site RAM DBMS technology.
Its RAM query processing and scalable data partitioning are an
improvement over the current parallel DBMSs technology. We validate
AMOS-SDDS architecture by experiments with distributed nested
loop join queries over a file scaling up to 300.000 tuples. It includes
performance study of speed-up and scale-up characteristics. The results
encourage the use of SDDS for modern high-performance database
systems.
Key words: Multicomputer, scalability, distributed data
structures, RAM database systems.
1 Introduction
     Collections of popular PCs and WSs connected through
typical 10/100 Mb/s networks became a standard. The
concept of (network) multicomputer emerged to designate such
configurations. A multicomputer offers potentially storage
and processing capabilities rivaling a supercomputer at a
fraction of the cost. Research on multicomputers became
therefore popular.
     Scalable Distributed Data Structures (SDDSs) are data
structures specifically for multicomputers, [10]. They aim at
new storage and processing capabilities. An SDDS is
partitioned over some server nodes. Applications
manipulate data from client nodes. The address
computations do not involve any centralized directory. Data
are typically stored in the distributed main memory
(DRAM). An SDDS may easily handle many GByte files,
accessible in a fraction of the disk access time. An SDDS
scales to new sites through splits of those that fill up. Splits
are transparently for the applications. All SDDSs support
the key searches, some offer the range searches or multikey
searches, and all provide also non-key parallel scans. For the
latter capability, the client ships a function with the selection
predicate or parameters. The servers return the selected
records in parallel.
     Several SDDSs are known. In particular, the LH*
schemes provide the scalable distributed linear hash

partitioning, [8], [10]. Likewise, the RP* schemes provide
the scalable distributed range partitioning, [4], [11], [18].
Several prototypes have implemented selected SDDSs. The
SDDS prototype that we design at CERIA is the most
extensive such system, to the best of our knowledge. It runs
on Wintel multicomputers and is designed for any SDDS.
At present, it offers several variants of LH* and RP*
schemes. Some are the high-availability schemes that
tolerate multiple server failures [9].
     High-performance database management uses basically
two technologies. One is the RAM database, e.g., of the
well-known Object-Relational DBMS AMOS-II [17]. A
RAM database offers best access performance. It however
of limited size and scalability, bound by a single node RAM
capacity, usually two GBytes at present. AMOS II therefore
is configurable as a distributed multi-database system where
each node also may wrap external data sources [16].  In the
experiments reported here we use only the single database
AMOS-II configuration.
     Another technology is the parallel database, typically on a
share-nothing multicomputer or supercomputer (also often
called now switched multicomputer). This technology allows
for large sizes. It is however at present disk based; hence the
database access is typically much slower than to a RAM
database. The scalability is also limited. Known DBMS offer
at present only static partitioning schemes at a few dozens
of sites at most. Adding a storage node is then a
cumbersome operation that typically requires the manual
data redistribution. See the manuals of DB2 DBMS offering
hashing partitioning and, e.g., of Non-Stop SQL for range
partitioning.
     Scalability and high-performance, including the access to
an external data repository, are major goals for a database,
[2], [3], [5], [6], [7], [12]. To experiment with the merge of all
these technologies, we have coupled single-site AMOS-II
and SDDS into a scalable distributed system. AMOS-II is
for SDDS an application among others at the client site. It
provides its object-relational declarative language AMOSQL
to the applications. SDDS serves to AMOS-II as an external
scalable RAM data storage and access manager. Data
partitioning and its dynamic evolution are hidden from the
users of AMOS-II. The database may reach sizes much
larger than for a single site AMOS-II.
     We have termed the prototype AMOS-SDDS. The
coupling architecture on the client site should make AMOS-
II and the SDDS manager capable to efficiently interface.
This implies efficient function shipping, as well as effective
return of possibly a lot of data retrieved by parallel queries.
The SDDS server should in turn be made capable to



evaluate the received functions. No SDDS prototype ever
experimented with such capabilities.
     Our solution is crucially founded on the new capability
of an object-relational DBMS, with respect to a relational
DBMS, usually termed foreign (external) functions (routines). A
foreign function extends the basic capabilities of the DBMS
and is accessible to the queries. AMOS-II was among first
systems providing a foreign functions interface.  It remains
the only RAM DBMS with this capability, to the best of our
knowledge.
     In AMOS-SDDS, the client AMOS-II interfaces the
SDDS services, i.e., of the SDDS client, through foreign
functions. The SDDS client ships out the functions
produced for the servers. To evaluate those, each SDDS
server uses at its site also an AMOS-II, termed server
AMOS-II. That one also uses the foreign function interface.
It requests through those the services of the SDDS server
(i) to get the local data and (ii) to ship back the filtered
results to the client.
     Below, we present the architecture of AMOS-SDDS. We
describe the processing of the queries and the coupling
technology between the SDDS clients and servers and the
AMOSes. We show experimental performance measures,
using queries with selections, projections, joins and
aggregate functions as the benchmark. The join queries over
distributed data are especially well-known as difficult for the
efficient processing, [1], [14]. The experiments refine basic
design issues that do not seem decidable on through the
theoretical analysis alone.
     The results prove the validity of our design. AMOS-
SDDS appears very efficient. In particular, it may process
faster volumes of data that AMOS-II alone could still
handle. The design choices that appear should also help the
future technology of the scalable high-performance DBMSs
in general.
     Section 2 recalls principles of an SDDS. Section 3
presents AMOS-II. Section 4 introduces the AMOS-SDDS
architecture. Section 5 presents the performance study.
Section 6 concludes the paper and presents future research
directions.
2 Scalable Distributed Data Structures
     An SDDS is a collection of records constituted each
from a key and some non-key data.  Records are stored at
SDDS servers. The server’s storage space is called a bucket.
Buckets and servers are numbered 0,1…  The SDDS is
initiated as bucket 0. Inserts that overflow the file trigger
bucket splits. Each splits appends a new bucket that
receives about half of records from the split bucket.
     An application searches, inserts and updates SDDS
records from the SDDS client site. To address the servers,
each client has the image of the actual file.  The image maps
each key to a bucket address, typically through a linear hash
function or an index. The image may also contain a
multicast address shared by all the buckets. This address is
especially for the queries to non-key data. Such queries
translate typically to parallel scans.

     Initially, the image contains bucket 0 only. A current
image may be inaccurate, as SDDS splits are not posted
synchronously to the clients. A client may send a key search
or an insert etc. to an incorrect server. Each server checks
through its checking algorithm whether it is the correct one
for the received query. If not, it forwards the query to
another server determined though the forwarding algorithm.
The correct server that finally receives the query sends back
to the client the Image Adjustment Message (IAM). The IAM
allows the client to adjust its image so that at least the
addressing error that triggered the IAM does not get
repeated. The IAMs make images to follow the evolution of
the file state, less or more adequately.
     The client that sends out a parallel scan, through
multicast instead of a series of unicast messages, ends it up
through some termination protocol. A probabilistic termination
occurs when no reply message comes after some reasonable
time-out. One tunes the time-out to reasonably guarantee
that all servers that should reply do it. This depends on the
SDDS size, server and network speeds etc. A deterministic
termination occurs in contrast only when all the servers that
should reply did it. The deterministic termination protocols
are SDDS specific.
     For AMOS-SDDS prototyping, we use the RP* scheme
for scalable distributed range partitioning. Like in a B-tree,
records in an RP* file are lexicographically ordered
according to their keys. RP* supports efficiently the range
queries. Each bucket has its range defined in its header by
two values λ and Λ called the minimal key and the maximum
key. A bucket may contain key c iff λ < c ≤ Λ. Bucket 0 has
the initial range of (-∞ , + ∞ ). It splits into two buckets
when the number of records to store exceeds the bucket
capacity of b >> 1 records. Bucket 1 is then appended and
receives the higher half of the bucket 0. This process
iterates for every bucket that overflows when the file scales.
At any split, if c denotes the corresponding median key,
after the split the range (λ,Λ] of split bucket decreases to (λ,
c ], while new bucket gets range (c, Λ]. This process creates
and maintains the range partitioning.
3 AMOS-II DBMS
      AMOS-II is a distributed RAM multi-database system
where one can choose between setting up wrappers for
external data sources or storing data locally in the RAM
databases. For this experiment, we only use the RAM
storage manager and OO query processor of AMOS-II, i.e.,
the single site AMOS-II configuration [15], [17]. AMOS-II
offers a declarative query language AMOSQL that can be
embedded into C, Java, and Lisp.  AMOSQL uses the
object-relational paradigm where data are objects whose
values are functions. A relational table typically correspond
to an object whose OID is the key and attributes are
function values. An external program interfaces AMOS-II
using the call-level functions in two ways:
• The callin interface. Especially, the a_execute function
dynamically executes an AMOSQL query.



• The callout interface. AMOS-II calls in this way the
foreign functions  (routines). The a_emit function allows the
external program to pass the results (tuples) back to AMOS-
II for further query processing or storage.
     Foreign functions through the callout interface extend the
manipulation capabilities of AMOSQL for specific user
needs. One can develop these functions in C, Java, or Lisp.
4 AMOS-SDDS Coupling Architecture
     We refer to the coupled AMOS-II and SDDS client as
AMOS-SDDS client. Likewise, an SDDS server coupled with
server AMOS-II becomes the AMOS-SDDS server.  Figure 1
presents the overall AMOS-SDDS coupling architecture.
Figure 2 shows the query processing steps.
     SDDS clients and servers constitute for AMOS-SDDS
clients and servers a scalable distributed communication
platform. These handle all the messaging and data
exchanges between the sites. The SDDS servers constitute
the scalable distributed data storage. The user or application
calls AMOS-SDDS at the client site. An AMOS-SDDS
query can be an SDDS query requesting some records, e.g.
an RP* range search. SDDS client processes such queries
directly. Alternatively, the AMOS-SDDS query can be an
AMOSQL query. The user specifies a query interactively.
The application uses the callin interface through the a_execute
function. These queries go to the client AMOS-II. A query
may address local data cached on client AMOS-II or
external data in an SDDS file seen then as some AMOS-II
data.  A record basically corresponds to one tuple whose
OID is the RP* record key. The function values constitute
the other attributes stored as non-key fields in some internal
format.
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 Figure 1. AMOS-SDDS Overall Architecture
     The SDDS file is addressed through foreign functions
and the callout interface. The user is aware that some data to
address are external to local AMOS-II. The query
formulation does not depend, however, on their actual
distribution and scalability. Those are transparent to
AMOS-SDDS user.
     A ship function is a foreign function to external data, an
SDDS file specifically. It ships some function (query and/or
parameters) to servers.  This is an SDDS query with,
perhaps, an AMOSQL query within. The SDDS client
expedites any such query. The server uses the AMOSQL
query, if present, to locally filter the data. One invocation of
a ship function at the client may loop over several function

shipping’s to the servers and returns of partial results to the
client.
     The client sends out an AMOS-SDDS function with an
AMOS-II query through a procedure termed Send-Amos and
that with an SDDS query through Send-SDDS,  Figure 2.
They communicate with the server through different
communication ports. The messages basically use unicast or
multicast UDP messaging. An AMOS-SDDS server that
receives an SDDS query processes it by the SDDS server as
usual. Upon receiving an AMOSQL function in contrast,
the server locally calls-in the server AMOS-II. The server
AMOS-II internally calls-out the SDDS server again,
perhaps multiple times, for the local bucket scan and record
delivery. It uses for this purpose again specifically designed
server foreign functions. The server AMOS-II filters the
records. It returns those that satisfy the query to the SDDS
server for the return to the client. The result is assembled in
an AMOS-II scan, which can contain several tuples. The
SDDS server copies with some reformatting the results in
scan into its communication buffers. It then sends the
buffers to the SDDS client using a TCP connection.
     The SDDS client assembles the records received from
the servers. It performs the deterministic termination
protocols to detect the end of the data shipping. It also
extracts the values in the records. These are pipelined back
to client AMOS-II using the a_emit function. The pipelining
occurs simultaneously to the reception processing. Client
AMOS-II performs eventually post processing and makes the
selected data available to the application.
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 Figure 2. AMOS-SDDS Query Processing
     As it appears, the AMOS-SDDS clients and servers use
SDDS clients and servers as scalable distributed
communication platform.  The SDDS servers constitute
also the scalable distributed data storage. Both roles require
AMOS-SDDS client to decompose the AMOSQL query
into subqueries suitable for the scalable distributed
processing. This includes especially the efficient data
communication and parallel use of the servers. At the client,
the subqueries are basically managed by the ship functions.
There are typically many ways to decompose a query in this
way.  Likewise, there are many ways to set up the execution
of a subquery at the AMOS-SDDS servers. Finally, there are
numerous choices for the communication. All these choices
constitute the core issues for the AMOS-SDDS design.
They especially concern the ship functions, the server



foreign functions, and its overall call-in algorithmic. These
are obviously complex issues. We discuss below those we
have faced for the foreign functions implementing the
benchmark query.
5 Performance analysis 

5.1 Rationale
     The implementation of the AMOS-SDDS required
several design choices. To review some, first, at the
communication level, one should decide whether to pipeline
records between the sites as soon as produced, or to buffer
them to send several in a single message. The latter issue
opens that of best buffer sizes. Both issues, but especially
the former, often open also that of choice between UDP
and TCP/IP messaging. Next, the record format for the
tuples communication should be chosen, especially one has
to decide whether to use variable length fields. If the servers
differ by their CPU speeds, the bucket sizes should differ
for the load balancing as well. If the query contains a
distributed join, one has to choose a strategy for its
evaluation.  A distributed nested loop join subquery may
ship at once several (how many?) values of the join attribute
for the bucket scan. It may, or may not, be effective to sort
the values to send out at the client. One trades here the
halving of the server scan time against the additional sort
time at the client.  Also, one may use either the
deterministic or the probabilistic termination for the scans.
For the latter, one should optimize the timeout.
     At the server side, one should architect the AMOS-II
subquery processing. It generally divides between the server
AMOS-II and the AMOS-SDDS server, especially within
the foreign functions. Many choices exist in particular for
distributed joins. The comparison between the tuples gotten
from the client and those local to the server for a distributed
nested loop evaluation, may be done on the one hand
entirely by the foreign function. Another strategy is to
import all the tuples received and stored locally into server
AMOS-II and then perform the join by this system.  This
strategy implies additional importation cost, but may be
more efficient anyhow, since AMOS-II is optimized for join
processing. In particular, the importation may create an
index on the join attribute, speeding then up the
computation.
     It did not appear generally that the discussed and other
related design choices could be made on the theoretical
basis only. Furthermore, it did not seem possible to
determine in that way, whatever could be the choice, the
overall efficiency of AMOS-SDDS system. This concerns
especially the scalability analysis. Both its components
AMOS-II and SDDS are highly complex software. The
coupling obviously adds-on on that. In particular, there
does not seem to be any easy theoretical way to measure the
efficiency of the call-in and call-out coupling. In brief, the
experimental performance analysis of such systems is a
must.
     Probably best approach to the experimental performance
determination is to use some complex benchmark data sets
and queries. While many are well known, it does not seem

any benchmark exist yet for our purpose. We have designed
therefore a suitable benchmark on our own. The goal was to
realize reasonably complex typical database operations. We
have designed the queries with a quite selective join
described below.  We have heavily experimented the system
performance using the benchmark under various conditions.
5.2 Benchmark data set and queries
     The benchmark data were tuples in table Person (ssn,
name, city). The ssn values are consecutive integers from 1
to 300,000. Name and City are random char strings of
variable length. We have populated the table with 20,000 to
300,000 tuples, depending on the experiment. For the
reference performance measures below concerning AMOS-
II alone, the table was created entirely within this system.
For the experiments with AMOS-SDDS it was set up as an
RP* file at one or more servers. The ssn value was used as
the partitioning key. The record size was then 25 bytes on
the average.
     The benchmark queries basically requested couples of
persons living in the same city. For the partitioned RP* file,
records of such persons were likely to be at different
buckets, as the distribution of the records according to the
city or name was random. There were fifty different cities
generated so that the join selectivity, i.e., the ratio of the
number of selected tuples to the size of the Cartesian
product, was about 1.6 %.
     On one hand, we have formulated and run our query,
termed for this purpose Query 1, using AMOS-II alone with
all the data. Its AMOSQL formulation was:
(Query 1)
select ssn, ssn1
from integer ssn, integer ssn1 character name, character
name1 where person(ssn)=<name, city> and
person(ssn1)=<name1, city> and ssn<ssn1;
     The join was evaluated using the nested loop or an index
on city. For AMOS-SDDS, the benchmark query with
foreign functions, termed Query 2, was formulated as follow:
(Query 2)
select ssn, ssn1
from integer ssn, integer ssn1, character buffer
where sdds_fullextent()=buffer and  f_ship(buffer)=<ssn,
ssn1>;
     Experiments with the execution strategies of Query 2
evaluated various design issues outlined above. The join
calculus generally used the distributed nested loop. Details
of the algorithmic and conditions of the execution, varied
with the experiments.
     First experiments used a query processing strategy called
E-Strategy. The name recalls that we constructed the join
tuples on the servers externally to AMOS-II, entirely within
the foreign functions. It appeared that E-Strategy required a
quite skillful programming. We have therefore experimented
also with an alternative implementation design of the
benchmark query Query 2, we call below I-Strategy. This one
imports the bucket content and each buffer when it comes
into the server AMOS-II. The latter performs its own query
evaluation.



     I-Strategy is potentially simpler to implement and more
extensible than E-Strategy. It allows reusing join capabilities
of AMOS-II, instead of reprogramming them in the foreign
functions. Especially, it more easily allows for index lookup
joins. The local indexes can be built at each server during
the importation process using standard AMOS-II
capabilities. The result for join queries shows an important
performance advantage of I-Strategy. For 5 servers, the ratio
is 6 times for the nested loop, and 9 times when the index is
built! Unlike for our join queries, E-strategy is a clear winner
for aggregate functions Count and Max. The ratio reaches
almost 19 times for the counting!  The obvious reason is the
time spent by I-strategy on the importation. The use of
external functions may thus be highly advantageous for
certain kinds of queries. Details of measurement campaign
are in [13].
     New queries are also potentially easier to accommodate.
Each server AMOS-II may handle entirely and most
efficiently their local decomposition and execution, as long
as they invoke any usual internal functions. The basic
potential drawback of I-Strategy with respect to E-Strategy
is of course the additional importation cost.
5.3 Experiments platform
     We experimented with AMOS-SDDS on a
multicomputer we called faster platform. That platform
consisted of six Pentium III 700MHz with 256 MB of RAM
running Windows 2000 on a 100Mbit/s Ethernet network.
One site was used as client and the five other as servers.
     Below we first present experiments with AMOS-II
alone. I-Strategy follows, with its implementation details.
We evaluate it first on a 20,000-tuple file. The favourable
result makes us evaluate I-strategy for a five times larger
100,000-tuple file. Then, we scale the basic 20,000-tuple file
on more AMOS-SDDS servers, up to 15. Last we study the
scale-up characteristics of AMOS-SDDS on a file that scales
up to 300,000 tuples.
5.3.1 Experiments with AMOS-II
     AMOS-II at first executed the join in Query 1, using the
nested loop. Next the index on the join attribute was
created. Query 1 was executed again. This made AMOS-II
to lookup the index for the join. The result size of the join
query is 3,990,070 tuples. The resulting performance was as
follows:

Elapsed time(s) Time per tuple (ms)
Nested-loop 263 13.15
Index lookup 45 2.25

Table 1. Elapsed time of Query 1 for the 20,000 record file
     Next, we have scaled the file with 100,000 records.
There were fifty different cities generated. The result of the
join query was now 99,951,670 tuples. Execution times were
now:

Elapsed time(s) Time per tuple (ms)
Nested-loop 6,557 65.57
Index lookup 1,181 11.81

Table 2. Elapsed time of Query 1 for the 100,000 record file
     The speed of the index join, almost seven times faster
here than the nested loop join, matches the theory.

5.3.2 I-Strategy

5.3.2.1 Foreign Functions
     The foreign functions on client and servers were
redesigned for I-Strategy. Query 2 was formulated as before,
except for new foreign function at the client
Sdds_fullextent2():
(Query 2 for I-strategy)
select ssn, ssn1
from integer ssn, integer ssn1, character buffer
where sdds_fullextent2()=buffer and  f_ship(buffer)=<ssn,
ssn1>;
    Sdds_fullextent2() reads all the tuples of Person into an
unsorted buffer and of 2,000 records. That buffer size
appeared experimentally optimal for I-Strategy, and not
exceeding the maximum length of an UDP message. Sorting
did not appear useful neither for the bucket importation
speed, although potentially it could requests all the tuples of
Person. The records successively received, are repacked
into buffers.
     At each AMOS-SDDS server, when it receives the query
and the first buffer, it invokes once a new function
Load_bucket(). That one imports the local RP* bucket
into the server AMOS-II internal table named also Person,
(a stored function more precisely). The foreign function
Import_tuples() is then invoked for each incoming buffer
to import it into AMOS-II table Person_Temp. The
importation may create the index on the join attribute on
Person. These are local indexes at each server. The foreign
function AllSameCity2() computes then the join between
both tables, avoiding the duplicates:

Function AllSameCity2 ()-> integer ssn, integer ssn2  as
select ssn, ssn2 from character name, character name2,
character city, integer ssn, integer ssn2
where person(ssn) = <name, city> and
person_temp(ssn2)=<name2, city> and ssn<ssn2;
     Once this join is computed, the AMOS-SDDS server
sends the partial results to the client. It also calls the internal
AMOS-II function Clear_function() to empty the content
of Person_Temp in one call. This avoids costly erasure of
the tuples one by one. AMOS-SDDS is then ready for next
buffer from the client. After, the last, Clear_function()
empties the internal table Person.
     To evaluate the transmission time of the tuples produced
by Query 2 from the servers to the client, we have created
on the servers, the foreign function count_AllSameCity()
that sends only the count of the result at each server instead
of the whole tuples. Count_AllSameCity() is defined in
AMOSQL as follow:

Function count_AllSameCity()-> integer size
as select count( select ssn, ssn2 from character name,
character name2, character city, integer ssn, integer ssn2
where person(ssn) = <name, city> and
person_temp(ssn2)=<name2, city> and ssn<ssn2) ;
5.3.2.2 Experiments with I-Strategy
     Table 3 and Table 4 present the performance of Query 2
for I-Strategy. The file has 20,000 tuples distributed over 1



to 5 servers.  The join is computed first through the nested
loop, then through the index.

Server nodes 1 2 3 4 5
Nested-loop (s) 128 78 64 55 48
Index lookup (s) 60 39 37 36 32

Table 3. I-Strategy for Query 2: elapsed time
Server nodes 1 2 3 4 5
Nested-loop (ms) 6.4 3.9 3.2 2.7 2.4
Index lookup (ms) 3 1.9 1.8 1.8 1.6

Table 4. I-Strategy for Query 2: time per tuple
     To build the index at each server during the importation
costs some time. Nevertheless it appears a worthwhile
effort. The elapsed time decreases by half for two servers,
and by 1.5 for five servers. The resulting time per tuple
appears under 2 ms for the file on more than one server,
reaching 1.6 ms for the file on 5 servers. While the speed up
is sub-linear, the figures show a quite impressive efficiency
of the whole system.
5.3.2.3 Scaling the file size
     For this experience, we have created the file of 100,000
records, as for AMOS-II in Section 5.3.1. The file was
however an RP* file over 5 servers. Table 5 lists the results.

Elapsed time(s) Time per tuple (ms)
Nested-loop 1,000 10
Index lookup 691 6.91

Table 5. Performance of Query 2 with I-Strategy
The comparison to Table 4 and Table 5 for the 20,000 record
file, show a slightly better than linear scale-up for the nested
loop. The time per tuple increases indeed from 2.4 to 10 ms,
i.e., 4.2 times. Likewise, for the index join, the ratio is 4.3
times.
     The comparison to AMOS-II results for the 20,000-tuple
file in Table 1 shows also, hardly unexpectedly, a much
better scale-up for AMOS-SDDS. Thus for the nested loop
the AMOS-II elapsed time per tuple increases by factor of
5, from 13.15 to 65.57 ms. Likewise, for the index join, by
factor of 4.8, from 2.25 to 11 ms. Notice that the index join
time in Table 2 does not include the index creation time,
unlike for Table 5.
5.3.2.4 Scaling the file size and the number of

servers
     Table 7  and Figure 4 present elapsed times of Query 2
on a file that scales from 20,000 to 300,000 records on
several AMOS-SDDS servers. We run many AMOS-SDDS
servers at the same machine when the file size exceeds
100,000 records. Each one contains 20,000 tuples with up
to 3 AMOS-SDDS servers on the same machine, i.e., 15
servers in total. Table 6 shows the total number of servers
and the number of servers per machine according to the file
size.
     The join calculus already uses the distributed nested loop
with I-Strategy. This one imports the bucket content and
each buffer when it comes into the server AMOS-II. It
takes 3 seconds to import the bucket content and to create
index on join attribute city for 20,000 records. AMOS-II
performs its own query evaluation. To evaluate the

transmission time of the tuples produced by Query 2 from
the servers to the client, we use the foreign function
count_AllSameCity() that sends only the count of the
result at each server instead of the whole tuples.
     The extrapolated time results from the elapsed times
minus the transfer time, divided by the number of servers
per machine.

# tuples 20K 60K 100K 160K 200K 240K 300K
# SDDS servers 1 3 5 8 10 12 15
# Machines 1 3 5 4 5 4 5
Server / Machine 1 1 1 2 2 3 3

Table 6. Number of servers according to the size of the file
Q1 = AMOS-SDDS join; Q2 = AMOS-SDDS join with count.
# tuples 20K 60K 100K 160K 200K 240K 300K
# SDDS servers 1 3 5 8 10 12 15
Result size 4M 36M 100M 256M 400M 576M 900M
Q1 (s) 61 301 684 1817 2555 3901 5564
Q2 (s) 51 185 335 986 1270 2022 2624
Q1 w. extrap. (s) 61 301 684 1324 1920 2553 3815
Q2 w. extrap. (s) 51 185 335 498 640 681 881
AMOS-II  (s) 46 430 1201 3106 4824 6979 10 933

Table 7. Elapsed time of join queries (extrapolated for
AMOS-SDDS)
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 Figure 3 Actual measurements
      Figure 3 compares the elapsed time of Query 1 to that
of Query 2 in Table 7. The improvement ratio for the
300,000 record file is 1.96 times, i.e. by 49 %. Table 7
presents the extrapolation of the Query 2 execution times
while running several AMOS-SDDS servers on distinct
machines. The improvement ratio for the 300,000 record
file is 2.86 times, i.e. by 65 %.  

# tuples 20K 60K 100K 160K 200K 240K 300K

# SDDS servers 1 3 5 8 10 12 15
Q1 (ms) 3,05 5,02 6,84 11,36 12,77 16,25 18,55
Q2 (ms) 2,55 3,08 3,35 6,16 6,39 8,43 8,75
Q1 w. extrap. (ms) 3,05 5,02 6,84 8,28 9,6 10,64 12,72
Q2 w. extrap. (ms) 2,55 3,08 3,35 3,11 3,2 2,84 2,94
AMOS-II (ms) 2,30 7,17 12,01 19,41 24,12 29,08 36,44

Table 8.  Time per tuple
    Figure 4 shows the expected time per tuple of join query
to AMOS-SDDS in Table 8.
     The elapsed time of a distributed query can be divided
into two parts: effective processing time over the servers
and transfer time of the results from the servers to the
client. The query processing is carried out in parallel on the



servers and its duration depends on the number of
distributed servers. Thus, the increase in the number of
servers reduces the processing time of the same factor. The
transfer time is however limited by the network bandwidth.
The extrapolation of the elapsed time of the query with
count shows a perfect scalability: Time per tuple remains
constant when one increases the size of the file and the
number of servers of the same factor.
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Figure 4 Expected time per tuple of join queries to AMOS-
SDDS

6 Conclusion 

     AMOS-SDDS couples an SDDS with a high-
performance DBMS, to improve the current technologies
for high-performance databases and for the coupling with
external data repositories. The experiments we have
reported prove the efficiency of the system. The
optimizations of various design choices, the I-strategy
especially, decreased the file processing time for a join query
from dozens of ms per tuple to possibly 1 ms per tuple. The
AMOS-SDDS scalability that appeared from our
experiments abolishes the cumbersome storage limits of a
single site RAM DBMS technology. Its RAM query
processing and scalable data partitioning are an
improvement over the current parallel DBMSs technology.
These capabilities should attract numerous applications, [2],
[3], [5], [6], [7], [12].
     The work on AMOS-SDDS continues. It includes
deeper performance study of speed-up and scale-up
characteristics.  The performance of I-strategy that appeared
brought further studies of AMOS-II as the sole bucket
manager like in a parallel DBMS thus, except for the
AMOS-SDDS capability of scalable partitioning. A related
goal is a scalable distributed query optimizer for the AMOS-
SDDS client.
     Our coupling technique is not limited to AMOS-II.
Other object-relational DBMSs supporting foreign
functions can be potentially coupled to SDDS as well. We
are currently studying the DB2 user defined table functions
for this purpose. Likewise, we study the SQL Server for this
purpose. The success may offer an attractive alternative to
its static partitioning scheme.
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