
Presented at International Workshop on Efficient Web-based Information Systems

(EWIS-2002), Montpellier, France, September 2nd, 2002.

Object-Oriented Mediator Queries to

Internet Search Engines

Timour Katchaounov, Tore Risch, Simon Zürcher

Uppsala Database Laboratory, Department of Information Technology,
Uppsala University, Sweden

Abstract. A system is described where multiple Internet search engines (ISEs),
e.g. Alta Vista or Google, are accessed from an Object-Relational mediator
database system. The system makes it possible to express object-oriented (OO)
queries to different ISEs in terms of a high level OO schema, the ISE schema.
The OO ISE schema combined with the mediator database system provides a
natural and extensible mechanism in which to express queries and OO views
that combine data from several ISEs with data from other data sources (e.g.
relational databases). High-level OO web queries are translated through query
rewrite rules to specific search expressions sent to one or several wrapped ISEs.
A generic ISE query function sends the translated queries to a wrapped ISE.
The result of an ISE query is delivered as a stream of semantically enriched
objects in terms of the ISE schema. The system leverages publicly available
wrapper toolkits that facilitate extraction of structured data from web sources,
and it is independent of the actual wrapper toolkit used. One such wrapper
toolkit was used for generating HTML wrappers for a few well-known ISEs.

1. Introduction

To facilitate the combined access to data on the web with data from other databases, a
system called ORWISE (Object-Relational Wrapper of Internet Search Engines) has
been developed that can process queries combining data from different Internet search
engines (ISEs) with data from regular databases and other data sources. The design of
ORWISE leverages available wrapper toolkits to extract information from web pages.
ORWISE has been implemented for three well-known search engines using a publicly
available wrapper toolkit [31].

ORWISE is an extension to the database system Amos II [29], [30], that is based
on the wrapper-mediator approach [34] for heterogeneous data integration. The core
of Amos II is an extensible object-relational database engine having mediation
primitives in a query language AmosQL similar to the OO parts of SQL-99 and

ORWISE thus permits SQL-99 like queries that combine ISE results with data from
other types of sources such as relational databases [10] and XML [23]. Amos II is
suitable for collecting and processing results from ISEs because its purpose is to act
as a fast mediator database which can manage meta-data of heterogeneous and
distributed data sources and efficiently process queries to the sources.

The generalized ISE wrapper manager ORWISE, described in this paper, makes it
possible to easily access one or several ISEs from Amos II using different ISE
wrappers for each engine. Combined with OO mediation facilities [4], [17], it allows
to process OO database queries that combine data from several ISEs with data from
conventional databases and other data sources. In difference to relational systems for
web queries [14], the data produced by ORWISE is not just text strings but much
more semantically rich object structures in terms of an OO schema for ORWISE,
called the ISE schema (Internet search engine schema). The ISE schema describes
capabilities and other properties of the search engines along with the structure of their
results.

ISEs have some special problems compared to ‘conventional’ databases:

• Semi-structured interfaces: There are no standard interfaces to ISEs such as ODBC
and JDBC. Web forms are used for specifying queries and other inputs to them.
The result of an ISE query is a semi-structured web document containing not just
the query result but also auxiliary text, banners, etc., which need to be filtered out
from the query result.

• Query languages: ISEs do not have a standardized query language such as SQL but
every ISE has its own query language with varying syntax and semantics.

• Autonomy: The content, structure and availability are totally controlled by the
information supplier.

• Evolution: Internet sites tend to change very often. A system that accesses a site
has to be very flexible.

• Heterogeneity: The data delivered by ISEs have varying structures and the system
has to reconcile semantic differences.

In order to handle the above problems we need reliable and flexible interfaces to the
ISEs, here termed ISE wrappers, which can programmatically fill and submit web
forms and parse the structure of an ISE result document searching for predefined
patterns. An ISE wrapper must be flexible enough to cope with small changes in the
web sites.

To specify web source wrappers ORWISE utilizes wrapper toolkits to extract
useful information from web pages. ORWISE is designed to be independent of the
actual wrapper toolkits used. We investigated several of them to make sure that the
system works with all of them. For our first implementation we chose W4F [31] to
generate ISE wrappers for three search engines - Google (http://www.google.com),
AltaVista (http://www.altavista.com), and Cora Research Paper Search (Cora)
(http://cora.whizbang.com).

The ISE wrappers are connected to the system through a generic query language
function called orwise, which is a foreign function (implemented in Java) overloaded
for each search engine. It returns objects of an ISE specific type1 that describes the

1 We use the terms ‘type’ and ‘class’ as synonyms.

retrieved query results. New ISE wrappers can dynamically be added to the system by
creating a new subtype of the system type SearchEngine for each new ISE and then
implementing some code (in Java) to interface its ISE wrapper. The overloading of
the function orwise is used for facilitating the plug-in of new ISE wrappers.

Once a new search engine is connected to the orwise function it can be used in OO
queries. Since the parameters for each implementation of orwise are search engine
specific, such queries will be rather detailed with search engine specific parameters
for, e.g., query strings, site names, etc. The system therefore provides high-level
query functions that can be used for any ISE and where queries are specified
uniformly. For example, the function webSearch is defined for every search engine to
specify OO queries to it in a search engine independent form. The high-level OO
query expressions need to be transformed before the actual call(s) to orwise is issued.
The approach in Amos II is to implement a translator module for each kind of data
source (search engine, relational database, etc.). In the case of ISEs, the translators
rewrite the high-level query into search engine query specifications containing calls to
orwise. Since different search engines have different ways of specifying searches,
they have different rewrite rules.

In summary, ORWISE provides i) the ISE schema for describing and querying data
from any ISE, ii) a mechanism to specify search engine specific translators, and iii)
facilities to allow different wrapper toolkits to be easily plugged into the system.

2. Related work

Many projects (e.g. [11], [16], [21], [27], [33]) use the mediator approach to data
integration in general. The work presented here describes how an object-relational
mediation framework [29] leverages upon an available wrapper toolkit to provide
access to ISEs.

The use of object-relational approach in querying the structure of XML Web
documents has been done, e.g., in [3], [8], [12], [23]. A query language standard for
XML, XQuery [35], is being developed with which the contents of XML documents
can be queried and new XML documents constructed. All major ISEs use HTML, not
XML. General Web query languages for HTML are proposed in [19], [25]. These are
general languages for querying well-formed Web documents and not directly suitable
for defining embedded interfaces to ISEs.

By contrast wrapper toolkits [9], [13], [15], [18], [20], [22], [24], [31] specify
programmatic interfaces to web sources handling both sending commands and
extracting structured data from responses. They often include some advanced pattern
matching language to extract data from Web documents as regular expressions
operating on varying levels of granularity. With a wrapper toolkit a web source
wrapper is defined by processing wrapper specifications, consisting of statements to
connect to web sources and to detect the parts of the text to be extracted. They allow
new wrappers to be specified much easier than with manual programming and the
developers need not master a complex query language. A good overview of projects
related to wrapper construction for Web sources can be found in [31].

A wrapper toolkit can be a wrapper-generator that generates code (e.g. Java)
implementing a web source wrapper [1], [2], [24], [31]. It can also be a wrapper-
interpreter where the web source wrapper is specified as commands, which are
interpreted at run time [18], [15]. ORWISE is designed to work with both wrapper-
generators and wrapper-interpreters. Web source wrappers represent data differently
and are not sufficient themselves to combine data from Web sources and conventional
databases. Therefore there is need for data mediation facilities along the lines of this
paper.

In [26] it is shown that an OO query language indeed is very useful for specifying
queries to text engines. Our work differs in that we propose leveraging upon using
external wrapper toolkits, OO query rewrites, and the ISE schema. Furthermore, we
explicitly model the capabilities of the search engines in the ISE schema, rather than
in the internals of the system. The WSQ/DSQ [14] project proposes an architecture
where web searches are specified as SQL queries to two virtual relational tables.
Their relational tables are inflexible for the purpose, compared to our ISE schema.
The focus of the work in [5] is re-write rules and cost models for integrating text
search with other queries. Those rewrite rules are applicable in our translator too.

To the best of our knowledge, no other project proposes a system that uses
inheritance and overloading to model ISEs and their results on the conceptual level,
while at the same time the implementation is independent of, and leverages existing
wrapper toolkits. Another major difference to other projects is that our object-oriented
ISE schema distinguishes between the search engine specific descriptions of
documents and the actual documents. Furthermore, the ISE capabilities are modeled
in the ISE schema too.

3. Scenario

We have implemented the scenario of Figure 1 to illustrate the functionality of the
system. In the scenario, an Amos II mediator is used to process queries that combine
data from a relational DB2 database through ODBC with three ISEs, AltaVista,
Google and Cora. The access to the three Internet search engines uses the ORWISE
wrapper, while the relational database is accessed through an ODBC-wrapper.

AmosQL query

Amos II kernel

ORWISE ODBC wrapper

AltaVista Google Cora DB2

Fig. 1. Mediator scenario.

The relational database stores a table of employees that is mapped to the mediator
type Employee, using the techniques for defining OO views of relational databases
[10]. The following AmosQL query uses Google to find the names of those
employees who are mentioned in some web page in the web site
‘www.csd.uu.se’:

SELECT� DISTINCT� given_name(e),� family_name(e)�
FROM� Employee� e,� DocumentView� d,� Google� ise�
WHERE� d� =� webSearch(ise,� given_name(e))� AND�
� � � � � � d� =� webSearch(ise,� family_name(e))� AND�
� � � � � � host(url(d))=‘� www.csd.uu.se’);�

The first two lines of the ‘where’ clause in the query retrieve the documents that
contain given names and family names of employees in the relational database, while
the last line restricts the search to only those persons whose names are found by
Google in web pages on the host‘www.csd.uu.se’. Other text-related predicates
such as ‘near’ can also be added to refine the search. The type DocumentView
represents descriptions of documents returned by an ISE and the type Google
represents the wrapper for Google. The same query can be specified for Alta Vista by
replacing the type Google with AltaVista. It is also possible to specify queries over
several search engines by using the generic supertype SearchEngine instead of
AltaVista or Google.

4. The ISE Schema

Queries to ISEs are posed in terms of the OO database schema on Figure 2.
Inheritance and overloading are used to model heterogeneity of both ISEs and their
results. Furthermore, we separate the description of results returned by ISEs from the
documents themselves. Since Amos II has a functional data model [32], both type
attributes and relationships between types are modeled by functions shown as think
lines on Figure 2. For clarity, the overloaded function orwise is represented as an
attribute of the subtypes of type SearchEngine. The core of the ISE Schema consists
of three base types:

• SearchEngine – this type is used to categorize ISEs. It reflects the fact that search
engines have different query capabilities and parameters. It has a subtype for each
specific ISE normally with only one instance. The generic function orwise is
overridden for each ISE to reflect their different semantics. Analogously each of
them has a specific query rewrite function.

• DocumentView – objects of this type describe the results of a query to different
ISEs. By introducing this type of objects we can distinguish between the
documents themselves and the description of a document by an ISE. Document
views often contain information about a document that is not part of the document
itself and is imprecise or outdated. They may use different formats from the
document itself; e.g. the Cora ISE returns HTML descriptors of PostScript

documents. Differentiating between documents and views over documents allows
for more precise queries.

• Document – describes document objects themselves. Subtypes of Document may
describe document objects with different structure. The problem of querying
structured documents is outside the scope of this work and has been addressed by
other researchers [6], [28]. All this work can be easily reused in our system due to
the flexibility of our OO data model.

DataSource
name

SearchEngine
rewrite

AltaVista
orwise,
rewrite

Google
orwise,
rewrite

Cora
orwise,
rewrite

Relational
DocumentView

title, description

Url
protocol, host,
port, file, ref

AltaVistaView
date, size,
language

GoogleView
size

CoraView
authors, details,
bibtex

orwise url

Document
...

document

Type
attribute, ...

Legend:

referring
page

cached
copy

functionis-a

Object

Fig. 2. The ISE schema

The two classes DataSource and Relational are part of the general Amos II meta-
type hierarchy. The type DataSource serves as the base type of all meta-types for
different kinds of data sources accessible through the mediator system. One such
meta-type is Relational, which describes relational data sources. It has the function
sql, analogous to the orwise function of SearchEngine. In our current implementation,
the type SearchEngine has three subtypes for each of the wrapped search engines
AltaVista, Google and Cora. Each of them defines its own version of the orwise
function and specific rewrite rules. Correspondingly the type DocumentView has three
subtypes: AltaVistaView, GoogleView and CoraView, where each of them has
additional properties. For example, of the three ISEs only AltaVista returns the
language of a document, while only Google may provide a locally cached copy of it’s
indexed documents, accessible through the function cached_copy. Finally, Document
objects may be accessed and queried further through the document function of the
type DocumentView. The type Url is an example of semantic enrichment of the ISE
query results, as they return URLs as strings.

5. The ORWISE Architecture

Figure 3 shows the layered architecture of the system. The left part shows how
ORWISE is interfaced with the Amos II kernel, while the right part shows the layers
of ORWISE itself.
The architecture is designed to fulfill several requirements:

• It provides a uniform interface from the Amos II query processor to any ISE.
• It can use any existing general wrapper toolkits.
• It is independent of the wrapper toolkits used.
• It is possible to easily add a new ISE wrapper without any changes to the rest of

the system.
• There is no need to modify the definitions of wrappers generated by wrapper-

generators.

AmosQL query

Amos II query
processing
kernel

ISE Schema

Rewrite
rules

Translator

Query execution engine

Foreign function interface

ORWISE

execution plan

orwise call

ISE
interface
layer

AltaVista Google Cora

http

orwise foreign
function call

AltaVista
interface

Google
interface

Cora
interface

ISE
wrapper
layer

AltaVista
wrapper

Google
wrapper

Cora
wrapper

ISE
layer

DocumentView
objects

call
Wrapper

specifications

Fig. 3. System architecture.

The two layers ISE interface and ISE wrapper fulfill these requirements. This
architecture permits any wrapper toolkit to be used and different kinds of wrapper
toolkits can even be combined.

The ISE interface layer defines an interface between the Amos II kernel and the
underlying ISE wrapper layer used for interfacing each search engine. The
functionality common for every ISE wrapper, such as instantiating ISE specific
DocumentView objects and emitting the result stream, is encapsulated in this layer. It
is called by the query processor and it calls the ISE wrapper for the chosen search
engine. The basic foreign function interface of Amos II allows new ISE interfaces to
be dynamically added to a running system. The ISE wrappers are specified by some
external wrapper toolkit(s) chosen for each particular search engine. Therefore, the
functionality they expose can be very different and cannot be directly used by
ORWISE. The ISE interface therefore must instantiate objects, convert strings to URL
objects or numbers, etc.

The ISE wrapper layer consists of the modules specified through the wrapper
toolkit. It forms and sends HTTP requests to an ISE server and then extracts the
results from the so received HTML page. The input to a wrapper toolkit is a

specification of request submission and data extraction rules for a web source. The
chosen W4F [31] toolkit is a wrapper-generator, which generates Java classes per
wrapped data source. In this case the layer consists of the generated code. For
wrapper-interpreters the interpreter together with the specifications is the layer.

With this layered architecture, the following steps are needed to add a new search
engine to ORWISE:

1. Design an ISE wrapper for the specific search engine by using a chosen wrapper
toolkit. For example in the case of W4F this involves specifying the extraction
rules in terms of the HEL extraction language from which a Java class is generated
per each wrapped web source. By contrast, wrapper-interpreters are directly called
from the ISE interface layer using the wrapper specifications as parameters.

2. Create types in the mediator database as subtypes of SearchEngine and
DocumentView.

3. Design an ISE interface module as the overloaded Amos II foreign function,
orwise, calling the ISE wrapper module from step 1.

Once step 1-3 are completed the ISE is already queryable directly through orwise.
However, the queries can be complex and very ISE dependent. Efficient and
transparent queries to an ISE therefore requires an additional step:

4. Design the rewrite rules needed for the ISE to translate between, e.g., webSearch
calls and the particular orwise calls.

6. Translating ORWISE Queries

Queries calling the webSearch function combined with other Web document related
predicates are translated to an equivalent but more efficient query containing
optimized calls to the function orwise overloaded for specific ISEs. The function
webSearch could be defined as a query calling orwise without any translation.
However such untranslated execution may be significantly less efficient. In our
example, the Google query is translated to the following orwise query:

SELECT� given_name(e),� family_name(e)�
FROM� Employee� e,� DocumentView� d,� Google� gse�
WHERE� d� =� orwise(gse,� given_name(e)� +� ’� ‘� +�
family_name(e),� 20,� ’www.csd.uu.se’,� ‘english’);�

where the signature of orwise is Google specific. Here orwise for Google takes the
parameters query, result size, language restriction, and host. The function is defined
as a foreign AmosQL function that calls the underlying ISE wrapper for Google. The
example illustrates the semantic rewrite of the original query by the translator, where
several calls to webSearch and host are combined into one call to Google’s orwise.
The translator also added the default specifications of ‘english’ as language and that
only the first 20 results should be returned. The result of orwise is a stream of
GoogleView objects. The translator for each ISE knows how to generate optimized
orwise calls with specific parameters expressing ISE supported capabilities.

As shown in the example, queries to a search engine will contain subqueries
expressed using the specific query language of the ISE, which is usually different for
different ISEs. In the example above the string “given_name(e)� +� ’� ‘� +�
family_name(e)”� is an example of the construction of a conjunctive query to
Google (it uses AND by default). During query translation, there are possible query
transformations that can dramatically improve performance and result quality. We
have implemented some translator rules to show the usefulness of the system and can
utilize other results in related areas [5], [6].

7. Summary

A flexible system for querying Internet search engines through an OO mediator
database system was presented. The system has the following unique combination of
features:

1. Data about both the search engine capabilities and the results they return were
modeled in an OO ISE schema in a mediator database.

2. The ISE schema permits transparent queries to ISEs with different capabilities and
result structures. The mediation facilities provide for processing heterogeneous
queries that combine data from ISEs with data from other data sources.

3. New kinds of ISEs can be easily plugged in. The system assumes the ISEs are
autonomous and outside the control of the query processor.

4. The system is designed to be independent of the wrapper toolkits used for
specifying the ISE wrappers. Several such publicly available toolkits were
evaluated to choose one for the implementation.

5. The query processor provides a mechanism to plug in OO search engine specific
rewrite rules for translating OO queries into the parameterized orwise calls. The
system is independent of the actual rewrite rules to utilize previous work in this
area.

References

1. B. Adelberg: NoDoSe – A Tool for Semi-Automatically Extracting Structured and
Semistructured Data from Text Documents, SIGMOD 1998 Conference: 283:294, 1998.

2. N. Ashish, C. Knoblock: Semi-automatic Wrapper Generation for Internet Information
Sources. CoopIS’97 Conference: 160-169, 1997.

3. G. Arocena, A. Mendelzon: WebOQL: Restructuring Documents, Databases, and Webs. In
Proc. ICDE'98, Orlando, 1998.

4. O. Bukhres, A. Elmagarmid (eds.): Object-Oriented Multidatabase Systems. Prentice Hall,
1996.

5. V. Christophides, S. Abiteboul, S. Cluet, M Scholl: From Structured Documents to Novel
Query Facilities. SIGMOD 1994 Conference: 313-324, 1994.

6. S. Chaudhuri, U. Dayal, T. W. Yan: Join Queries with External Text Sources: Execution and
Optimization Techniques. SIGMOD 1995 Conference: 410-422, 1995.

7. C. Chang, H. Garcia-Molina, A. Paepcke: Predicate rewriting for translating Boolean queries
in a heterogeneous information system. ACM Trans. on Information Systems, 17(1), 1999.

8. Donald D. Chamberlin, Jonathan Robie, Daniela Florescu: Quilt: An XML Query Language
for Heterogeneous Data Sources. WebDB’2000: 53-62, 2000.

9. A. Firat, S. Madnick, M. Siegel: The Caméléon Web Wrapper Engine, First Workshop on
Technologies for E-Services, Cairo, 2000.

10. G. Fahl, T. Risch: Query Processing over Object Views of Relational Data, The VLDB
Journal , 6(4), 261-281, 1997.

11. H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, V.
Vassalos, J. Widom: The TSIMMIS Approach to Mediation: Data Models and Languages.
Intelligent Information Systems (JIIS), Kluwer, 8(2), 117-132, 1997

12. R. Goldman, J. McHugh, J. Widom: From Semisturctured Data to XML: Migrating the
Lore Data Model and Query Language, WebDB’99, 1999.

13. J. Gruser, L. Raschid, M. Vidal, L. Bright: Wrapper Generation for Web Accessible Data
Sources. CoopIS’98 Conference: 14-23, 1998

14. R. Goldman, J. Widom: WSQ/DSQ: A Practical Approach for Combined Querying of
Databases and the Web. SIGMOD 2000 Conference: 285-296, 2000.

15. G. Huck, P. Fankhauser, K. Aberer, Erich J. Neuhold: Jedi: Extracting and Synthesizing
Information from the Web. CoopIS’98 Conference: 32-43, 1998.

16. L. Haas, D. Kossmann, E. L. Wimmers, J. Yang: Optimizing Queries across Diverse Data
Sources. 23rd Intl. Conf. on Very Large Databases (VLDB'97), 276-285, 1997

17. V. Josifovski, T. Risch: Integrating Heterogeneous Overlapping Databases through Object-
Oriented Transformations, 25th Conference on Very Large Databases (VLDB'99), 435-446,
1999.

18. T. Kistlera, H. Marais: WebL: a programming language for the Web. In WWW7, Brisbane,
Australia, http://www.research.digital.com/SRC/WebL/, 1998.

19. D. Konopnicki, O. Shmueli. W3QS: A query system for the World Wide Web. 21st
Conference on Very Large Databases (VLDB'95), 54–65, Zurich, Switzerland, 1995.

20. N. Kushmerick, D. Weld, R. Doorenbos: Wrapper Induction for Information Extraction.
IJCAI’97 Vol. 1: 729-737, 1997.

21. L. Liu, C. Pu: An Adaptive Object-Oriented Approach to Integration and Access of
Heterogeneous Information Sources. Distributed and Parallel Databases, Kluwer, 5(2),
167-205, 1997.

22. L. Liu, C. Pu, W. Han: XWRAP: An XML-Enabled Wrapper Construction System for Web
Information Sources. ICDE 2000: 611-621, 2000.

23. H. Lin, T. Risch, T. Katchanounov: Adaptive data mediation over XML data. To be
published in special issue on "Web Information Systems Applications" of Journal of
Applied System Studies (JASS), Cambridge International Science Publishing, 2001.

24. G. Mecca, P. Merialdo, P. Atzeni: ARANEUS in the Era of XML. IEEE Data Engineering
Bulletin, Special Issue on XML, September, 1999.

25. A. O. Mendelzon, G. Mihaila, T. Milo: Querying the World Wide Web. International
Journal on Digital Libraries, 1(1), 54-67, April 1997.

26. A. Paepcke: An Object-Oriented View Onto Public, Heterogeneous Text Databases.
Proceedings of the Ninth International Conference on Data Engineering (ICDE’93), 1993.

27. D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, J. Widom: Querying Semistructured
Heterogeneous Information. In Deductive and Object-Oriented Databases, Proceedings of
the DOOD'95 conference, 1995, LNCS Vol. 1013, 319-344, Springer 1995.

28. D. Quass, A. Rajaraman, Y. Sagiv, J. Ullman, J. Widom: Querying Semistructured
Heterogeneous Information. In Deductive and Object-Oriented Databases, Proceedings of
the DOOD'95 conference, 1995, LNCS Vol. 1013, 319-344, Springer 1995.

29. T. Risch, V. Josifovski: Distributed Data Integration by Object-Oriented Mediator Servers,
To be published in Concurrency – Practice and Experience J., John Wiley & Sons,
http://www.csd.uu.se/~udbl/publ/concur00.pdf, 2001.

30. T. Risch, V. Josifovski, T. Katchaounov: Amos II Concepts,
http://www.csd.uu.se/~udbl/amos/doc/amos_concepts.html, 2000.

31. A. Sahuguet, F. Azavant: Building Intelligent Web Applications Using Lightweight
Wrappers, Data and Knowledge Engineering, 36(3), 283-316, March, 2001.

32. D. W. Shipman: The Functional Data Model and the Data Language DAPLEX, TODS, 6(1),
140-173, 1981.

33. A. Tomasic, L. Raschid, P. Valduriez: Scaling Access to Heterogeneous Data Sources with
DISCO. IEEE Transactions on Knowledge and Date Engineering, 10(5), 808-823, 1998

34. G. Wiederhold: Mediators in the architecture of future information systems, IEEE
Computer, 25(3), 38–49, 1992.

35. XQuery: A Query Language for XML, W3C Working Draft, 15 February 2001,
http://www.w3.org/TR/xquery/.

