Optimizing Performance-Polymorphic Declarative
Database Queries

Thomas Padron-McCarthy, Tore Risch
Department of Computer and Information Science
Linkoping University
S-581 83 Linkoping, Sweden
E-mail: {tompa,torri}@ida.liu.se

November 22, 2004

Performance polymorphism, where a system can select between several given
implementations of the same conceptual operation, has been used in real-time
programming languages, such as Flex. A related but more limited mechanism
has been used in active database systems, such as HiPAC. We have intro-
duced performance polymorphism into a database query language. We show
how performance-polymorphic queries are specified and optimized in our sys-
tem. We have shown the feasibility of the concept by implementing a general,
performance-polymorphic query optimizer.

1 Introduction

1.1 Real-time databases

A real-time system is a system where the operations not only have correctness
requirements, but also requirements on timeliness. For example, a task needs
to be completed before a given deadline. Real-time systems are not restricted
to applications where the time spans in question are short (fractions of a sec-
ond), although many real-time applications fall in this domain, but also include
applications with a longer time range (several seconds or much longer) [27].

A real-time database management system (RTDBMS) [21] is a DBMS that
meets timeliness requirements, in addition to the traditional DBMS functional-
ity. Alternatively, it can be defined as a real-time system that includes database
capabilities, such as transaction management, index structures, and query ca-
pabilities. Despite the apparent similarity, in practice these two definitions are
not co-extential. The approach of starting with the DBMS concept, and adding
real-time functionality, tends to put emphasis on database facilities, such as
transaction processing and defining a declarative query language as interface to

the database, while the other approach favors a programming-language inter-
face, typically from C++.

1.2 Performance polymorphism

In time-critical applications it is sometimes possible to find a simplified algo-
rithm that can be used when there isn’t enough time to run the normal algo-
rithm. This simplified algorithm performs the same conceptual operation as the
normal one, but in shorter time. The trade-off is that the result may be of a
lower quality with respect to precision, completeness, or data consistency.

For example, such different algorithms can be used in a control application
that reads input from a slow physical sensor. If the control application doesn’t
always have time to wait for the next sensor reading, it could instead use an
extrapolation of previous values. This will produce a value within the allowed
time-frame, but the value may deviate from the actual physical value.

Another example is a numerical computation that may be set to produce
results with different precisions depending on the execution time spent on the
computation. Thus we have a trade-off between time and precision, and this
trade-off can be used in a time-critical application to find an acceptable result
within the allowed time-span, instead of a more exact result that arrives too
late.

The different implementations can be defined by the programmer, and under
some circumstances it is possible for the system to find them automatically [5]
[18] [17].

The term performance polymorphism refers to “a scheme were all the versions
of a particular computation are identified as candidates for binding to a generic
name. We call this technique performance polymorphism by analogy to the
conventional polymorphism where different functions of the same name operate
on different data types” [8]. A similar definition is given in [29].

The essence of the definition is that the system must be able to automatically
select among several different given implementations, and that it should find
the best, or at least an acceptable, trade-off between the different performance
measures. This can be done either at run-time, or at compile-time. A mixture
is also possible, where the selections that can be made early are made early, and
the rest is deferred to run-time [8].

While these definitions seem to be best suited for use in programming lan-
guages or in object-oriented databases, with named functions or methods, the
concept could be extended to cover e. g. contingency plans in the ECA-rules
of an active database system [2], and the query partitioning in CASE-DB [17].
However, in order to naturally capture this and other forms of polymorphism, an
object-oriented data model is advantageous. Several real-time object-oriented
data models have been defined, e. g. RTSORAC [20]. Some real-time systems
combine performance polymorphism and object orientation, such as the Flex
programming language [10] and the ROMPP data model [29].

1.3 Performance-polymorphic queries

By a query we mean an operation against a database that is formulated in a
declarative query language. This declarative query cannot be executed directly,
S0 a query optimizer is required to translate the query into an executable, pro-
cedural program, the ezecution plan.

Since there are usually many possible execution plans for a given declarative
query, and since these plans can have widely varying performance, it is important
that the query optimizer finds a good (i. e. cheap) plan, ideally the best. A
traditional database query optimizer works with a single performance measure,
the “cost”, which usually reflects the expected execution time [23], dominated
by the number of disk accesses. The optimizer uses a cost model to estimate the
cost of the execution plans.

By a performance-polymorphic query we mean a query, that is formulated
in a declarative query language, and that involves operations that may exist in
several implementations with different performance.

A performance-polymorphic query optimizer is, in addition to the function-
ality of a traditional query optimizer, required to choose between the different
implementations of each performance-polymorphic operation.

To the best of our knowledge, all previous work concerning object-oriented
performance polymorphism where it is possible for the user to define multiple
versions of a function or method with different performance, has concentrated
on providing a programming-language interface. No declarative query language,
and therefore no query optimization, has been provided.

While a programming-language interface may be sufficient for many appli-
cations, there are important advantages with a declarative query language, such
as a simpler interface, increased data independence, and the possibility for bet-
ter optimization than for hand-coded procedural programs, especially for large
amounts of data and non-trivial schemas. Since the system includes a cost
model for the optimizer, it can use this to automatically estimate the execution
time.

Since query optimization is a potentially time-consuming task, it is usually
important for a real-time database with a declarative query language to do the
optimization at an early time, so the optimization time does not have to be
included in the time constraints at execution time. Even if there may exist
applications where this is tolerable, for example when the ranges of the time
in the time constraints are very large (minutes), optimization should be done
early, if possible.

2 Related Work

An early example of a mechanism where different implementations of an opera-
tion can be defined by the user, and then automatically chosen by the system,
is the contingency plans for alternative executions of reactive rules in the active
DBMS HiPAC [2], also discussed in some later publications, e. g. [1]. In the

ECA rules described in the HiPAC project, more than one version of the action
part could be specified. When the time constraints could not be met by the
normal action of a rule, the system could instead chose an alternative, the con-
tingency plan. While HiPAC provided a declarative query language, the use of
different-performance implementations was limited to the ECA rules, and could
not be used in other parts of the system. Contingency plans do not fall under
the definition of performance polymorphism, but it is a related concept.

CASE-DB [5] [18] [17] is a real-time relational prototype DBMS that per-
mits the specification of time constraints for queries expressed in relational al-
gebra. Given a deadline, the system can automatically partition a query, and
then does iterative improvement using these partitions, while handling the risk
of over-spending its time budget. For non-aggregate queries this requires a pre-
vious, user-defined partitioning of the data. CASE-DB has no user-declared
performance polymorphism, i. e. it is not possible to define multiple implemen-
tations of operations. The quality of the answer, and trade-offs between time
and quality, is not discussed.

As mentioned above, an object-oriented data model is advantageous for
expressing performance polymorphism. Several real-time object-oriented data
models have been defined, e. g. RTSORAC [20].

Other real-time systems combine object orientation with a more explicit
performance polymorphism, such as the Flex programming language [11] [§]
[10] [15] [7] [9] in the Concord project [12] and the ROMPP data model [29] in
the MDARTS project [16].

Flex is an experimental programming language based on C++, which has
been extended with real-time functionality and with performance polymor-
phism. In Flex it is possible to define several implementations of the same
function, with different timing measures, and with different figures of merit.
The system will, at run-time, chose an implementation that fits within the
given time constraint. If several implementations are feasible, the one with the
highest figure of merit is chosen. By performing normal compiler optimizations
on the code for choice of implementation, some of the binding decisions can be
done at compile-time.

[8] introduces the term performance polymorphism, and contains a discussion
of the concept and how to implement it.

Since Flex isn’t a declarative query language, it does not do any query opti-
mization. However, the “allocation problem” is discussed: when more than one
performance-polymorphic functions is to be executed, more than one choice has
to be made, and the trade-off between them considered.

ROMPP uses a similar solution, but from a database approach with a
schema describing the data. ROMPP has a mechanism of envelope and letter
classes to handle performance polymorphism in several specialization dimen-
sions, not just (or even necessarily) time. [29] mentions “value propagation”
of the specialization dimensions, i. e. the combination of performance charac-
teristics, as an “open question to be answered”. ROMPP does not provide a
declarative query language, and thus no optimization.

[29] also contains an overview of previous work on performance polymor-

phism.

CHAOS [22] is a system for developing and executing real-time applica-
tions. CHAOS has support for different implementations of an operation, and
for configuring and re-configuring an application by replacing these implemen-
tations. While the re-configuration can be done “dynamically” at run time, the
system cannot do this automatically.

3 Our implementation

We have implemented a performance-polymorphic query optimizer within our
research platform AMOS [14] [25] [26] [19] which is a main-memory object-
oriented active DBMS, with a relationally complete, object-oriented query lan-
guage. The optimizer uses dynamic programming [23], which has been modified
to handle operations that are polymorphic in any number of user-defined perfor-
mance dimensions, e. g. time, precision, quality. The performance dimensions
can have both numeric and symbolic values. Constraints can be stated on all
performance dimensions, and any one of these can be used as the optimization
objective.
For each performance dimension, the user specifies

e its name,

e its starting value, which is used as the value of this performance dimension
for an empty execution plan, i. e. a partial plan to which no operations
have been added yet,

e 3 default value, which is used when the value of this performance dimen-
sion for a certain operation is not specified,

e 3 combination function that combines the performance values of two op-
erations, to be used when more steps are added to a partial execution
plan,

e 3 comparison function that determines which of two values of this perfor-
mance dimension is better,

e a switch indicating if the value of this performance dimension is monoton-
ically worsening as the incomplete plan grows by adding operations to it,
if it is improving, or if its monotonicity is unknown.

As an example, the performance measure TIME will typically have the
starting value 0, no default value, a combination function that numerically adds
two values, and will use the function LESS-THAN as a comparison-function.
Since an execution plan can never be made faster by adding operations, the
value is monotonically worsening.

A typical use, in the context of a real-time system, is to define one perfor-
mance measure called TIME, which expresses either the expected or the worst-
case actual execution time, and another measure called QUALITY, which

expresses the quality or “goodness” of the result. The optimizer is then typ-
ically required to either chose the execution plan that gives a result with the
highest possible quality within some given time limit, or to chose the execution
plan with the fastest execution time, given some minimum quality.

Since any number of performance measures can be defined, nothing pre-
vents us from defining several different time measures, for example average time
(which can be minimized by the optimizer) and worst-case time (which we might
put constraints on in a real-time system).

During optimization, the space of possible execution plans is investigated by
building a search tree using best-first search with respect to the performance
measure that is used as objective. Each node in this search tree represents
an execution plan for the declarative query that is being optimized. The leaf
nodes represent complete, executable plans, while the internal nodes of the tree
represent partial plans.

During the search, each plan is examined with respect to the stated con-
straints on all performance measures. If a constraint is overrun, the sub-tree
rooted in that plan can be pruned when either (1) the plan is a complete plan,
or (2) the plan is a partial plan and the constraint in question is monotonically
worsening. In those cases we know that the constraint is irrevocably broken.

4 An example

In this example we will show how the AMOS system translates a declarative
query into an unoptimized execution plan, how the possible execution plans can
be represented as a search tree, and how the query optimizer finds an optimal
execution plan by partially constructing, and traversing, this tree.

A mobile telephone network consists of a number of base stations, each
covering an certain area, and a number of mobile telephones. At all times, each
base station needs to know which of the mobile telephones are present in the

P N
, {4

DBMS

Figure 1: A cell in a mobile telephone network

We assume that the base station has the ability to find a certain mobile
telephone by sending out a radio message that the telephone responds to, if
that telephone is present in the area. We call this operation present.

We also assume that the base station can use a different operation, signal_strength,
to determine the strength of the signal received from the telephone.

In this scenario, it can be useful to have multiple implementations of both
these operations. For example, it will often be enough to know that a telephone
was present in the area some time ago, and thus a previously stored value can be
used, but at other times it will be necessary to be more certain, which requires
actually sending a radio message to the mobile telephone to receive a reply.
This is expensive from a battery consumption and frequency utilization point
of view, in addition to the time required.

Therefore we assume that the conceptual operation present has been im-
plemented in three different ways, each with a different performance measure
for time (t) and quality (q):

e pl: the procedure was_present gets the previously stored value (t = 0,
q=20.2)

e p2: search_once sends one radio message (t = 0.2, g = 0.6)

e p3: search_many sends several radio messages (t = 3.0, ¢ = 0.99)

We also assume that the conceptual operation signal_strength has been
implemented in two different ways:

e sl: old_signal_strength gets the previously stored value (t = 0, q =
0.2)

e s2: measure_signal_strength measures the actual signal strength by
sending a radio message and measuring the reply (t = 0.3, q = 0.9)

In this example, radio communication is very slow in comparison with in-
ternal data lookup and calculations. We can therefore assume that internal
operations take time 0.

The quality measure q that is used here varies between 0 (lowest quality)
and 1 (highest quality), and is combined using the function MIN. The starting
value and the default value are both 1.

We also assume that the number of telephones in the database is 100, and
that previous values of present and signal_strength have been stored for 10
of these (for use by p1 and s1).

As an example query, we need to find which of the mobile telephones that
are present in the area but have a signal strength less then 25. Assuming that
the data type telephone and the performance-polymorphic functions present

and signal_strength have been defined, this query can be formulated using
AMOS’ query language, AMOSQL:

select p

for each telephone p

where present(p)

and signal_strength(p) < 25
with t better than 2.0
optimize q;

We want the query to be executed in at most 2 seconds, with the best
possible quality within that time limit. We have therefore defined a constraint
t <= 2.0. We have also declared the quality q as the optimization objective.
This means that the optimizer will attempt to find the execution plan with the
best quality that has an estimated execution time of less than 2 seconds.

The AMOSQL query is compiled into a domain calculus language called
ObjectLog [14], which is a variant of Datalog where facts and Horn Clauses are
augmented with type signatures:

ANsSWeT'telephone P) :-
signal—Strengthtelephone,integer (P) _Gl) &
presenttelephone (P) &
<0bject,object (_G1 5 25) .

The functions in ObjectLog are not only performance-polymorphic, but also
both type-polymorphic in the regular way (notice the subscripts) and binding-
polymorphic (with different implementations depending on whether the argu-
ments are bound or free).

This representation of the query is still declarative and not directly exe-
cutable, since the order among the predicates and the bindings are not deter-
mined. The predicates will be re-ordered by the optimizer, and the polymor-
phic functions will be resolved. The result, the execution plan, will be run as a
nested-loop join.

The query optimizer starts by creating an empty execution plan, which is
used as root of the search tree (figure 2). The space of possible execution plans
will then be traversed as the tree is constructed. In the figure, plan denotes the
list of functions in the partial plan, t denotes the estimated execution time for
the partial plan, and q denotes its quality. Fanout is the expected number of
objects in the result of an operation when the plan is executed. The fanout is
operator-dependent, and fanout is actually treated as yet another performance
dimension in our system.

plan=(),t=0,q=1, fanout =1
Figure 2: The root of the search tree
The optimizer has six choices as the first step in the execution plan: the

operation < (less-than), the three implementations of present, and the two
implementations of signal_strength. So far, no parameters are bound, and

the operation < cannot be executed with two unbound parameters. All the
implementations of present and signal_strength can be executed.

For each of the five partial plans that result from adding one of these op-
erations to the empty plan, t, g and fanout are calculated by looking up the
specified values of these performance dimensions for the operation, and calling
the combination function for that performance dimension. Of the five plans, all
but two will break the time constraint t <= 2.0. Those that don’t are added
to the search tree, which then consists of two partial plans (figure 3).

plan=(),t=0,q=1, fanout =1

plan=(sl),t=0,q=0.2, fanout=10 plan=(pl), t =0, q = 0.2, fanout = 10
Figure 3: The search tree after the first iteration

In the next iteration we continue building on the partial plan with the best
quality q, since this is the optimization objective. In this case both plans have
the same quality, so it doesn’t matter which one is chosen.

We take the plan that consists of the operation s1, and expand it. It al-
ready contains an implementation of signal_strength, so we can expand it
with either the operation < (less-than) or one of the three implementations of
present. p3 would break the time constraint t < 2, so it is not used. The
three new partial plans are added to the search tree (figure 4).

plan=(),t=0,q=1, fanout =1

/N

plan = (s1), t =0, q = 0.2, fanout = 10 plan = (p1), t =0, q = 0.2, fanout = 10

" S

plan = (s1, p2), plan = (s1, p1), plan = (s1, <),
t=10*0.2 =2, q = 0.2, fanout = 10 t=0,q=0.2, fanout = 10 t=0, q=0.2, fanout = 10

Figure 4: The search tree after the second iteration

In the next iteration, the partial plan (p1, s1) is added (figure 5).

In the iteration after that, the partial plan (s1, p2) isexpanded to (s1, p2, <),
which is a complete execution plan (figure 6).

Since we have done a best-first search with respect to the quality measure
q, and we know that q is monotonically worsening as the plan grows, we can

plan=(),t=0,q=1, fanout =1

N

plan = (s1),t=0, q = 0.2, fanout = 10 plan = (p1), t =0, q = 0.2, fanout = 10
plan = (s1, p2), plan = (s1, pl), plan = (s1, <), plan = (pl, s1),

t=2,q=0.2, fanout = 10 t=0, q=0.2, fanout = 10 t=0,q=0.2, fanout = 10 t=0, q=0.2, fanout = 10

Figure 5: The search tree after the third iteration

plan=(),t=0,q=1, fanout = 1

N

plan = (s1), t=0, q = 0.2, fanout = 10 plan = (p1), t =0, q = 0.2, fanout = 10

" S

plan = (s1, p2), plan = (s1, p1), plan = (s1, <), plan = (p1, s1),
t=2,q=0.2, fanout = 10 t=0,q=0.2, fanout = 10 t=0,q=0.2, fanout = 10 t=0,q=0.2, fanout = 10

plan = (s1, p2, <),
t=2,q=0.2, fanout = 10

Figure 6: The search tree after the fourth iteration

return this result. None of the partial plans can be extended to a complete plan
with better quality than this plan.

If we instead use a quality measure with a value that can improve as the
plan grows, the algorithm will continue expanding the partial plans in the search
tree even after finding this plan. This is a difference from the standard dynamic
programming algorithm [23].

A possible simplification to our algorithm is to return the first found com-
plete plan no matter what the monotonicity of the optimization objective. This
plan is within the time limit, and with some probability it does also have a good
quality compared to the other plans (because of the best-first search).

10

5 Further work

The optimization of a declarative query is a combinatorical problem, and perfor-
mance polymorphism adds additional complexity. n predicates can be ordered
in n! different orders, and for each of these predicates that exists in several
performance-polymorphic versions, the expression n! has to be multiplied by
the number of different versions of that predicate.

Since optimization is a hard problem in this sense, and the optimizer itself in
its present implementation is not time-constrained, query optimization and the
resolving of performance-polymorphic predicate implementations is expected to
be done early, at query compile time. In some cases, however, late binding is
advantageous, [4] and then strategies are needed to estimate the performance
of late bound performance-polymorphic function calls. The query optimizer
should automatically choose early binding when possible. When late binding
cannot be avoided the system can optimize each resolvent separately and then
estimate the time to execute the performance-polymorphic call in terms of the
actual time to execute its resolvents. Such partial evaluation of the estimates
of cost and quality would minimize the amount of work that has to be done at
run time.

For complex queries, the exhaustive search done by dynamic programming
will not be feasible. Therefore, alternative optimization algorithms should be in-
vestigated, such as randomized and heuristic algorithms. Among the candidates
are hill-climbing with multiple random starting points and simulated annealing
[6].

The present work leaves the choice of a quality measure, or several quality
measures, to the application implementer. However, different quality measures
can be studied. Among these are the rules of fuzzy logic [28] [3], or some ad-hoc
measure, like the certainty factors of EMYCIN [24].

Timing estimates should be developed for the internal operations on data,
including operations, such as lookup and insertion, on the DBMS’s internal
data structures. These data structures should be modified for an improved and
well-analyzed worst-case behavior.

The cost model that is used to find timing estimates should be verified
against actual, measured execution times [10] [13].

Even if we in this work concentrate on the real-time aspect of performance
polymorphism, where a trade-off in quality is made in order to get the operation
done within a time limit, performance polymorphism is not limited to real-time
applications. If we e. g. are searching for information from sources on the Inter-
net, with different monetary costs and data quality, this can be modeled using
performance polymorphism, and a performance-polymorphic query optimizer
can be used to find an acceptable trade-off between monetary cost and data qual-
ity. In the general case, the implementations of the performance-polymorphic
operations are specified along any number of performance dimensions.

11

6 Conclusions

We have defined the concept of performance-polymorphic queries, and compared
it to other similar approaches.

We have extended a query language with performance-polymorphic queries.

We have developed a performance-polymorphic query optimizer based on
extensions to an object-oriented query optimizer.

We have showed the steps of the performance-polymorphic query optimizer
through a telecom example.

Performance-polymorphic declarative queries can be optimized and executed
by a real-time DBMS, as demonstrated by our optimizer. The technique is
general and can also be used outside the real-time domain, since any number of
performance measures can be defined and handled by the optimizer.

References

[1] H. Branding and A. Buchmann. On providing soft and hard real-time
capabilities in an active DBMS. In International Workshop on Active and
Real-Time Database Systems, Sweden, June 1995. University of Skovde,
Sweden.

[2] U. Dayal et al. The HiPAC project: Combining active databases and timing
constraints. SIGMOD Record, 17(1):51-70, March 1988.

[3] R. Fagin. Combining Fuzzy Information from Multiple Systems. In Pro-
ceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS 1996, pages 216-226, Montréal,
Canada, June 1996. ACM Press.

[4] S. Flodin and T. Risch. Processing Object-Oriented Queries with Invertible
Late Bound Functions. In Proceedings of VLDB-95, 1995.

[5] W.-C. Hou, G. Ozsoyoglu, and B. K. Taneja. Processing aggregate rela-
tional queries with hard time constraints. In Proc. of ACM SIGMOD Conf.
1989, pages 6877, Portland, Oregon, May 1989.

[6] Y. E. Ioannidis and Y. C. Kang. Randomized algorithms for optimizing
large join queries. In Hector Garcia-Molina and H. V. Jagadish, editors,
Proceedings of the 1990 ACM SIGMOD International Conference on Man-
agement of Data, pages 312-321, Atlantic City, NJ, May 1990.

[7] K.Kenny and K.-J-Lin. Measuring and Analyzing Real-Time Performance.
IEEE Software, 8(5):41-49, September 1991.

[8] K. Kenny and K. J. Lin. Structuring large real-time systems with per-
formance polymorphism. In Proc. 11th IEEE Real-Time Systems Symp.,
pages 238—-246, Orlando, FL, December 1990.

12

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

K. Kenny and K.-J. Lin. Implementing and Checking Timing Constraints
in Real-Time Programs. Microprocessing and Microprogramming, (38):477—
484, 1993.

K. B. Kenny and K.-J. Lin. Building Flexible Real-Time Systems Using
the Flex Language. Computer, 24(5):70-78, May 1991.

K.-J. Lin and S. Natarajan. Expressing and Maintaining Timing Con-
straints in FLEX. In Proceedings of the 9th IEEE Real-time Systems Sym-
posium, pages 96-105, Los Alamitos, CA, July 1988. IEEE Computer So-
ciety Press.

K. J. Lin, S. Natarajan, J. W. S. Liu, and T. Krauskopf. Concord: A
system of imprecise computations. In Proc. 1987 IEEE Compsac, October
1987. Japan.

S. Listgarten and M.-A. Neimat. Modelling Costs for a MM-DBMS. In
Proceedings of the First International Workshop on Real-Time Databases,
pages 77-83, Newport Beach, CA, USA, March 1996.

W. Litwin and T. Risch. Main memory oriented optimization of OO queries
using typed datalog with foreign predicates. IEEE Transactions on Knowl-
edge and Data Engineering, 4(6):517-528, December 1992.

J. W. S. Liu, K.-J. Lin, W.-K. Shih, A. Chuang shi Yu, J.-Y. Chung, and
W. Zhao. Algorithms for Scheduling Imprecise Computations. Computer,
24(5):58-68, May 1991.

V. Lortz. An object-oriented real-time database system for multiprocessors.
Technical Report CSE-TR-210-94, University of Michigan, April 1994.

G. Ozsoyoglu, S. Guruswamy, Kaizheng Du, and Wen-Chi Hou. Time-
constrained query processing in CASE-DB. IEEE Transactions on Knowl-
edge and Data Engineering, 7(6):865-884, December 1995.

G. C)zsoyoglu, K. Du, S. Guru swamy, and W.-C. Hou. Processing real-time,
non-aggregate queries with time-constraints in CASE-DB. In F. Golshani,
editor, Proceedings of the International Conference on Data Engineering,
volume 8, pages 410-417, Los Alamitos, CA, February 1992. IEEE Com-
puter Society Press.

T. Padron-McCarthy and T. Risch. Performance-Polymorphic Execution
of Real-Time Queries. In Proceedings of the First International Workshop
on Real-Time Databases, pages 50-53, Newport Beach, CA, USA, March
1996.

J. J. Prichard, L. C. DiPippo, J. Peckham, and V. F. Wolfe. RTSORAC:
A real-time object-oriented database model. Lecture Notes in Computer
Science, 856:601-610, 1994.

13

[21] K. Ramamritham. Real-time databases. Distributed and Parallel
Databases, 1(2):199-226, April 1993.

[22] K. Schwan, P. Gopinath, and W. Bo. CHAOS - Kernel support for objects
in the real-time domain. IEEE Transactions on Computers, 36(8):904-916,
August 1987.

[23] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access Path Selection in a Relational Database Management System.
In Proc. of SIGMOD Conf. 1979, pages 23-34, Boston, MA, 1979.

[24] E. H. Shortliffe. Computer-Based Medical Consultations: MYCIN.
Elsevier /North-Holland, Amsterdam, London, New York, 1976.

[25] M. Skold, E. Falkenroth, and T. Risch. Rule Contexts in Active Databases
— A Mechanism for Dynamic Rule Grouping. In RIDS’95 (Rules in
Database Systems), Athens, Greece, September 1995.

[26] M. Skéld and T. Risch. Using partial differencing for efficient monitoring of
deferred complex rule conditions. In Proceedings of the 12th International
Conference on Data Engineering, pages 392—401, Washington - Brussels -
Tokyo, February 1996. IEEE Computer Society.

[27] J. A. Stankovic. Misconceptions About Real-Time Computing. A Seriuos
Problem for Next-Generation Systems. Computer, 21(10):10-19, October
1988.

[28] L. A. Zadeh. Fuzzy Sets. Information and Control, 8(3):338-353, June
1965.

[29] L. Zhou, E. A. Rundensteiner, and K. G. Shin. Schema evolution for real-
time object-oriented databases. Technical Report CSE-TR-199-94, Univer-
sity of Michigan, March 1994.

14

