
Journal of Intelligent Information Systems 12, 165–190 (1999)
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Functional Query Optimization over
Object-Oriented Views for Data Integration

VANJA JOSIFOVSKI vanja@ida.liu.se
TORE RISCH torri@ida.liu.se
Laboratory for Engineering Databases, Linköping University, 58183 Link̈oping, Sweden

Editors: Peter M.D. Gray, Peter J.H. King and Larry Kevschberg

Abstract. AMOS is a mediator system that supports passive (non-intrusive) integration of data from heteroge-
neous and autonomous data sources. It is based on a functional data model and a declarative functional query
language AMOSQL. Foreign data sources, e.g., relational databases, text files, or other types of data sources can
be wrapped with AMOS mediators, making them accessible through AMOSQL. AMOS mediators can commu-
nicate among each other through the multi-database constructs of AMOSQL that allow definition of functional
queries and OO views accessing other AMOS servers. The integrated views can contain both functions and types
derived from the data sources. Furthermore, local data associated with these view definitions may be stored in the
mediator database. This paper describes AMOS’ multi-database query facilities and their optimization techniques.
Calculus-based function transformations are used to generate minimal query expressions before the query decom-
position and cost-based algebraic optimization steps take place. Object identifier (OID) generation is used for
correctly representing derived objects in the mediators. A selective OID generation mechanism avoids overhead
by generating in the mediator OIDs only for those derived objects that are either needed during the processing of a
query or have associated local data in the mediator database. The validity of the derived objects that are assigned
OIDs and the completeness of queries to the views are guaranteed by system generated predicates added to the
queries.

Keywords: heterogeneous data integration, object-oriented views, query optimization

1. Introduction

The increasingly distributed modern computing environment often requires users to retrieve
relevant data from many sources and present them in a comprehensible form. The user
should then be provided with a location transparent and semantically coherent view of the
data in the different data sources. In themediatorapproach, described in (Wiederhold, 1992),
data from multiple data sources can be accessed and merged through mediator software that
exploits knowledge about the subsystems.

The purpose of the AMOS project is to develop and demonstrate a mediator architecture
for supporting information systems where applications and users combine and analyze data
from many different data sources. A data source can be a conventional database but also data
exchange files, text files, programs that collect measurements, or even programs that perform
computations and other services. The data sources are distributed over a communication
network. Application areas for this kind of architecture include engineering, telecom, and
decision support.

166 JOSIFOVSKI AND RISCH

In the AMOS architecture the applications access the data sources through one or several
mediator databases. A mediator database presents high-level abstractions (or views) of
combinations of data from data sources using aCommon Data Model(CDM). This makes
the combined data accessible through high-level queries and views, and relieves the user
as well as the application programmer from details of the data sources. Furthermore the
mediator databases can also store local application-oriented data that is not tied to any
particular data source, but rather to the mediator itself. For example, if the mediator extracts
data for a set of customers from some company database, it is also desirable to be able to
store data about the local sales to these customers locally in the mediator. The mediator
views becomecapacity augmenting views(Rundensteiner et al., 1996) and we will describe
how queries over such views are processed in AMOS.

The data model in AMOS, which is used both as a CDM for mediation and to store
local data, is an extension of the DAPLEX (Shipman, 1981) functional data model with
object-orientation and mediation primitives. Functional and OO views provide the user with
a unified appearance of data in different data sources.

The mediation requires AMOS to manage views where types are defined in terms of
meta-data of the data sources. This requires the query language of AMOS, AMOSQL, to
have mediation primitives permitting types to be derived from other types. Analogously,
the system also needs to manage OIDs where the OIDs are derived from data of the data
sources. Furthermore, since AMOS also permits local data to be stored in the mediator it
needs to both manage local OIDs and have means to mediate between local and derived
objects. The processing of declarative queries in this environment requires several novel
query-processing techniques to be described here. The paper elaborates the preliminary
work in (Josifovski and Risch, 1998).

The approach to database mediation presented here is based onpassiveevaluation tech-
niques, assuming no active functionality in the data sources. With the passive approach, the
mediator database constructs complete and consistent answers to the queries over the views
at the time when the queries are issued. Furthermore, our approach is based on describing
integrated views using declarative functions. The system provides an efficient view support
mechanism by combining the optimization of the view definitions with the user-specified
query parts. By contrast, theactive approachrequires active database functionality in the
data sources to notify the mediator when there are changes that influence view definitions.
We show that our approach can also be used with the active approach with some minor
modifications.

AMOS’ query optimizer is applied when functions are defined. Ad hoc queries in AMOS
are regarded as function definitions too. The paper describes query transformation tech-
niques which, for a certain class of queries (function definitions), allow for a reduction of the
number of function calls by applying calculus-based optimizations. The calculus-based op-
timizations remove redundant computations by merging system-specified and user-specified
functions in the query. The cost based optimization executed later in the query processing
is concerned with the order of the execution rather than the removal of redundant compu-
tations.

To integrate data from many data sources distributed over the network, many AMOS
mediator servers can run in different locations and communicate with each other in a

FUNCTIONAL QUERY OPTIMIZATION 167

client-server or peer-to-peer fashion. The cost of data communication between AMOS
servers can however be high, and therefore the query optimizer tries to minimize the com-
munication cost by query decomposition when constructing distributed execution plans.
This paper concentrates on the calculus optimizations based on the functional paradigm
and will only summarize the query decomposition process.

Our work should be contrasted with the traditional approach where the view support
tasks are performed by procedural system code. In that approach, used, for example, in
(Rundensteiner et al., 1996; Fang et al., 1993), most view support tasks are performed
on an individual instance level, and the optimizations described here are therefore not
applicable.

The paper is organized as follows. Section 2 gives an overview of the AMOS system.
Section 3 introduces our architecture for database mediation based on functional and OO
views. Section 4 describes the query transformation techniques used for processing queries
over the views and how query rewriting reduces the queries. Section 5 discusses related
work, and Section 6 summarizes.

2. Overview of the AMOS system

In the mediator approach of AMOS, atranslatoris developed for each kind of data source.
A translator is an AMOS module that processes data from data sources of a particular class,
such as relational databases (RDBs), object databases (ODBs), files, exchange formats,
etc. A translator includes query primitives that translate data from its particular data model
to the functional data model of AMOS. Using these translation primitives, OO views are
defined for each data source. To process queries to these views a translator has knowledge
of how to process functional queries that access its particular kind of data source.

For example, Fahl and Risch (1997) describes how relational data sources are wrapped
using a relational AMOS translator. The relational translator contains knowledge about
the capabilities of relational databases, such as their data model, their query processing
capabilities, and how to efficiently map relational data to the CDM.

To resolve semantic heterogeneity between the translated views, integrated views are
defined in which the semantic differences between data sources are resolved using mediator
primitives that integrate semantically heterogeneous data. We will describe how to process
queries to integrated views that integrate functional databases where semantically equivalent
information is modeled differently.

The data model of AMOS has three basic constructs:objects, types(i.e., classes), and
functions. Objects model entities in the domain of interest. An object can be classified into
one or more types which makes the objectinstancesof those types. The set of all instances of
a type is called theextentof the type. Object properties and their relationships are modeled
by functions.

The types in AMOS are divided intoliteral andsurrogatetypes. The literal types, e.g.,
int, real andstring, have a fixed (possibly infinite) extent and self identifying instances.
Each instance of a surrogate type is identified by a unique, system-generated object identifier
(OID). The types are organized in a multiple inheritance, supertype/subtype hierarchy that

168 JOSIFOVSKI AND RISCH

sets constraints on the classification of the objects. One example of such a constraint is:
If an object is an instance of a type, then it is also an instance of all the supertypes of
that type; conversely, the extent of a type is a subset of the extent of a supertype of that
type (extent-subset semantics). The AMOS data model supports multiple inheritance, but
requires an object to have a single most specific type.

The functions are divided by their implementations into three groups. The extent of a
storedfunction is physically stored in the database.Derived functions are implemented
in AMOS’ query language AMOSQL.Foreign functions are implemented in some other
programming language, e.g., Lisp or C++. Each foreign function can have several associated
access paths and, to help the query processor, each access path has an associated cost and
selectivity function (Litwin and Risch, 1992). This mechanism is calledmulti-directional
foreign functions.

The AMOSQL query language is based on the OSQL (Lyngbaek et al., 1991) language
with extensions of mediation primitives, multi-directional foreign functions (Litwin and
Risch, 1992), overloading, late binding (Flodin and Risch, 1995), active rules (Sk¨old and
Risch, 1996), etc. It contains data modeling constructs as well as querying constructs. The
following example illustrates the data definition constructs of AMOSQL by defining a type
personand three stored functions over this type:hobbyreturning a bag of character strings,
namereturning a single character string, andparentreturning a bag ofpersonobjects:

create type person;
create function hobby(person) -> bag of string as stored;
create function name(person) -> string as stored;
create function parent(person) -> bag of person as stored;
. . .

The general syntax for AMOSQL queries is:

select <result>
from <type declarations for local variables>
where <condition>

The following example illustrates OO views in AMOSQL. Assuming the functions
parent, nameandhobbyfrom above, it defines a derived function that retrieves the names
of those children of a person having ’sailing’ as a hobby:

create function sailing_children(person p) -> string as
select name(c)

from person c
where parent(c) = p

and hobby(c) = ’sailing’;

The query optimizer optimizes the function body and associates with the function the
optimized query execution plan. Since functions are used to represent properties of objects
(i.e., methods) as e.g.,sailing children, the function bodies are always optimized assuming
that the variables in the function arguments areboundwhile the other variables are initially

FUNCTIONAL QUERY OPTIMIZATION 169

Figure 1. Query processing in AMOS.

unbound but will be assigned values when the function is executed. The term bound indicates
that the variable has an assigned value before the execution of the function takes place.

The ad hoc queries in AMOSQL are treated as functions without arguments. For example,
assume the following query that retrieves the names of the parents of all persons having
’sailing’ as hobby (on the left):

select p, name(parent(p)) create function query()->
from person p <person, string>
where hobby(p) = ’sailing’; as select p, name(parent(p))

from person p
where hobby(p) = ’sailing’;

AMOS processes this query by generating an anonymous function with no arguments,
query(), which is executed immediately and then discarded (on the right).

Figure 1, presents an overview of the query processing in AMOS. The first five steps, also
calledquery compilationsteps, translate the body of a function expressed in AMOSQL to a
query execution plan which is stored with the function. To illustrate the query compilation
we use the ad hoc query above.

From the parsed query tree, the calculus generator generates anobject calculusexpression.
In the object calculus expressions, function symbols are annotated with their signatures. The
left hand side of equality predicates in the calculus can be a single variable or a constant. It
can also be a tuple of variables or constants when the function returns a tuple as a result. The
right hand side of a predicate can be an unnested function call, a variable, or a constant. The
head of the calculus query expression contains the result variables. Each derived function
has an associated function body represented as a calculus expression. We note here that the
calculus expressions can be viewed as type annotated list comprehensions. The calculus
representation of the ad hoc query above is:

{p, nm|
p = Personnil→person() ∧
pa= parentperson→person(p) ∧
nm= nameperson→string(pa) ∧
′sailing′ = hobbyperson→string(p)}

170 JOSIFOVSKI AND RISCH

The first predicate in the expression is inserted by the system to assert the type of the
variable p. This type check predicatedefines that the variablep is bound to one of the
objects returned by theextent functionfor typePersonnamed alsoPerson(), which returns
all the instances its type. The variablesnmandpaare generated by the system.

AMOS supports overriding and overloading of functions on the types of their arguments
and results, i.e., their signatures. Each function name refers to agenericfunction which
can have several associatedtype resolvedfunctions annotated with their signatures. During
calculus generation each generic function call in a query is substituted by a type resolved
one. Late binding is used for the calls which, due to polymorphism, cannot be resolved
during query compilation (Flodin and Risch, 1995). However, our examples always assume
early binding.

Next, the calculus optimizer applies rewrite rules to reduce the number of predicates. In
the example, it removes the type check predicate:

{p, nm|
pa= parentperson→person(p) ∧
nm= nameperson→string(pa) ∧
′sailing′ = hobbyperson→string(p)}

The type check predicate can be removed becausep is used in a stored function (parentor
hobby) with an argument or result of typeperson. The referential integrity system of the
stored functions constrain the instances of a stored function to be of correct type (Litwin
and Risch, 1992). If there is no such constraining function the query processor will retain
type check predicates to guarantee that derived functions return type correct values. If the
argument types of the functionsparentandhobbyhad been supertypes ofperson, the type
check forp would have remained in the query. As will be shown, such type check removal
is particularly important for multi-database queries where type checks often need to cross
database boundaries and are expensive.

Because the example query is over local types, it passes unaffected through the query
decomposition stage and is processed only by the cost-based single-site algebra optimizer.
If some part of the query is to be executed by another AMOS server, the system will
use primitives that allow for sending function definitions between the servers for local
optimization and evaluation. These functions are generated by the query decomposer which
is based on combinations of heuristic and dynamic programming enumeration strategies.
Heuristics are used to divide the query (i.e., function) into a set of single-site functions.
Then, dynamic programming is used to schedule the execution of these functions in order to
obtain an execution plan distributed over multiple AMOS systems. Query decomposition
is outside the scope of the paper and will not be elaborated.

The object calculus query representation is declarative and does not prescribe a certain
evaluation order of the calculus predicates describing function calls. By contrast, the ex-
pressions in the query execution plans are represented in an object algebra (Fahl and Risch,
1997) having a well defined evaluation order.

An interested reader is referred to (Flodin et al., 1998) for a more detailed description
of the AMOS system and to (Litwin and Risch, 1992; Fahl and Risch, 1997; Flodin and
Risch, 1995) for more on the query processing in AMOS.

FUNCTIONAL QUERY OPTIMIZATION 171

3. Object-oriented view system design

This section presents the design principles behind the OO view mechanism for data integra-
tion in AMOS. Views as a tool for data abstraction and restructuring have been extensively
studied for relational databases. The design of a view mechanism in an OO environment
is more complex in particular with regards to inheritance and object identity. Inheritance
and views have common aims (i.e., data abstraction and code reuse) and therefore the two
mechanisms must be combined in a semantically clear manner. Two important issues for
OO view system design are the format of the OIDs of the view objects and their life span.
Additional issues for views defined over data in multiple data sources are non-intrusive
mechanisms for view maintenance, managing semantic heterogeneity, and representation
of OIDs in a distributed environment.

3.1. Derived types

To provide data integration features in AMOS, we extended the type system with a construct
namedderived type(DT). Data integration by DTs is performed by building a hierarchy of
DTs based on local types and types imported from other AMOS systems. DTs are defined
by supertyping and subtyping from other types in the type hierarchy. The traditional in-
heritance mechanism, where the corresponding instances of an object in the super/subtypes
are identified by the same OID, is extended with declarative specification of the correspon-
dence between the instances of the derived super/subtypes. Integration by sub/supertyping
is related to the mechanisms in some other systems as, e.g., the integrated views and column
adding in the Pegasus system (Du and Shan, 1996), but is better suited for use in an OO
environment.

Figure 2 shows an example of integration by subtyping. In the example, the data stored in
an employee database is integrated with the data from a database with sporting information.
The solid ovals represent ordinary types while the dashed ovals are DTs. Stored functions

Figure 2. Integration by subtyping.

172 JOSIFOVSKI AND RISCH

defined over the types in the figure are shown beside the type ovals. The typesUser Defined,
andDerivedare system-defined and part of AMOS’ meta-model. They are defined in both
databases, but are not shown inSport Databasefor simplicity. There is a typePersonin
both databases storing information about a set of persons. The definition of the derived
portion of the type hierarchy in the example is done as follows. First, the DTEmpis created
to represent the persons having a pay record. The DTManageris a subtype of the DTEmp
representing the employees for which the stored functionpositionhas the value ’Manager’.
Type importation is done by subtyping from types in other database mediators, as illustrated
by the DTSportyEmp. This DT is defined as a subtype of the local DTEmpand the type
Personin the sport database. Its instances represent persons having an instance of typeEmp
in the employee database, and of typePersonin the sport database.

The figure also illustrates some of our design choices. First, to be able to do data inte-
gration by subtyping, a DT needs multiple inheritance. Second, it can be noticed in the
example that stored functions (e.g.,sport bonusin SportyEmp) can be defined over DTs,
which makes the DTs a capacity-augmented view mechanism (Rundensteiner et al., 1996).
DTs can be used in function definitions as ordinary types and any function can have DTs
as argument or result domains.

3.2. Generation of OIDs for the DT instances

There are three basic choices for the format of OIDs representing DT instances. The first
is to use the OIDs from the corresponding supertype objects (Santos, 1994). This is not
suitable in our case because it is not compatible with multiple inheritance. The second
alternative is to use a stored query expression instead of an OID and construct the required
DT instances by evaluating this expression (Kelley et al., 1995). With that approach, it would
be difficult to have functions whose argument domain is a DT since it is not convenient
to manipulate expressions as database objects. The third alternative, is to generate new
unique OIDs for the DT instances (Rundensteiner et al., 1996). With this method, the same
conceptual object (i.e., representing the same real world entity) is represented by different
OIDs in different types. Therefore, to be able to evaluate inherited functions over the DT
instances, their OIDs need to be mapped to the OIDs of the corresponding instances of
the type over which a function was defined, by a process namedOID coercion(in the text
we use interchangeably the terms “OID coercion” and “instance coercion”). The cost of
OID coercion is the main weakness of this approach. Nevertheless, we chose this approach
for the following two reasons: First, the major cost of a query is in accessing the data
sources and shipping data among the mediators, and not in the coercion. In AMOS, the
hash tables used in the coercion are stored in a main-memory database which makes the
coercion inexpensive. Second, expressing the coercion by predicates permits some query
optimization that further reduces the coercion cost, as described in the next section.

Although the generation of OIDs for the DT instances allows for using the DTs as domains
for function arguments and results, most queries over DTs require only a few or no OIDs
and it would be a severe performance impairment to generate OIDs for the entire extents
of all the DTs in each query. The OID generation cost includes the creation of a new OID
and the storage of the coercion information in internal tables. To minimize this cost, and

FUNCTIONAL QUERY OPTIMIZATION 173

to avoid unnecessary creation of OIDs, the query processor analyses the query to find out
which query variables represent instances that need to be assigned OIDs. OID generation
predicates are added only for query variables in the query result or used as arguments of
foreign functions. Other queries are transformed so no OID generation is needed, as shown
below. The query performance is thus not degraded by the OID generation mechanism. In
queries requiring DT OIDs, these are generated selectively for those instances satisfying
the rest of the query predicates, thus generating OIDs for only parts of the DT extents, in
order to avoid unnecessary performance and storage overheads.

DT OIDs stored in local functions can be used in queries issued after their generation.
Then the system has to assert that the instances they represent still comply with the declara-
tive conditions stated in the DT definition, i.e., that they are stillvalid. Assuming non-active
and autonomous data sources, the system has to add run-time checks in the queries to check
the validity of those DT instances that are previously imported from external data sources
and stored in local functions in the mediator. These validation checks must access the cor-
responding data sources to check the validity of the exported DT instances. If the query
does not access imported DT OIDs stored locally, the instances are retrieved directly from
the data sources and no validation is needed.

The validation checks could be removed if an active database capability is provided in data
sources to notify the mediator when instances become invalid, similar to the interdatabase
query invalidation mechanism described in (Grufman et al., 1997). The gain is faster query
execution at the expense of slower updates. This is favourable for data sources with low
update frequences.

The validity of a DT instance depends on the existence and validity of the corresponding
supertype instances whose OIDs are stored in the coercion tables. When a DT instance is
validated, the validation condition is executed only over these instances. This definition
of the validity of a DT instance based on a validation condition over a tuple of supertype
OIDs, is consistent with the OO structure of the database, and is efficient to implement.

An instance is present in the mediator until it is used in a query where it fails the validation
test. A garbage collection of the DT instances can be implemented to periodically run the
validation test, deleting the instances not satisfying the test.

3.3. Derived types and inheritance

An important issue in designing an OO view system is the placement of the DTs in the
type hierarchy. The obvious approach would be to place the DTs in the same hierarchy as
the ordinary types. However, mixing freely the DTs and ordinary types in a type hierarchy
can lead to semantically inconsistent hierarchies (Kim and Kelley, 1995). In order to
provide the user with powerful modeling capabilities along with a semantically consistent
inheritance hierarchy, the ordinary and derived types in AMOS are placed in a single type
hierarchy where it is not allowed to have an ordinary type as a subtype of a DT. This rule
preserves the extent-subset semantics for all types in the hierarchy. If DTs were allowed
to be supertypes of ordinary types, due to the declarative specification of the DTs, it is not
possible to guarantee that each instance of the ordinary type has a corresponding instance
in its supertypes (Kim and Kelley, 1995).

174 JOSIFOVSKI AND RISCH

Figure 3. Integration by supertyping.

In figure 2 the derived part of the type hierarchy is constructed by subtyping. The AMOS
integration framework also allows definition of DTs as explicit supertypes of other DTs.
Although processing of queries over this kind of DTs is outside the scope of this paper,
to complete the discussion on the integration framework, figure 3 presents an example of
integration by supertyping. The example shows a definition of an integrated view of two
person databases DB1 and DB2. The data in both databases is structured in two user-defined
types: a type namedPersonwhich contains data about a set of persons, and its subtype
Studentrepresenting the persons that are students. The example establishes thederived
supertypes IPersonand IStud in DB1 to provide an integrated view of the data in the
databases. These types are supertypes of the typeslocPandlocSrepresenting the instances
from the typesPersonandStudentin DB1 that participate in the integration. The types
imPandimSrepresent data imported into DB1 from the typesPersonandStudentin DB2.
Derived supertypes can be subtyped as other DTs. In this example the typeJuniorrepresents
a specialization of the typeIStudcontaining all junior students. The same schema was used
in both databases in order to simplify the example. The presented integration framework
can handle arbitrary schema heterogeneity by defining mappings using derived sub- and
supertypes and derived functions.

3.4. Derived subtyping language constructs

For derived subtypes, AMOSQL has the following type definition construct:

CREATE TYPE type_name
SUBTYPE OF sut1, sut2, ...

COMPOSE compose_expression
VALIDATE validate_expression

FUNCTIONAL QUERY OPTIMIZATION 175

HIDE fn1, fn2, ...
KEY Type1 key1 [= exp1], ...

END_TYPEDEF;

Thesubtype ofclause establishes the DT as a subtype of other types in the hierarchy. The
composeexpressionand validateexpressionare boolean expressions which when con-
joined give the condition which a combination of supertype instances need to satisfy to
compose a new DT object. The condition incomposeexpressionis evaluated only when an
OID is generated for a new instance of a DT. By contrast, the condition specified with the
validateexpressionis also evaluated each time a query accesses OIDs of the DT stored
locally in the mediator. The splitting of the composition and validation expressions was
motivated by the observation that data integration is often performed based on some key
functions that do not change over the lifetime of the instance (i.e., that are functionally
dependent on the OIDs of the integrated instances). In these cases, it is not necessary
to evaluate the full condition every time a DT instance is validated, but instead only the
validateexpressionis evaluated over the corresponding instances of the supertypes. Alter-
natively, in order to avoid the burden of this splitting, the user could specify the condition as
one expression, and then it could be separated by the system into composition and validation
expressions based on the key information of the stored and the foreign functions used in the
expression. The drawback of that approach is that it cannot detect conditions over non-key
function that do not change during the existence of an instance (e.g., that the age of a person
has passed some limit). In the following example, defining three of the DTs in figure 2, the
condition expression is divided into the two parts:

create type Emp
subtype of Person P, PayRecord PR
compose ssn(P) = ssn(PR)
validate status(P) = ’working’;

create type Sporty_Emp create type Junior
subtype of Person@SPORT_DB p, Emp e subtype of Sporty_Emp se
compose ssn(e) = adjust_ssn(socsecn(p)); validate age(se) > 26;

The functionadjust ssnconverts a social security number stored inSPORTDB to the
format used inEMPLOYEEDB. This can be any kind of function defined locally over
integers and that returns integers.

There is one instance of typeEmp for each person having a pay record and the status
’working’. Since the social security number does not change during the existence of a
Person, the conditions involving the functionsssnandsocsecnare in thecomposeclause
of the definitions. On the other hand, the status and the age of a person can change and
therefore the conditions over these functions are placed in thevalidateclauses.

The clauseshideandproperties, which for brevity were not used in the examples, serve
to list the functions of the supertypes not inherited by the DT, and to define new stored
functions, respectively.

176 JOSIFOVSKI AND RISCH

4. Querying derived types

DTs differ from ordinary types in a number of ways. First, the extents of DTs are not stored
in the database as the extents of ordinary types, but are defined by declarative functions.
Next, if a function inherited by a DT is called in a query, the system needs to coerce
the argument DT OIDs to the corresponding OIDs of the supertype where the function is
defined. Here, although the instances have different OIDs, they correspond to the same
conceptual object. Finally, the system must check the validity of the DT OIDs stored in
local functions, when used after their creation.

These differences make the queries over DTs more complex and time consuming than
the queries over ordinary types. Naive evaluation of queries over the DTs, where the DTs
are treated in the same way as the ordinary AMOS types, leads to a very inefficient query
evaluation strategy. It would first retrieve the extents of the DTs in the query, generate OIDs
for them, and then apply the selection condition of the query. Arguments to function calls
used in the query must be coerced correctly.

An analysis of the execution plans showed that most of the overhead can be avoided by
introducing query transformations to:

• avoid unnecessary OID generation,
• reduce the coercion to a minimum,
• allow for early application of selections in order to process only portions of the DT

extents, and
• reuse OIDs stored in local functions instead of regenerating DT extents.

In order to achieve these goals, the OO views definitions are translated into system defined
derived functions. The calculus generator analyses the query and, if the query is specified
over DTs, inserts calls to these functions into the calculus representation of the query.
Many OO view support tasks traverse the type hierarchy and have common subtasks. The
predicate representation of the derived function bodies allows these common subtasks to be
identified and eliminated from the query together with overlaps between user-defined and
system-inserted predicates. Of particular interest in a view mechanism for data integration
is to minimize operations that cross database boundaries in communication with other
databases, or that access external data sources. Furthermore, the predicate-based view
support approach allows selections from different query parts, such as user specified and
DT subtyping conditions, to be unified, optimized together, and applied as close as possible
to the data sources. When a data source supports selection application (e.g., relational
databases), the selections can be applied in the data source itself (Fahl and Risch, 1997).

Although the common subexpression elimination mechanism allows for substantial re-
ductions of queries over DTs, this alone does not remove all the redundances in the queries.
Therefore, two additional DT specific transformations are introduced to further eliminate
redundant computation: First, queries over DTs having all functions inherited from their
supertypes are transformed into queries over their supertypes. This eliminates all OID gener-
ation and coercion, as will be shown. Second, for queries accessing locally stored functions
over DTs the system tries to reuse the locally stored DT OIDs instead of naively regener-
ating the DT extent again. The presence of a locally stored function limits the instances of

FUNCTIONAL QUERY OPTIMIZATION 177

interest to those stored in the function. However, since the OIDs stored in the local function
were generated in previous transactions, and because of the autonomy of the data sources,
the system needs to make sure that these OIDs still represent valid DT instances satisfying
the validation condition of the DT. This validation could be avoided in some cases by, e.g.,
the distributed query invalidation mechanism of (Grufman et al., 1997).

In the rest of this section we will first describe how the DTs are modeled by AMOS
types and derived functions. Then, the query transformations are described in detail using
example queries entered in theEMPLOYEEDB mediator, over the views defined in the
previous section. The section concludes with an algorithm for the calculus transformations.

4.1. Modeling derived types and subtyping from other mediators

Each DT in AMOS is implemented by an ordinary local type namedimplementation type.
The system automatically generates storedcoercion functionsover the implementation
types to represent the mappings between those DT instances assigned OIDs and the tuples of
corresponding instances of the DT’s direct supertypes. All coercion functions are defined by
the generic functioncoerce, overloaded on both its argument and result. Coercion between
an instance of a DT and its indirect supertypes is done by composition of coercion functions.
The coercion functions are not accessible by the user. They are maintained by the system
and used in system-defined functions generated from the DT definitions. For each DT the
system generates three such functions: Anextent function, a validation function, and an
OID generation function. Informally, the extent function contains the subtyping condition
and a call to the OID generation function. If invoked naively, it would generate all the
tuples of the supertype objects that compose an object of the DT, and then invoke the
OID generation function over these tuples to obtain OIDs for the DT instances. The
OID generation function returns an already generated OID for each particular tuple of
supertype instances, if such exists; otherwise, it creates a new OID and stores it in the
coercion functions together with the tuple of supertype OIDs. Unlike the extent function,
which contains the entire subtyping condition, the validation function contains only the DT
validation condition. The validation function is used to check if a DT OID still represents
a valid instance when used after its creation.

Subtypes inheriting from other AMOS systems make the basis for the data integration. In
figure 2, an example was presented in which the typeSportyEmpin theEmployeedatabase
inherits from the typePersonin theSportdatabase. In the implementation, for each distinct
imported type (distinguished by the type and database names) a correspondingproxy type
is created. All proxy types are subtypes of the typeProxy. For example, there is a proxy
type,P Person, defined for the typePersonfrom the sport database.

After defining a proxy type, the system retrieves the signatures of the functions defined
over the type in the exporting mediator. If the argument and the result types of a remote
function are known to the importing mediator (i.e., if they are system-defined or previously
imported user-defined types) a local correspondingproxy functionis defined. The proxy
function has the same signature as the remote function and an empty body. Although
the proxy functions and the proxy type extent functions are treated as ordinary functions
throughout the calculus oriented query processing steps, they are not executed as ordinary

178 JOSIFOVSKI AND RISCH

functions. The decomposition algorithm groups them, and schedules them for execution
in other AMOS mediators. In the calculus-based query processing phases, they provide
information for type checking and query transformation as described below.

For each proxy type, a system-defined stored function is generated that maps instances
of the proxy type to instances of typeforeign oid. This system type is used to represent
the OIDs received from other AMOS mediators when parts of query plans are evaluated
there. The OIDs are transmitted and stored in their native format without origin or typing
information added. The OIDs generated by an AMOS mediator are unique only within that
mediator. The system makes no effort to generate “universal OIDs” unique in all mediators,
like, for example, in the CORBA architecture (Object Management Group, 1993). In a
CORBA environment, OIDs represent services and are designed to be transmitted alone.
Therefore every OID contains all the information needed to identify its origin. In a bulk
data processing environment such as ours, the OIDs are passed in large collections having
few different types and a common origin. Consequently, it is advantageous to condense the
meta-information about the structure (types) and the origin of the transmitted OIDs with
the transmission protocol. When a mediator receives OIDs from another mediator it stores
them in their native format, while the meta-information is captured in the mediator’s schema
and the functions generated from the DT definitions. As a result of this kind of architecture,
imported OIDs are stored in the mediator, but they cannot be interpreted there. The user
does not have direct access to the imported OIDs, but only to their proxy type instances.
The system uses the imported OIDs only in operations executed in the mediator where they
originate from. The main benefits from this approach are simpler OID generation method,
lower communication cost, and lower storage overhead due to smaller OIDs.

4.2. DT extent function and template

The extent function of a DT is a system-generated derived function. The general form of
the extent function is:

CREATE FUNCTION dt() -> dt AS
SELECT genOID(s1, s2, ..., sn)
FROM sut1 s1 , sut2 s2 ... sutn sn
WHERE dt_compose_expression(s1, s2, ..., sn) AND

dt_validate_expression(s1, s2, ..., sn);

where “dt” is the name of the DT,sut1. . . sutnare the supertypes from thesubtype ofclause,
and genOID<sut1,sut2,...sutn>→dt is the OID generation function for the DT.Dt compose-
expressionanddt validateexpressionare copied from the DT definition. If we represent

these expressions as unexpanded derived functions the calculus form of the body of the
extent function would be:

{r |
s1= sut1nil→sut1() ∧
s2= sut2nil→sut2() ∧

FUNCTIONAL QUERY OPTIMIZATION 179

. . .

dt composeexpressionsut1,sut2...sutn→boolean(s1, s2, s3, . . . , sn) ∧
dt validateexpressionsut1,sut2...sutn→boolean(s1, s2, s3, . . . , sn) ∧
r = genOIDsut1,sut2...sutn→dt(s1, s2, s3, . . . , sn)}

Now we consider the problem of calculating the result of a function inherited by a DT. To
illustrate the steps needed for this we use the DTEmpand the functionnameperson→string

from the example above, although the same principles apply for any DT and any inherited
function. The query on the left below retrieves the names of all the employees; the calculus
generated for this query is given on the right:

{n |
select name(se) e= Emp()∧
from Emp se; p = coerceemp→person(e)

n = nameperson→string(p)}

The extent functionEmp() produces the instances of the DTEmp. The stored functionname
stores OIDs of typePerson. Since the instances of the DTEmphave OIDs different from
the OIDs of the corresponding instances in the DTPerson, they need to be coerced before
applying the functionnamedefined overPersoninstances. Expanding theEmp() extent
function produces the following:

{n |
p = Personnil→person() ∧
pr = PayRecnil→payrec() ∧
empcomposeexpression<person,payrec>→boolean(p, pr) ∧
empvalidateexpression<person,payrec>→boolean(p, pr) ∧
p = coerceemp→person(e) ∧
n = nameperson→string(p) ∧
e= genOID<person,payrec>→emp(p, pr)}

Notice that this query can be simplified by removing calls to the OID generation and coercion
functions since the variablee is not used in the result.

In this simple example it is easy to spot and remove the unnecessary predicates. In a
more elaborate example with several nested DT extent and coercion functions it would be
difficult to do these removals. Therefore, for this type of optimization we have developed
an approach in which the optimized query is generated by a set of transformations from the
initial query calculus representation. During these transformations, instead of a complete
extent function, anextent template(ET) is used. For each DT, an ET is generated from
the calculus representation of the extent function. ETs have signatures and bodies. The
signature contains a name, a list ofsubstitute variables(SVs), and list of types associated
with the SVs. The SVs are the variables used as arguments of the OID generation function

180 JOSIFOVSKI AND RISCH

in the extent function (s1 . . . sn in the general form of the extent function above). There is
one SV for each supertype of the DT. The body is a predicate template consisting of the
extent function body without the OID generation predicate.

The term ’template’ is used instead of ’function’ because the ETs do not satisfy all
the formal requirements to be classified as functions. Templates are used only for function
transformations and have only calculus representations which cannot be executed. Also, the
template expansion rules differ from the rules used for function expansion. The following
example shows the ETs for the DTsSportyEmpandJuniorandEmpin figure 2:

signature: signature:
ET sportyemp<P Person,emp> : px, e ET juniorsporty emp : se
body: body:
px= P Personnil→P Person()∧ se= ET sportyemp<P Person,emp> ∧
e= ET emp<person,payrec> ∧ a1= ageperson→int(se)∧

sssn= socsecP Person→string(px)∧ 26 >a1
essn= ssnperson→int(e)∧
essn= adjust ssnstring→int(sssn) signature:

ET emp<person,payrec> : p, pr
body:
assn= ssnpayrec→int(pr)∧
assn= ssnperson→int(p)∧
′working′ = statusperson→string(p)

By convention, ET names begin with theETprefix. Each template name is subscripted with
the SV types, while the SVs are listed after the colon. An expression with a variable as the
left-hand side and an ET as a right-hand side is namedET declaration. An ET declaration is
added to the query for each variable declared with a DT. It asserts the type of a DT variable,
analogous to the extent function of the ordinary types. When a DT is defined by subtyping
from other DTs, its ET body can contain nested ET declarations, as forET sportyempand
ET junior above.

The ET body contains predicates to assert that a tuple of instances of the supertypes
composes an instance of the DT. Because the ETs are not complete functions, a calculus
expression containing ETs is consideredincomplete. In the calculus generation phase, the
incomplete calculus expression containing ET declarations is transformed to a complete
calculus expression by a series of transformations performed until there are no more ET
declarations. In such a transformation, an ET declaration of a variable is removed from the
query if the variable can be type checked by being used as a function argument of the same
DT. Otherwise,ET expansionis performed. During ET expansion, first the ET declaration
is substituted by the ET body. Then, each occurrence of the variable declared by the ET
declaration is substituted inthe rest of the query predicatesby a SV in the ET signature
having the same type or a supertype of the argument’s type. An ET expansion transforms
a query over a DT into a query over its supertypes, thus avoiding OID generation and run-
time coercion. Notice that this kind of variable substitution differs from the substitution in
normal function expansion where the argument and result variables in the function body
are substituted to match the parameters.

FUNCTIONAL QUERY OPTIMIZATION 181

The ET expansion process is illustrated through the example query below on the left
over the schema in figure 2. It is first translated to an incomplete calculus expression given
below on the right:

{sal,a |
select salary(j), age(j) j = ET juniorSporty Emp∧
from Junior j sal= salarypayrec→int(j)∧
where hobby(j)= ’golf’; a = ageperson→int(j)∧

′golf ′ = hobbyP Person→string(j)}

The ET declaration of the variablej is not removed becausej is not used as argument
or result of typeJunior in any function in the query. Therefore, this ET is expanded and
all occurrences ofj in the query body are substituted by the template variablese in
ET sportyemp. The expression produced by this expansion (on the left below) contains an
ET declarationET sportyemp. Analogous to the variablej ET declaration, this ET is also
expanded yielding the expression on the right:

{sal,a | {sal,a |
se= ET sportyemp<P Person,emp> ∧ px= P Personnil→P Person()∧

a1= ageperson→int(se)∧ e= ET emp<person,payrec> ∧
26> a1∧ sssn= socsecP Person→string(px)∧
sal= salarypayrec→int(se)∧ essn= ssnperson→int(e)∧
a = ageperson→int(se)∧ essn= adjust ssnstring→int(sssn)∧
′golf ′ = hobbyP Person→string(se)} a1= ageperson→int(e)∧

26> a1∧
sal= salarypayrec→int(e)∧
a = ageperson→int(e)∧
′golf ′ = hobbyP Person→string(px)}

In thesalaryandagefunctions, the variableseof typeSportyEmpis substituted by the
SV eof typeEmpthrough which these functions are inherited inSportyEmp. By contrast,
in thehobbyfunction, seis substituted by the variablepx since this function is inherited
through theP Persontype.

Finally, the ET declaration of the variablee is expanded. After this expansion the query
expression does not contain any ET declarations:

{sal,a |
px= P Personnil→P Person() ∧ (*)

assn= ssnperson→int(p) ∧ (2)

assn= ssnpayrec→int(pr) ∧
′working′ = statusperson→string(p) ∧
sal= salarypayrec→int(pr) ∧
sssn= socsecP Person→string(px) ∧ (*)

182 JOSIFOVSKI AND RISCH

essn= adjust ssnstring→int(sssn) ∧
essn= ssnperson→int(p) ∧ (2)

a1= ageperson→int(p) ∧ (1)

26> a1∧
a = ageperson→int(p) ∧ (1)
′golf ′ = hobbyP Person→string(px)} (*)

The first nine predicates are results of ET declaration expansions. The last three predicates
originate in the original query. The calculus optimizer further reduces the example expres-
sion by unifying pair-wise the predicates indicated by the same number on the far right (the
re-write rule is described in (Fahl and Risch, 1997). In case (1) there is an overlap between
the user-specified query predicates and the validation expression of DTJunior. In case
(2) the definitions of the DTsSportyEmpandEmpoverlap. The query calculus expression
now contains six system-inserted predicates. The result of the query optimization is then
processed by the query decomposition algorithm which, in this example, combines the three
predicates marked by (*) for execution in the sport database. There, the local optimizer
will further remove the type check predicate (the first predicate) since it has the needed
information to deduce its redundancy. The queries produced by the decomposer in the two
mediators are:

in EMPLOYEE DB in SPORT DB
{sal,a, sssn| {sssn|
assn= adjust ssnstring→int(sssn)∧ sssn= socsecPerson→string(px)∧
assn= ssnperson→int(p)∧ ′golf ′ = hobbyPerson→string(px)}
assn= ssnpayrec→int(pr)∧
′working′ = statusperson→string(p)∧
sal= salarypayrec→int(pr)∧
a = ageperson→int(p) ∧ 26> a}

The queries are executed in each of the mediators and then an equi-join oversssnis performed
in the site determined by the query decomposer, based on the costs of execution and data
transfer. The only data transferred between the mediators will be the set of social security
numbers of the relevant persons, thereby avoiding generation of OIDs for the queried types.

The transformations of the extent templates shown above reduce the need for run-time
coercing. In this example, where the query does not return OIDs and is not evaluated over
local functions storing DT OIDs, no coercion or OID generation predicates are needed in
the final query. By modeling the extent generation by predicates these predicates are unified
with user specified selections which further reduces the processing.

4.3. Generation of OIDs for DT instances

The preceding subsection demonstrated calculus generation and optimization where the
generation of OIDs for the DT instances can be avoided all together. This subsection briefly

FUNCTIONAL QUERY OPTIMIZATION 183

describes how the DT instances are assigned OIDs in queries requiring this. Let’s consider
the followingsetcommand:

set sport_bonus(e) = 1000 from emp e where salary(emp) > 1000;

Here, the system first retrieves OIDs of typeEmp, and then stores them with the bonus in
the locally stored functionsport bonus. The generation of DT OIDs in this update query
cannot be avoided.

An OID is generated for a DT instance if it is a part of the query result or used as
an argument to a foreign function. OID generation functions are implemented as system
generated foreign functions taking as arguments a tuple of DT supertype OIDs and returning
a DT OID. If for the given arguments there is an already generated OID, it is returned without
creating a new one. The OID generation functions are defined by the system as resolvents
of the overloaded functiongenOID.

When, a calculus variable ranges over DT instances which are assigned an OID, the extent
template defining this variable is replaced with the expanded extent function. The following
example illustrates this process. The query on the left returns an instance of the DTManager.
The expanded object calculus generated for this query (shown on the right) contains two
OID generation predicates. When an OID for a DT instance is generated, the OIDs of the
corresponding instances in the derived supertypes need to be generated too. Therefore, in
the example, the system also inserts an OID generation predicate for the DTEmp.

{m |
select m into :john s= ssnperson→int(p)∧
from manager m s= ssnpayrec→int(pr)∧
where name(m)= ’John’ ′John′ = nameperson→string(p)∧

′Manager′ = positionpayrec→string(pr)∧
e= genOID<person,payrec>→emp(p, pr)∧
m= genOIDemp→manager(e)}

The into clause stores the query result in an AMOSQL variable.
To limit the OID generation to only the requested DT instances, the OID generation pred-

icates should appear late in the final query execution plan after query conditions restricting
the number of generated OIDs. The optimizer is aware of this, and after performing the
cost based optimization it moves the OID generating expressions to the end of the query
execution plan, preserving their relative order. Because the displaced expressions have low
cost and selectivity 1, this transformation does not affect the overall query cost. This strat-
egy is applicable to queries where OIDs are generated for DT instances in the query result,
as in the example above. When the generated OIDs are used in some foreign functions,
more elaborate interactions between the calculus generator and the algebra generator are
required. That mechanism is not described in this paper.

4.4. Processing of queries using locally stored functions

As shown above, instances of a DT from a data source can be assigned OIDs and stored in
local functions over the DT. These stored functions can be later referenced in user queries.

184 JOSIFOVSKI AND RISCH

Then, because the data in the data source can change without the control of the mediator,
DT OIDs retrieved from the locally stored functions need to be validated. Notice however
that no action is needed when new instances are added in the data sources, since these new
instances must be first stored in a local function in the mediator before any validation is
needed. For example, if a person takes up golfing and thus becomes aSportyEmp that
person’s OID need not be validated until it is stored in a local function. Furthermore, the
fact that the locally stored functions are cheap to access, and most often store only portions
of the DT extent, can be used by the optimizer to produce plans operating only over the DT
instances stored in these functions instead of the entire DT extent.

To illustrate the processing of queries with locally stored functions over DTs, we extend
the example from Section 4.2 with a predicate (underlined) over the locally stored function
sport bonus, defined over the instances of the DTSportyEmp:

{a, sal|
select age(j), salary(j) j = ET juniorSporty Emp∧
from Junior j b = sport bonussporty emp→int(j) ∧ b > 100∧
where hobby(j)= ’golf’ and a = ageperson→int(j)∧

sport bonus(j)> 100; sal= salarypayrec→int(j)∧
′golf ′ = hobbyP Person→string(j)}

As in the previous example, first a reference toET junior is inserted and expanded. The
resulting query contains an ET declaration of the variablesewith ET sportyemp. Fur-
thermore, the variablej is substituted by the variablese throughout the query. At this
point, since the variableseis used as an argument of the functionsport bonussporty emp→int,
ET sportyemp is not expanded, but instead removed. The variablese in this case iter-
ates only over the already materialized portion of the extent ofSportyEmp, stored in
sport bonussporty emp→int.

For a correct expression, the transformed query expression needs to be extended with
predicates to perform the coercion and validation of the instance OIDs ofSportyEmp. This
can be described as:

{a, sal |
b = sport bonussporty emp→int(se) ∧ b > 100∧
validate se∧ (1)

coerce se to p of person∧ (2)

a = ageperson→int(p) ∧
a1= ageperson→int(p) ∧ 26> a1∧
coerce se to pr of payrec∧ (3)

sal= salarypayrec→int(pr) ∧
coerce se to px of PPerson∧ (4)
′golf ′ = hobbyP Person→string(px)}

FUNCTIONAL QUERY OPTIMIZATION 185

The lines in bold give abstract descriptions of the operations added by the system. The
numbers on the far right are for reference purposes. The predicates containing the variable
a1 are inserted when the ET of typeJunior is expanded.

The validation function assures that the corresponding instances of the supertypes are
still present and valid in the data sources, and that the validation condition evaluated over
these instances still holds. Its general form is:

CREATE FUNCTION validate_DT(DT obj) -> boolean AS
SELECT TRUE
FROM sut1 st1, sut2 st2, ...
WHERE st1 = coerce(obj) AND

validate_st1(st1) AND
st2 = coerce(obj) AND
validate_st2(st2) AND ...
validate_predicate;

The function coerces the argument to each of the corresponding supertype instances, vali-
dates these instances, and then evaluates the validation condition. For example, the validation
function for the DTEmpin figure 2 is as follows:

CREATE FUNCTION validate_emp(emp e) -> boolean
SELECT TRUE
FROM Person p, Payrec pr
WHERE p = coerce(e) AND status(e) = ’working’ AND pr = coerce(e);

The validation function of a proxy type performs a check if the corresponding
foreign OID instance exists in the database it originates from. This is implemented by
a single type check predicate.

The coercion and validation in the example above require the following 11 predicates to
be inserted in the query:

e= coercesporty emp→emp(se)∧pi0= coercesporty emp→P Person(se)∧ (1)

p= coerceemp→person(e) ∧ pr = coerceemp→payrec(e)∧
′working′ = statusperson→string(p)∧pi0= P Personnil→P Person()∧
e1= coercesporty emp→emp(se) ∧ p= coerceemp→person(e1) ∧ (2)

e2= coercesporty emp→emp(se) ∧ pr = coerceemp→payrec(e2) ∧ (3)

px= coercesporty emp→P Person(se) (4)

The numbers on the left match the predicate groups with the corresponding task in the
previous query. After inserting these predicates in the query, the optimizer, by predicate
unification and type check removal, reduces the number of system inserted predicates from
11 to 6. In addition to this, the query optimizer removes one of the calls to theagefunction.

186 JOSIFOVSKI AND RISCH

The resulting query is:

{a, sal|
b= sport bonussporty emp→int(se) ∧ b>100 ∧
e= coercesporty emp→emp(se)∧
p= coerceemp→person(e)∧ ′working′ = statusperson→string(p)∧
a= ageperson→int(p)∧26> a ∧
pr = coerceemp→payrec(e) ∧ sal= salarypayrec→int(pr)∧
px= coercesporty emp→P Person(se)∧
px= P Personnil→P Person()∧ ′golf ′ = hobbyP Person→string(px)}

The query decomposer will divide the query predicates into two functions: one executed
in EMPLOYEEDB and the other inSPORTDB. TheEMPLOYEEDB function contains
all the predicates except the last two. The function inSPORTDB is compiled from the
last two predicates and the typecheck is removed by the optimizer (theEMPLOYEEDB
function below is shortened for brevity):

in EMPLOYEE DB in SPORT DB
{a, sal, px| {px|
b= sport bonussporty emp→int(se)∧ ′golf ′ = hobbyPerson→string(px)}
. . .

px= coercesporty emp→P Person(se)}

Notice that in this case OIDs are shipped from one mediator to another. Assuming that
the functionsport bonusin EMPLOYEEDB has a smaller extent than the functionhobby
in SPORTDB, the decomposer will generate a schedule in which the function on the left
above is executed first and the stored OIDs are shipped toSPORTDB. There, the function
on the right is executed, performing an equi-semi-join of the shipped OIDs with the function
hobby.

4.5. The transformation algorithm

We conclude the discussion in this section with an algorithm for the described transforma-
tions. The input of the algorithm is a conjunction of predicates and a list of result variables.
The output is a predicate in which all the DT extent functions have been transformed or
expanded. The algorithm assumes that the input predicate is a conjunction of simple (non-
derived) predicates and DT extent functions. Nevertheless, it can easily be expanded to
predicates containing nested disjunctions and derived predicates. Also, single argument
functions are assumed to simplify the presentation.

The following functions are assumed to be predefined:et body(dt) returns the body of
the extent template ofdt; et sv(dt) returns the substitution variables from the signature of
the extent template ofdt; type(var) returns the type of a calculus variable;expandfunction

FUNCTIONAL QUERY OPTIMIZATION 187

substitutes a function call with its already expanded function body; the ‘<’ and ‘≤’ operators
represent subtype/supertype comparison; the∪ operator is used for appending conjunctions
of predicates and adding a predicate to a conjunction.

1. expandDT extent functions(input : P, resVars; output: PR)
2. oidGen:= resVars;
3. PR:= P;
4. while ∃ J ∈ PR : J ≡ (X = dtnil→dt()) ∧ dt() is extent func. of the DT dt
5. REST:= PR− dtnil→dt();
6. if X ∈ oidGendo
7. oidGen:= oidGen∪ et sv(dt); /* generate OIDs for the supertypes */
8. PR:= expandfunction(dtnil→dt()) ∪ REST;
9. else

10. if ∃J ∈ REST: J ≡ (fat(X)) ∧ at ≤ dt∧ fat is stored functionthen
11. PR:= expandfunction(validateat(X)) ∪ REST;
12. else
13. for each R ∈ REST
14. if R≡ (Qbt(X)) then /* R is over the variable X */
15. PR:= PR∪ T : T ≡ (Qbt(Y)) ∧ Y ∈ et sv(dt) ∧ type(Y) ≤ bt;
16. else
17. PR:= PR∪ R;
18. end if
19. end for each
20. PR:= PR∪ et bodytype→predicate(dt)
21. end if
22. end if
23. end while

The while loop is executed until there are no more DT extent functions in the predicate.
For a chosen DT extent function, the firstif checks if the DT variable belongs to the set of
variables representing instances that are to be assigned OIDs. If so, the DT extent function is
substituted with its body and the variables representing instances of the supertypes are added
to the list of types for which OIDs are generated. Else, if there is a predicate containing
a locally stored function over the DTdt in PR, then the validation function is inserted
and expanded; otherwise the predicate is traversed, all occurrences of the variableX are
substituted with the supertype variables, and the template body is appended.

5. Related work

The work presented in this paper is related to research in the areas of OO query processing
(Straube and̈Ozsu, 1995), OO views and database integration. This section references and
briefly compares some representative research in these areas with our work.

The Multiview (Rundensteiner et al., 1996) OO view system provides multiple inheritance
and a capacity-augmented view mechanism implemented with a technique called Object

188 JOSIFOVSKI AND RISCH

Slicing (Kuno et al., 1995) using OID coercion in an inheritance hierarchy. However, it
assumes active view maintenance and does not elaborate on the consequences of using this
technique for integration of data in autonomous and dislocated repositories. Furthermore,
it does not use a predicate-based implementation so our query optimization methods do not
apply. Other similar OO view systems are described in (Santos, 1994; Bertino, 1992).

The Remote-Exchange project at University of Southern California (Fang et al., 1993)
uses a CDM similar to ours for instance and behavior sharing. Three dimensions of freedom
are explored for function application in a federated database environment: the location of
the function (local or remote), the location of the arguments (local or remote) and the type of
the function (stored or computed). Each case is elaborated and an abstract implementation
is described. Most of the cases correspond to the ones present in AMOS, although the
terminology differs considerably. An important disadvantage is that late binding is always
used to choose between local and remote implementations of a function which is then called
by an RPC for every single instance. Another performance degradation is caused by the
size of the surrogate identifiers for remote instances which are 300 bytes long and contain
all the information needed to perform the remote function evaluation over each instance.

There are few research reports describing the use of OO view mechanisms for data
integration. The Multibase system (Dayal and Hwang, 1984) is also based on a derivative
of the DAPLEX data model and uses function transformations for queries in a scenario
similar to the supertyping scenario in this paper. Although that scenario was not the focus
of the paper, we can note that an important difference between the systems is that the data
model used in Multibase does not contain the concept of OIDs and therefore the coercion
and validation techniques presented here are not applicable.

The UNISQL (Kim and Kelley, 1995; Kelley et al., 1995) system also provides views
for database integration. The virtual classes (corresponding to the DTs) are organized in a
separate class hierarchy. The virtual class instances inherit the OIDs from the corresponding
instances in the ordinary classes, which prohibits definition of stored functions over virtual
classes defined by multiple inheritance. There is no corresponding supertype integration
mechanism, but rather a set of queries can be used to specify a virtual class as an union
of other classes. This imposes relationships among the classes not included in the class
hierarchy, resulting in two types of dependencies among the virtual classes.

Finally, advanced commercial products have emerged lately (Carey et al., 1998), moving
in the directions described in this paper.

6. Summary

An overview was presented of the query transformation techniques used in the implemen-
tation of a passive mediation framework based on functional queries and OO views. The
passive approach preserves the autonomy of the data sources and is suitable for mediation
in environments where data sources are autonomous, non-active, have large data volumes,
or have high update frequencies.

The OO views mechanism is integrated into the inheritance mechanism by introducing
derived types (DTs). The DTs are placed in the same type hierarchy as the ordinary
types. The instances of the DTs are derived from the instances of their super- or subtypes

FUNCTIONAL QUERY OPTIMIZATION 189

by declarative functions specified in the DT definitions. DT instances are assigned OIDs,
which allows the user to have locally stored data associated with them.

Queries over DTs are expanded by including system-inserted predicates that perform
the DT system support tasks. The DTs system support is covered in three mechanisms:
(i) providing consistency of queries over DTs; (ii) generation of OIDs for the DT instances;
and (iii) validation of the DT instances with assigned OIDs. The system generates templates
and functions to perform these tasks. During the calculus generation phase, the query is
analyzed, and where needed, the appropriate functions/templates are inserted. The final
calculus representation is generated by a series of transformations aimed to produce a
correct and efficient query calculus expression. In these transformations, query consistency
is achieved by extent template expansions and removals, and by optimized coercion of
local DT OIDs; OID generation is performed by including OID generation functions for
selected query variables; DT instance validation is performed by inserting and expanding
the validation functions. The separation of the validation from extent generation (instance
composition) gives smaller validation functions. The separation of the OID generation from
the extent generation allows selective generation of DT instance OIDs where only portions
of the DT extents are materialized locally.

The functions specifying the view support tasks describe relationships of the DTs in the
type hierarchy and often have overlapping parts. The paper demonstrates how calculus-
based query optimization can be used to remove redundant computations introduced from
the overlap among the system-inserted expressions, and between the system-inserted and
user-specified parts of the query. The calculus-based transformations and optimizations do
not require cost calculations and search space transitions making them simple to implement
and inexpensive to perform.

The following conclusions can be drawn: First, although traditional object orientation
allows for mediation by some remote method invocation protocol, its performance can be
unacceptable. There is an apparent need for set-oriented query processing as used in the rela-
tional databases. Second, the multidatabase environment requires even greater optimization
efforts to achieve predictive performance for a wide range of queries. Third, describing
type hierarchies and semantic heterogeneity using declarative functions and a functional
Common Data Model provides many opportunities for the extensive query optimization
needed in an OO mediation framework.

The AMOS system is implemented on Windows NT/95 platform using TCP/IP for the
communication. In our current work, we have expanded the concepts presented in this pa-
per from the derived subtypes to include derived supertypes. Also, a multidatabase query
processing engine is designed and implemented to process the queries after the calculus
optimization phase. Our future work will include: research on wrapper design and imple-
mentation, parallel and asynchronous execution strategies, multidatabase query processing
in presence of replication and limited availability, etc.

Acknowledgments

This work has been supported by the ECSEL program of the Swedish Foundation for
Strategic Research (SSF).

190 JOSIFOVSKI AND RISCH

References

Bertino, E. (1992). A view mechanism for object-oriented databases.Third Intl. Conf. on Extending Database
Technology (EDBT’92). Vienna, Austria.

Carey, M., Haas, L., Kleewein, J., and Reinwald, B. (1998). Data Access Interoperability in the IBM Database
Family. IEEE Data Engineering, 21(3), 4–11.

Dayal, U. and Hwang, H. (1984). View Definition and Generalization for Database Integration in a Multidatabase
System.IEEE Trans. on Software Eng., 10(6).

Du, W. and Shan, M. (1996). Query Processing in Pegasus. In O. Bukhres and A. Elmagarmid (Eds.),Object-
Oriented Multidatabase Systems. Englewood Cliffs, NJ: Pretince Hall.

Fahl, G. and Risch, T. (1997). Query Processing over Object Views of Relational Data.The VLDB Journal, 6(4),
261–281.

Fang, D., Ghandeharizadeh, S., McLeod, D., and Si, A. (1993). The design, implementation, and evaluation
of an object-based sharing mechanism for federated database system.Ninth Intl. Conf. on Data Engineering
(ICDE’93). Vienna, Austria: IEEE.

Flodin, S. and Risch, T. (1995). Processing object-oriented queries with Invertible late bound functions.Twenty-
First Conf. on Very Large Databases (VLDB’95). Zurich, Switzerland.

Flodin, S., Josifovski, V., Risch, T., Sk¨old, M., and Werner, M.AMOS II User’s Guide, available at
http://www.ida.liu.se/∼edslab.

Grufman, S., Samson, F., Embury, S.M., Gray, P.M.D., and Risch, T. (1997). Distributing semantic constraints be-
tween heterogeneous databases.Thirteenth International Conf. on Data Engineering (ICDE’97). Birmingham,
England: IEEE.

Josifovski, V. and Risch, T. (1998). Calculus-based transformations of queries over object-oriented views in a
database mediator system,3rd IFCIS International Conf. on Cooperative Information Systems. New York City.

Kelley, W., Gala, S., Kim, W., Reyes, T., and Graham, B. (1995). Schema Architecture of the UNISQL/M
Multidatabase System. In W. Kim (Ed.),Modern Database Systems—The Object Model, Interoperability, and
Beyond. New York, NY: ACM Press.

Kim, W. and Kelley, W. (1995). On View Support in Object-Oriented Database Systems, In W. Kim (Ed.),Modern
Database Systems—The Object Model, Interoperability, and Beyond. New York, NY: ACM Press/Addison-
Wesley.

Kuno, H., Ra, Y., and Rundensteiner, E. (1995). The Object-Slicing Technique: A Flexible Object Representation
and its Evaluation. Univ. of Michigan Tech. Report CSE-TR-241-95.

Litwin, W. and Risch, T. (1992). Main Memory Oriented Optimization of OO Queries Using Typed Datalog with
Foreign Predicates.IEEE Transactions on Knowledge and Data Engineering, 4(6), 517–528.

Lyngbaek, P., et al. (1991). OSQL: A Language for Object Databases. Tech. Report, HP Labs, HPL-DTD-91–94.
Object Management Group (1993).The Common Object Request Broker: Architecture and Specification, Object

Request Broker Task Force.
Rundensteiner, E., Kuno, H., Ra, Y., Crestana-Taube, V., Jones, M., and Marron, P. (1996). The MultiView

project: Object-oriented view technology and applications.ACM SIGMOD Intl. Conf. on Management of Data
(SIGMOD’96)(pp. 555–563). ACM Press.

Santos, C. Design and Implementation of an Object-Oriented View Mechanism. GOODSTEP ESPRIT-III Tech-
nical Report, ESPRIT-III Project No. 6115.

Shipman, D. (1981). The Functional Data Model and the Data Language DAPLEX.ACM Transactions on Database
Systems, 6(1). ACM Press.

Sköld, M. and Risch, T. (1996). Using partial differencing for efficient monitoring of deferred complex rule
conditions.Twelvth International Conf. on Data Engineering (ICDE’96). New Orleans, Louisiana: IEEE.

Straube, D. and̈Ozsu, T. (1995). Query Optimization and Execution Plan Generation in Object-Oriented Database
Systems.IEEE Transactions on Knowledge and Data Engineering, 7(2), 210–227.

Wiederhold, G. (1992). Mediators in the Architecture of Future Information Systems.IEEE Computer, 25(3).

