
Adaptive Data Mediation over XML Data

Hui Lin, Tore Risch, Timour Katchaounov
Hui.Lin, Tore.Risch, Timour.Katchaounov@dis.uu.se
Uppsala Database Laboratory, Uppsala University, Sweden

To be published in special issue on "Web Information Systems Applications" of Journal of Applied System
Studies (JASS), Cambridge International Science Publishing, 2001.

Abstract
The mediator/wrapper approach is used to integrate data from different databases and other data sources by
introducing a middleware virtual database that provides high level abstractions of the integrated data. A frame-
work is presented for querying XML data through such an Object-Oriented (OO) mediator system using an OO
query language. The mediator architecture provides the possibility to specify OO queries and views over com-
binations of data from XML documents, relational databases, and other data sources. In this way interoperability
of XML documents and other data sources is provided. Translation rules are defined that automatically generate
an OO schema in the mediator database from the DTD of the XML documents, if available. A strategy is used
for minimizing the number of types (classes) generated in order to simplify the querying. If XML documents
without DTDs are read, or if the DTD is incomplete, the system extends the OO schema from the XML struc-
ture while reading XML data. As more XML data is read the OO schema is dynamically refined. This requires
that the mediator database is capable of dynamically extending and modifying the OO schema. The paper over-
views the architecture of the system and describes incremental rules for translating XML documents to OO
database structures.

Keywords: XML, Object-Oriented Databases, Mediators, Object-Oriented Queries, OO Schema Generation.

1 Introduction

Database management is central in most information systems. Earlier, organizations used monolithic database
management systems. However, nowadays there are often many separate data sources distributed over personal
computers and networks of computers. Those data sources are often heterogeneous because of differences in the
semantics of data and DBMS differences such as different data representation methods (data models) and query
languages. However, not only traditional databases, but also other kinds of data sources, need to be accessed,
queried, and combined with other data. For example, XML files are becoming increasingly more used to pro-
vide standardized data exchange representations. The need therefore emerges to query XML files
[QL’98(1998)]. The aim of this work is the integration of XML documents and other data by providing Object-
Oriented (OO) views of the combined data along with an OO query language to query all integrated data.
The wrapper-mediator approach [Wiederhold(1992)] helps solving the data integration problem by providing
intermediate virtual databases, called mediators, between the data sources and the application using them.
Wrappers are interfaces to data sources that translate data into a common data model used by the mediator. The
user accesses the combined data through one or several mediator systems that present high-level abstractions
(views) of combinations of source data. The user does not know where the data comes from but is able to re-
trieve and update the data by using a common mediator query language.
In this work we propose a method to combine and query XML documents (files and data streams) from the web
through an object-oriented database mediator system. We have implemented a system that translates XML data

2

to an OO data model that can be queried using an OO query language similar to the object extensions of SQL-
99. When DTDs are available their meta-data descriptions are used to infer the OO schema of the accessed
XML documents. If there is no DTD specified the system incrementally infers the OO schema while reading an
XML document using a set of translation rules described in this paper. A straightforward translation, as is done
in [Christophides(1994)] for an extended OQL, will generate many types (classes) and make the queries clumsy,
with many levels of function calls. The system therefore has a strategy to translate XML elements to functions
(attributes or methods) rather than types when possible. It may then happen that the system first defines an
element type as a function and then later discovers that the function must be migrated to a type to represent all
uses of the element. The system therefore must be able to adapt (dynamically modify) the schema when the
object structure first defined is not general enough to represent XML data read later. For this reason, incre-
mental rules are presented in this paper that create and modify the schema dynamically when reading XML
documents without DTDs, or when the DTD is not completely describing the XML data.
The dynamic creation of the OO schema furthermore has the effect of helping the user understand the database
by looking at a generated OO schema discovered by the system.
The rest of this report is arranged as follows: Section 2 presents the background to understand this paper and
related work. Section 3 describes the architecture of our object-oriented mediator system with regard to XML
data sources and relates it to similar approaches. Section 4 defines the incremental translation rules used to parse
XML documents into OO schema definitions and database population statements. Section 5 concludes the work
and discusses possible future work.

2 Background and related work

XML, Extensible Markup Language [XML V1.0(1998)] was created as a data exchange and representation
standard. XML provides ways to store complex data structures in a way suitable for exchange over the Internet.
An XML document can be a file or a data stream containing nested elements starting with a root element. It may
have meta-data descriptions through DTDs (Document Type Definitions). These meta-data descriptions provide
some structure and constraints on the XML documents using the DTD. However XML documents may be
described without DTDs and DTDs may also leave parts of the data unspecified; i.e. compared to the relational
and OO data models, the XML data model is semi-structured.
Compared to an OO data model, the XML data model does not have classes, methods, and inheritance; instead it
has element types and attributes [XML V1.0(1998)] which are similar to classes and attributes in OO data
models. Thus XML does not use a complete OO data model. In order to avoid confusion in the discussion below
we use the term element tag (or just tag) to mean XML element type.
We use an OO data model to which XML data is translated similar to what is proposed for SGML in [Christo-
phides(1994)]. In our case we generate the containment relationships in an OO data model as both type (class)
and function (attribute) definitions. Unlike [Christophides(1994)] we use a strategy to avoid creating types in
order to simplify the schema and subsequent querying.
Several query languages have been proposed for XML documents [QL’98(1998)]. A graphical query language
is introduced in [Ceri(1998)] where queries over XML documents are specified graphically. A pattern-based
query language is proposed in [Wiederhold(1992)] where regular path expressions are used to match XML
structure and data, and derive new XML data. Quilt [Chamberlin(2000)] is a functional query language that
allows the definition of XML-oriented views. It is based on a combination of path-expressions, functions, itera-
tors, and constructors.
Lore [Goldman(1999)] is a system for storing and querying XML documents based on extended path expres-
sions. Lore represents the XML data using a semi-structured graph-oriented data model, OEM [Papakonstanti-
nou(1995)]. In [Nestorov(1997)] a strategy is devised to generate a graph called the Data Guide that summa-
rizes containment relationships among XML elements using the OEM graph data model that closely resembles
XML structures.

3

Since the purpose of our work is to combine XML and database data, our mediator system uses an OO data
model and query language similar to the OO parts of SQL-99, rather than a specialized XML query language.
Such a data model is somewhat different from a dedicated XML data model and therefore transformation rules
are needed.
In [Florescu(1999)] [Shanmugasundaram(1999)] methods are developed to store XML data in relational data-
bases; since only non-OO, table-oriented, representations are used the database representations become clumsy
and SQL queries unnatural.
In our approach we create an OO schema by translating the DTD according to some translation rules described
in the next section. When no DTD is present, or when the DTD is incomplete, the OO schema is incrementally
created while the XML documents are read. Thus a structured OO schema is incrementally inferred from DTDs
or from XML data. Such a schema provides semantically enriched meta-data to guide the user when querying
the database. It also provides a basis for data indexing and efficient query processing [Böhm(1998)].

3 Adaptive Object-oriented data mediation over XML data sources

The XML data is dynamically translated into object schema and instances when read into the OO mediator
database. In order to query such data with an OO query language the following facilities are needed:

1. an OO storage manager to represent objects;
2. dynamic OO schema definition mechanisms;
3. an OO query processing system;
4. a convention for what constitutes an OO database schema from a set of XML documents;
5. a translation mechanism from XML data to objects in the mediator.

We have implemented our approach using the object-oriented, lightweight, and extensible database mediator
system Amos II [Risch(2001)] [Risch(2000)]. The Amos II system provides the three first required facilities. It
provides a main memory data manager to store materialized XML data, and an OO query processing engine.
Amos II has an OO query language, AmosQL, similar to OSQL [Fishman(1990)] and the OO extensions of
SQL-99.
For the fourth requirement we use the convention that all XML documents having the same DTD are regarded
as one data source having an OO schema inferred from the DTD. The schema of the mediator combines the
imported schemas, and mediator database views can reference all imported XML documents and DTDs. We do
not require every XML document to have a DTD as in [Christophides(1994)] but incrementally generate and
modify the schema while reading XML documents when no DTD is available or the DTD is incomplete. Our
system can thus handle XML documents with DTDs, with incomplete DTDs, or without DTDs.
Whenever a new XML document having a DTD is imported to the mediator we check what DTD it refers to, if
any, and whether this DTD previously has been translated to an OO schema in the mediator. If the DTD is not
translated beforehand the mediator will read the DTD to infer types (classes) and functions (attributes). XML
documents having no DTD at all are regarded as belonging to a special schema.
For requirement five we automatically and incrementally translate XML data to schema definitions and data
population statements in our OO data model. Some semantic enrichment is made to infer types and attributes
from the DTDs in order to simplify the schema according to rules below.

Figure 1: Distributed Amos II mediators

XML
files

OODB ODBC

Wrapper

Mediator

Wrapper Wrapper

Mediator

Wrapper

 Application

Mediator

 Application

Step
files

4

In addition to basic OO data management facilities Amos II also provides OO data mediation facilities
[Fahl(1997)] [Josifovski(1999A)] [Josifovski(1999B)]. By utilizing these facilities we can query combinations
of XML data, relational databases and other kinds of data sources, as illustrated in Figure 1. It shows an exam-
ple of distributed mediation with Amos II where two applications access data from four heterogeneous data
sources through three distributed mediators.
The Amos II data model contains three basic constructs, objects, types and functions:
Objects are used to model all entities in the database.
Types (i.e. classes) are used to describe the object structure and they are organized in an OO type hierarchy.
Functions are defined on types and are used to represent properties of objects and relationships between objects.
Functions thus represent attributes and methods.
The Amos II system is extensible through several interfaces to its kernel – C, Java, and Lisp, respectively. In
this work, we utilize the Java interface to build an XML wrapper for Amos II (Figure 2). Our implementation
materializes read data in the Amos II storage manager by using the translation rules from XML to the OO data
model of Amos II.

The translation mechanism includes:
l A strategy for generating schemas from DTDs when available. The OO schema is derived from the DTD in

this case and it describes the contents of one or several XML documents referencing the same DTD.
l A strategy for incrementally populating the database using the generated OO schemas while reading XML

data. Thus OO database update statements are called while XML data is read.
l Strategies for dynamically adapting the schema when reading XML data with no DTD or when the DTDs are

not fully describing all the data. In this case both database update and schema modification statements are
dynamically called while XML data is read.

The AmosXML architecture in Figure 2 is based on the existing system in a non-intrusive way, requiring no
modifications to Amos II. It uses a Java interface to interact with the kernel of the system and is implemented as
a set of foreign functions implemented in Java. Those functions are called from Amos II to load DTD schema
and XML data into the database. The read data can be queried by the existing query capabilities of the Amos II
system.
In the AmosXML wrapper, IBM's XML Parser for Java [XML Parser(2001)] is used to parse XML documents
into the Document Object Model (DOM) data structure [DOM V1.0(1998)]. The DOM is a platform and lan-
guage neutral interface that allows programs and scripts to dynamically access and update the contents, struc-
tures and styles of documents. DOM provides a standard set of objects for representing HTML and XML
documents, a standard model of how these objects can be combined, and a standard API for accessing and

AmosQL

Java Interfaces

AmosXML Wrapper

 Amos II kernel

Application

 DOM-Amos II Back End

DOM Parser

 XML
 Files

Figure 2: The Amos-XML Wrapper

5

manipulating them. It closely resembles the structure of the documents it models. Using DOM as input, the
“DOM-Amos II Back End” communicates with Amos II to execute AmosQL schema definition and database
population statements dynamically. The user submits AmosQL queries to the Amos II server to access the XML
data.

4 Translation rules

One challenging issue is to define a way to map the data model of an XML document into the data model of
Amos II. The DTDs produce schema information and the XML documents themselves produce data but also
schema information when DTDs are omitted or incomplete. Therefore we design the schema definition rules to
be incremental; i.e. the schema is dynamically adapted while the XML data is read and may be modified to
satisfy new data constraints discovered during this process.
There are two kinds of transformation rules:
l Rules applied on DTDs;
l Rules applied while reading XML data.
In the translation rules below we will show how different kinds of DTD definitions and elements in XML
documents dynamically extend the schema and content of the mediator database. We use the syntax of AmosQL
to illustrate this.
To illustrate the translation rules Example 1 is used, showing a small DTD named person.dtd. In the example,
the DTD restricts the tag person to always contain a sub-element tagged employee, and each element tagged
person always has the attribute id. We call an !ELEMENT statement an element definition. Elements tagged
employee always have two sub-elements tagged family and given both of which have the system attribute
“#PCDATA”, indicating that the element may have a text string as its value. The element definitions specify
containment relationships to sub-elements along with constraints on the order and occurrences of sub-elements.
In the example the sub-element tagged given always must follow family inside an element tagged employee. The

element tagged email can have any other element as sub-element (indicated with ANY); we say that
the sub-elements of email are unspecified.

<!ELEMENT person (employee)>
<!ELEMENT employee (family, given)>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>
<!ELEMENT email ANY>
<!ATTLIST person id ID #REQUIRED>

Example 1 The DTD person.dtd

<!DOCTYPE person SYSTEM "person.dtd">
<person id = “669”>

<employee>
<family> Lin </family>
<given> Hui </given>
</employee>

</person>

Example 2 An XML document

Example 2 is an XML document using the DTD person.dtd. The element tagged person has an attribute id
whose value is “669” and a subelement tagged employee that contains two subelements: the element tagged
family whose value is “Lin” and the element tagged given whose value is “Hui”. Every XML document must
have a root element specified in the header; in this case it is the element tagged person.

4.1 DTD rules

The first rule creates a type (class) for an element definition:
Rule 1. A new type is created for every element definition declared in the DTD to have at least one sub-

element or attribute or where a subelement is declared as “ANY” or “EMPTY”.
For example, assume we have the following DTD statement:

6

<!ELEMENT person (employee)>
Using the above rule, the following statement instructs Amos II to dynamically extend the schema with a new
type named person being a subtype of the system type xml:

create type person under xml;
The AmosXML wrapper dynamically executes the statement using the Java interface. Since the DTD specifies
that elements tagged person must always contain one sub-element tagged employee, a new database type named
person is created. Objects of that type are created when reading elements from the XML file, according to the
rules in the next subsection. The system type “xml” is a supertype of all XML types. It has a function data to
store the values of elements when “#PCDATA” is specified.
Rule 2 creates a function, rather than a type, for each leaf element defined in the DTD. By creating such prop-
erty functions the queries to the database become simpler with fewer levels of indirection, as shown below.

Rule 2. If an element definition E does not have any subelement definitions (i.e. is a leaf element), then tag E
is represented as a stored function (i.e. attribute), also named E, on the type (class) representing its
parent element definition F. The function represents the value of an element as a string, i.e. its
signature is E(F) → character. This function is called a property function.

Consider the following part of the DTD person.dtd above:
<!ELEMENT employee (family, given)>
<!ELEMENT family (#PCDATA)>
<!ELEMENT given (#PCDATA)>

After applying Rule 2 in our example, the following AmosQL statements dynamically defines two new func-
tions in the mediator:

create function family(employee) → character as stored;
create function given(employee) → character as stored;

The clause “as stored” specifies that the functions represent attributes (i.e. contain explicitly stored values).
In this case the element definitions family and given do not contain any sub-elements, so two property functions
are created returning the type character, rather than two new types. An example of a query to this is:

select family(e) from employee e where given (e)= “Hui”;
If we would not have Rule 2, family and given would have been represented as types (classes) with the values of
the elements stored in the function data. We would then have the following schema created instead:

create type family under xml;
create type given under xml;

The above query would then have looked like this:
select data (f) from family f, given g, employee
where data (given(e)) =“Hui”;

This is clearly a more complex and less natural query. By representing leaf elements as functions most calls to
the data function are avoided and fewer types (classes) are needed. With Rule 2 the data function needs only be
used for accessing elements having both sub-elements and #PCDATA specified.
For elements definitions represented in the mediator as types having sub-elements also represented as types,
Rule 1 generates a new type. The following rule then generates a containment function to represent the element-
subelement relationship between the new type and the elements it contains:

Rule 3. A containment function is generated for an element definition represented in the mediator as a type
(class) F that has a subelement E also represented as a type (class). It returns the collection of
subelement objects contained in a given object. Its signature is E(F) → bag of E.

For example, consider the following DTD:
<!ELEMENT person (employee)>
<!ELEMENT employee (family, given)>

It generates the following containment function definition:
create function employee(person) → bag of employee as stored;

7

The containment function employee(person) returns a bag (set with duplicates) of employees since the element
definition employee has two sub-elements.
Attribute definitions generate functions prefixed with “attribute_” to distinguish from property functions:

Rule 4. An attribute function is created for each XML attribute defined in a DTD (using ATTLIST) to
represent the attribute of each element.

For example,
<!ATTLIST person id ID #REQUIRED>

is translated into the following function definition:
create function attribute_ id(person) → character as stored;

A function attribute_id(person) represents values of the attribute id for objects of type person.

4.2 XML data rules

The XML data rules dynamically add data to the mediator database while reading XML documents. They may
also adapt the schema in case the DTD is incomplete or omitted.
Rule 5 concerns creating objects for elements represented as types:

Rule 5. When reading an element, a test is made to check if its tag is previously represented as a type. If so, a
new object O of that type is created. If the element has a value the data function data(O) is set to the
contents of the element. If O is not the root element it is also added to the containment function of its
parent element.

For example, if the tags person and employee are previously represented as types, the XML document
<!DOCTYPE person SYSTEM person.dtd>
<person>
 <employee> Lin </employee>
</person>

generates calls to the following AmosQL statements:
create person instances :p;
create employee instances :e;
set data(:e) = “Lin”;
add employee (:p) = :e;

In this example, Rule 5 first generates a new object of type person using the statement create. It has no value
and is the root element of the document. Then the same rule creates an object of type employee and the data
function of the new object is set to the contents of the element using the set statement. The new object is added
to the extent of the parent’s containment function employee(person) → bag of employees by the add statement.
Rule 6 complements Rule 5 when the tag was previously represented as a property function rather than type:

Rule 6. If the tag of an element is previously represented as a property function on its parent (rather than as
a type), it is added to the extent of that property function.

For example, if the tag person is previously represented as a type, and tag email is not previously represented as
a type, but as a property function email(person)→ character, the following XML document

<!DOCTYPE person SYSTEM “person.dtd”>
<person>
 <email> Hui.Lin@dis.uu.se </email>
</person>

generates calls to the following AmosQL statements:
create person instances :p;
set email(:p) = “Hui.Lin@dis.uu.se”;

In this example, Rule 5 generates a new object of type person using the statement create. It has no value and is
the root element of the document. Then we populate the containment function:

8

email(person) → character.

The next rules apply when there is no DTD or when the DTD is incomplete (“ANY” specified). In such cases the
schema may need to be dynamically extended or modified depending on how the tag is represented so far.
The following definition is used below:
Definition: A sub-element E of F is an unspecified subelement of F if either no DTD definition exists for E or F
is specified as “ANY” in the DTD.
Rule 7 dynamically creates a new containment function the first time a containment relationship is discovered
while reading an XML document:

Rule 7. If 1) element tagged E is an unspecified subelement of an element tagged F; 2) E is represented as a
type; 3) there is no previously defined containment function E→ F; then we dynamically create a new
containment function E→ F.

Assume now the following XML document without DTD:
<person>
 <employee>
 <family> Lin </family>
 </employee>
</person>

In this case Rule 7 applies since
l employee is an unspecified subelement of person (it is the first time that employee shows up) ,
l tag employee is represented as a type (Rule 1),
l there is not previous containment function employee(person) → bag of employee.
Following Rule 7, the following containment function is dynamically generated:

create function employee(person) → employee as stored;
The containment function is created in order to establish the discovered containment relationship between types
person and employee.
The next rule complements Rule 7 when E is not a type:

Rule 8. If 1) element tagged E is an unspecified subelement of an element tagged F; 2) E is not previously
encountered; 3) the element tagged E has no subelements; then we dynamically create a property
function E(F) → character.

Assume the following XML document not having any DTD:
<person>
 <email> Hui.Lin@dis.uu.se </email>
</person>

In this case Rule 8 applies since the element email is an unspecified subelement of the element person, tag
person is not previously defined as a type, and the element has no subelement. The following function definition
is dynamically created:

create function email (person) → character as stored;
Notice that this rule applies only once for each kind of unspecified element.
Rule 9 adapts the schema when the element is discovered to have sub-elements. It dynamically converts a
previously defined property function to a type:

Rule 9. If 1) an element tagged E is an unspecified subelement of an element tagged F; 2) E is previously
represented as a property function E(F) → character; 3) the element tagged E has its own
subelements or attributes; then we dynamically create a new type representing E and a containment
function with signature E(F) → bag of E. The property function E(F) → character is converted into
the containment function and the containment function is updated accordingly.

For example, assume the following XML document without associated DTD:

9

<person>
 <name>Hui Lin </name>
</person>
<person>
 <name><family> Lin </family></name>
</person>

According to Rule 8, the following statements are generated when parsing the first element person:
create type person under xml;
create function name (person) → character as stored;
create person instances :p;
set name (:p) = “Hui Lin”;

A new type is created when reading the first occurrence of element person since it contains subelement name.
Since element name has no subelement a property function name(person) → character is created and populated.
However, when later reading the second occurrence of element person, an element family is discovered as a
subelement of the element name. Thus the property function name must be migrated to a type. According to
Rule 9, the following statements are generated:

create type name under xml;
create name instances :m;
set data(:m) = name(:p);
create function name (person) → name as stored;
set name(:p) = :m;
create person instances :pn;
create name instances :n;
set name(:pn) = :n;

In this case, a new type is created for the element name since it contains a subelement family. The property
function name(person)→ character is converted into a containment function name(person)→ name, and popu-
lated with :m (from the old property function) and :n (the new object).
Furthermore, we also need to generate a property function family(name)→ character according to Rule 8, since
the element family has no subelement.

create function family(name)→ character as stored;
set family(:n) = “Lin”;

Finally we need a special overriding rule to guarantee that there will always be an object representing root
elements and elements having subelements or attributes:

Rule10. Tags of elements that are found to 1) be root element; 2) or have sub-elements; 3) or have attributes;
are always represented as types.

For example, in the uncommon event that the root element of an XML document does not have any subelements
it will be represented as an object. We will not elaborate this case further here.

5 Conclusion and future work

We described the architecture of a wrapper called AmosXML that allows parsing and querying XML documents
from an object-oriented mediator system. Furthermore, incremental translation rules were described that infer
OO schema elements while reading DTD definitions or XML documents. Some rules infer the OO schema from
the DTD, when available. For XML documents without DTDs, or when the DTD is incomplete, other rules
incrementally infer the OO schema from the contents of the accessed XML documents. When conflicting
schema definitions are discovered the system automatically adapts the dynamically generated schema and
database to be general enough to represent all XML data. The discovery of OO schema structures combined

10

with other OO mediation facilities in Amos II [Fahl(1997)] [Josifovski(1999A)] [Josifovski(1999B)] allow the
specification OO queries and views over data from XML documents combined with data from other data
sources. The incremental nature of the translation rules allow them to be applied in a streamed fashion, which is
important for large data files and when the network communication is slow or bursty.

There are several possible directions for our future work:
l The current rules do not infer any inheritance, but a flat type hierarchy is generated. Rules should be added to

infer inheritance hierarchies, e.g. by using behavioral definitions of types [Özsu(1995)] where a type is
defined by its behavior (i.e. its attributes and methods). In our case this means that a type T is defined as a
subtype of another type U if the set of functions on U is a subset of the set of functions on T.

l Integrating XML data involves efficient processing of queries over many relatively small XML data files
described by several layers of meta-data descriptions and links. For example, there can be ‘master’ XML
documents having links to other XML documents and DTDs. Therefore the query language needs to be able
to transparently express queries referencing both XML data and the meta-data in the master documents. New
techniques are needed to be able to specify and efficiently process queries over such multi-layered meta-data.

l The conventional exhaustive cost-based query processing techniques do not scale over large numbers of
distributed XML documents. New distributed heuristic techniques need to be developed for this.

l The proposed scheme covers only a subset of XML. Adaptive translation rules should be defined also for
other XML constructs.

References

Böhm, K., Aberer, K., Özsu,M.T. and Gayer, K. (1998). Query Optimization for Structured Documents Based
on Knowledge on the Document Type Definition, IEEE ADL’98 Conf., Santa Barbara, CA.
Ceri, S., Comai ,S., Damiani, E. , Fraternali, P., Paraboschi, S. and Tanca, L.(1998). XML-GL: A Graphical
Language for Querying and Reshaping XML Documents, http://www.w3.org/TandS/QL/QL98/pp/xml-gl.html.
Chamberlin, D., Robie, J. and Florescu,D. (2000). Quilt: An XML Query Language for Heterogeneous Data
Sources, 3rd Intl. Workshop on the Web and Databases, Dallas, TX,
http://www.research.att.com/conf/webdb2000/program.html
Christophides, V., Abitteaboul, S., Cluet, S. and Scholl, M. (1994). From Structured Documents to Novel
Query Facilities, ACM SIGMOD Conf., Minneapolis.
Document Object Model (DOM) Level 1 Specification V 1.0 (1998). http://www.w3.org/TR/REC-DOM-Level-
1/
Extensible Markup Language (XML) 1.0 (1998). http://www.w3.org/TR/1998/REC-xml-19980210.
Fahl, G. and Risch, T. (1997). Query Processing over Object Views of Relational Data, VLDB Journal, Vol. 6
No. 4, 261-281.
Fishman, D., et al (1990): Overview of the Iris DBMS, in W. Kim, F. H. Lochovshy (eds.), Research
Foundations in OO and Semantic, Addison-Wesley, 174-199.
Florescu, D. and Kossmann,D. (1999): A Performance Evaluation of Alternative Mapping Schemes for Storing
XML Data in a Relational Database, INRIA Technical Report, INRIA, No. 3680, May,.
Goldman, R., McHugh, J. and Widom, J. (1999): From Semisturctured Data to XML: Migrating the Lore Data
Model and Query Language, 2nd Intl. Workshop on the Web and Databases, Philadelphia, http://www-
rocq.inria.fr/~cluet/WEBDB/procwebdb99.html
Josifovski, V. and Risch, T. (1999A). Functional Query Optimization over Object-Oriented Views for Data
Integration, Intelligent Information Systems (JIIS), Vol. 12, No. 2/3, Kluwer.
Josifovski, V. and Risch, T. (1999B). Integrating Heterogeneous Overlapping Databases through Object-
Oriented Transformations, 25th VLDB Conf., Edinburgh, Scotland.
Nestorov, S., Ullman, J., Wiener, J. and Chawathe, S. (1997). Representative Objects: Concise Representations
of Semistructured, Hierarchical Data, IEEE ICDE Conf., Birmingham, UK.

11

Özsu, M.T., Peters, R., Szafron, D., Irani, B., libka, A and Muñoz, A (1995). TIGUKAT: A Uniform Behavioral
Objectbase Management System, VLDB Journal, Vol. 4, No. 3.
Papakonstantinou, Y., Garcia-Molina, H. and Widom, J.(1995). Object Exchange Across Heterogeneous
Information Sources, IEEE ICDE Conf., Taipei, Taiwan.
QL'98 - Position Papers (1998). http://www.w3.org/TandS/QL/QL98/pp.html.
Risch,T. and Josifovski, V. (2001). Distibuted Data Integration through Object-Oriented Mediator Servers, to be
published in Concurrency Journal, John Wiley, 2001.
Risch, T., Josifovski, V. and Katchaounov, T. (2000). Amos II Concepts,
http://www.dis.uu.se/~udbl/amos/doc/amos_concepts.html
Shanmugasundaram, J., Tufte, K., He, G., Zhang, C., DeWitt, D. and Naughton, J. (1999). Relational Databases
for Querying XML Documents: Limitations and Opportunities, 25th VLDB Conf., Edinburgh, Scotland.
Wiederhold, G. (1992). Mediators in the Architecture of Future Information Systems, IEEE Computer, Vol. 25,
No. 3.
XML Parser for Java (2001). http://www.alphaworks.ibm.com/formula/xml
XML-QL (1998). A Query Language for XML, http://www.w3.org/TR/1998/NOTE-xml-ql-19980819/

