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Abstract

To integrate many data sources we use a peer media-
tor framework where views defined in the peers are logi-
cally composed in terms of each other. A common approach
to execute queries over mediators is to treat views in data
sources as ’black boxes’. The mediators locally decom-
pose queries into query fragments and submit them to the
data sources for processing. Another approach, used in dis-
tributed DBMSs, is to treat the views as ’transparent boxes’
by importing and fully expanding all views and merge them
with the query. The black box approach often leads to inef-
ficient query plans. However, in a peer mediator framework
full view expansion (VE) leads to prohibitively long query
compilation times when many peers are involved. It also
limits peer autonomy since peers must reveal their view def-
initions. We investigate in a peer mediator framework the
tradeoffs between none, partial, and full VE in two different
distributed view composition scenarios. We show that it is
often favorable with respect to query execution and some-
times even with respect to query compilation time to expand
those views having common hidden peer subviews. How-
ever, in other cases it is better to use the ’black box’ ap-
proach, in particular when peer autonomy prohibits view
importation. Based on this, a hybrid strategy for VE in peer
mediators is proposed.

1. Introduction

There has been substantial interest in using the medi-
ator/wrapper approach for integrating heterogeneous data
[14, 25, 11, 22, 7]. Most mediator systems integrate data
through a central mediator server accessing one or several
data sources through a number of ’wrapper’ interfaces that
translate data to acommon data model (CDM). However,
one of the original goals for mediator architectures [27]

was that mediators should be relatively simple autonomous
distributed software modules that encode domain-specific
knowledge about data and share abstractions of that data
with higher layers of mediators or applications. Composite
mediators would then be defined in terms of other mediators
and data sources through a high-level declarative language.

Compositionality of mediators allows to reuse available
distributed resources on the Internet and to create new
value-added mediation services in terms of existing ones,
while the autonomy of the sources and mediators is pre-
served. In the observable future it is most likely that data
integration will be mostly a manual task. In order to scale
integration to multiple autonomous sources, it is important
that this task can be distributed among many parties with
varying domain knowledge. We believe that a mediator ar-
chitecture based on compositions of autonomous mediators
is necessary to build large-scale data integration systems
that are easy to tailor to existing infrastructure.

This paper investigates what are the implications of log-
ical composition of distributed mediators on query com-
pilation and execution performance and proposes a query
processing technique suitable for the efficient execution of
queries over composite mediators.

For our implementation we use the AMOS II peer me-
diator system [24]. To achieve modularity and distri-
bution each mediator is an autonomous object-relational
DBMS with its own query processor, storage, and catalog.
AMOS II peers share many of the characteristics of peer-to-
peer systems. AMOS II peers are autonomous because there
is no global schema or global coordinator. Every mediator
peer can act both as a client and a server to any number
of other mediators. AMOS II peers communicate over the
Internet via query compilation, query costing, view expan-
sion and query execution requests in order to cooperatively
process queries over composite mediators.

Mediator composition is based on a multidatabase query
language that allows mediator peers to transparently access



views, tables, and functions from remote mediators or data
sources [23]. Logical composition of mediators is achieved
whenmultidatabase views are defined in terms of views, ta-
bles, and functions in other mediators or data sources. Mul-
tidatabase views make groups of mediator peers and data
sources appear to the user as a single virtual database.

There are two traditional approaches to implement dis-
tributed information systems. The first is theblack box ap-
proach where distributed modules communicate with each
other through some protocol without revealing the imple-
mentation of the services they export. This is the approach
used in CORBA based systems and web services based on
SOAP [3] and WSDL [4]. In the AMOS II peer mediator
architecture the black box approach is equivalent to not to
expand external views at all. It is common knowledge that
this may lead to suboptimal query execution plans(QEPs)
because of missed optimization opportunities.

On the other end is thefull view expansion (transparent
box) approach in distributed DBMS, where all views are
expanded and merged with the query [21], independent of
the location of the base tables and views that are used in a
view definition. This ‘reveals’ to the query compiler the in-
formation ‘hidden’ in the view definitions which allows for
better QEPs. Full view expansion could also remove unnec-
essary access to mediator peers. However, in a large scale
peer mediator system using a cost-based query optimizer,
full view expansion leads to prohibitively high compilation
cost. Furthermore, full view expansion can only be made
when permitted by the peer, to respect its autonomy.

We generalize both approaches and treat external medi-
ator views asgrey boxes, that is, when multidatabase views
are defined in terms of other multidatabase views some of
the view definitions are revealed to remote clients that query
the views. We do this through a new query compilation
technique for peer mediators,distributed selective view ex-
pansion (DSVE). In DSVE, for better overall performance,
mediators control the level of transparency of the mediator
peers by selectively expanding some multidatabase views.

To analyze the performance of DSVE we implemented
two data integration scenarios scaled to up to 19 distributed
AMOS II mediators with up to 12 commercial RDBMS data
sources. As reference points we use the black box and the
full view expansion approaches. We investigated the per-
formance for both reference approaches under varying level
of transparency and with respect to both query compila-
tion and execution times. The analysis shows that DSVE
can support the logical composition of mediators with lit-
tle overhead and that this approach is superior to both black
and transparent box approaches.

The rest of the paper is organized as follows. Section 2
investigates related work. Section 3 introduces the scenar-
ios that are used throughout the paper. Section 4 describes
the principles of DSVE and Section 5 investigates its perfor-

mance followed by summary and future work in Section 6.

2. Related work

Distributed databases [1, 21] have complete global
schemas describing on what sites different (fractions of)
tables are located, while peer mediators do not have com-
plete knowledge of meta-data from all mediators and data
sources. Full expansion of all possible views in a distributed
system with many nodes may be very costly. In [20] a
restricted view expansion strategy for the System R* dis-
tributed database [5] is briefly mentioned but not evaluated.

To the best of our knowledge, there is no other study of
the effects of a varying degree of view expansion in a dis-
tributed mediator or database system. No other mediator
system (e.g. [14, 25, 7, 8, 22, 19]) use distributed view ex-
pansion.

The peerpeer data management system (PDMS) archi-
tecture in [13] differs from ours by having a centralized cat-
alog and therefore it is closer to a DDBMS. That work con-
centrates on data placement for PDMS. In [2] a data model
suitable for PDMS is presented. Neither of the PDMS
works studies query processing performance. Based on the
similarity of PDMS with our peer mediator architecture, our
results are readily applicable to the PDMS architecture.

Peer-to-peer (P2P) systems andweb services have ad-
dressed the creation of large-scale integrated systems on the
Internet. P2P systems, e.g Gnutella [12] and Freenet [10],
address the problem of large scale sharing and replication of
simple information objects such as files. P2P systems pro-
vide simple keyword search capabilities and do not support
high-level abstractions as views. Most of the work on large-
scale composition of distributed systems on the Internet is
performed in the context of web services [6]. Problems
related to composition of services are usually investigated
from the perspective of workflow composition [26]. Our
focus is on data integration and not on workflow/process
composition. Web services are based on the SOAP [3] and
WSDL [4] standards which provide no means for view defi-
nition exchange. Thus current proposals for composed web
services treat wrapped DBMS views as black boxes.

3. Mediator composition scenarios

Having a potentially unlimited number of ways to com-
pose mediators, we implemented for our study two sce-
narios that are simple enough to analyze the performance
implications of view expansion in a peer mediator system.
Our choice of scenarios assumes that data integration is per-
formed with no global control or knowledge. Users define
peer mediator views in terms of views in other mediators
without knowing how those remote views are defined.
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Figure 1. Logical compositions of mediators

The integration scenarios are implemented using the
AmosQL query language [24]. In this paper we define
the scenarios in terms of equivalent SQL statements. Re-
mote views defined in other mediators are referenced as
view@server.

When participating in a logical composition, AMOS II
peers can play several roles.Translators wrap different
kinds of data sources and translate their data into the com-
mon data model (CDM) of AMOS II .Integrators recon-
cile conflicts and overlaps between similar real-world enti-
ties modeled differently in different sub-mediators [15, 16].
Users and applications can pose queries to any AMOS II
peer, called theclient mediator for the queries.

Scenarios. In the first scenario (Figure 1(a)) suppliers
store information about parts in a RDBMS. Each supplier
uses a translator that exports a view of the data. Several in-
dependent part resellers integrate information from the sup-
pliers and present an integrated view hiding their informa-
tion sources from their clients. A potential customer runs a
mediator client that poses queries to the resellers’ integra-
tors.

In the second scenario (Figure 1(b)) the information
about parts from all suppliers is stored in a single relational
database. Each supplier has a single translator exporting the
parts of that supplier. Each of the part resellers then exports
an integrated view of the suppliers as in the first scenario. In
a system with a global catalog such a scenario would look
very artificial since the client mediator would discover in
advance that all integrators access the same source of infor-
mation. However in a peer system, this knowledge is not
readily available. We assume that the integrators did not
want to disclose their information source.

From the mediator client the two scenarios are equivalent
and queries posed to the resellers’ mediators would return
exactly the same result. The differences are ‘hidden’ inside
the view definitions of resellers’ and suppliers’ mediators.

Logical view integration graphs. To describe properties
of mdiator compositions we define alogical view integra-
tion graph (LVIG) as a directed acyclic connected graph
where vertices represent mediator peers or data sources and
each directed arc represents the relationship’is defined in
terms of’ between a multidatabase view in one mediator and
a view or table in another peer. Mediators are represented as
ovals and data sources as rectangles. An LVIG represents a
high-level view of the logical composition of mediators and
data sources. Many distributed QEPs can be generated to
compute the result of a query with the same LVIG.

The LVIGs of the two scenarios on Figure 1 differ in the
topology of their LVIGs. Based on that we will name the
first one as theTREE scenario and the second one as the
Common Sub-Mediator (CSM) scenario.

3.1. Definitions of the mediators

The mediators and sources in the two scenarios are di-
vided into four layers based on their roles:

The data source layer contains data stored in RDBMS. In
theTREE scenario the data for ten part suppliers is stored
in different relational database tables,PART , each stored
in its own DBMSSi with the following schema:

CREATE TABLE part
(pnum integer not null,
pname char(16) not null,
quality integer,
primary key(pnum))

In theCSM scenario all data about parts is stored in one
relational databaseS in a singlePART table having one
more column - a supplier id - and a composite key consist-
ing of the part number and the supplier id. To simplify it is
assumed that the same ‘real’ part has the same keypnum
in every relational source.

The translator layer consists of mediators providing
views over thePART tables. The translatorsTi andT ac-
cess the source data through an ODBC wrapper [9]. The
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translators could be hosted by independent application ser-
vice providers or data source owners. In theTREE sce-
nario there is one translatorTi per relational sourceSi. In
theCSM scenario the single relational sourceS is wrapped
by the translatorT . In addition, inT each part supplier has
a view,parti, that selects parts from that supplier.

The integrator layer defines reconciliation views over
thepart views defined in the translator layer. All integra-
tor views are defined through the template below, where[i]
and[j] are replaced by the indexes of the integrated transla-
tors for theTREE scenario, and the indexes of thePART
tables for theCSM scenario, respectively. Each scenario
uses only one of the twoFROM clauses.

CREATE VIEW part@I[ij] as
SELECT p0.pnum, p0.pname
combine_quality(p0.quality,

p1.quality)
AS quality

/* TREE scenario: */
FROM part@T[i] p0, part@T[j] p1

/* CSM scenario: */
FROM part[i]@T p0, part[j]@T p1

WHERE p0.pnum = p1.pnum;

In theTREE scenario each mediatorIij integrates in-
formation about parts from two translatorsT i and Tj in
the firstFROM clause. Thepnum attribute of the view
is defined as thepnum property of one of the joined ta-
bles. Thequality property is defined by the user-defined
combine quality function that encapsulates the knowledge
of how to combine part qualities from different sources.

The integratorsIij in theCSM scenario combine views
of parts from the same part suppliers as in theTREE sce-
nario. However all the viewsparti in the translatorT are
defined in terms of the same relational tablePART in S as
reflected by the secondFROM clause of the template.

From the mediator client both scenarios are indistin-
guishable as they export exactly the same views. Never-
theless the sources of information of the integrators differ.

Finally, the top layer has one mediatorCLIENT
through which users pose queries to thepart views defined
in the integratorsIij . Depending on the remote views ref-
erenced in a query the corresponding LVIG may look dif-
ferent. The LVIGs on Figure 1 correspond to queries that
reference all five available integrators.

To investigate multidatabase view expansion with re-
spect to the number of participating mediator peers we use
a class of test queries over a varying number ofpart@I ij

views. A sample query over thepart@I01 andpart@I23
views defined in the integratorsI01 and I23 is shown in
Figure 2. Thequality part query stateswhat are the high-
quality parts known to the I01 and I23 integrators, where
thequality property ranges from 1 to 10.

select p1.pname
from part@I01 p1, part@I23 p2
where p1.quality >= 7 and

p2.quality >= 7 and
p1.pnum = p2.pnum;

Figure 2. Query quality parts over I01 and I23

The quality parts query is scaled by adding more
part@Iij views from other integrators through equi-joins
on thepnum attribute and inequality predicates on each
quality attribute.

4. Multidatabase view Expansion

First the black box approach to process queries over mul-
tidatabase views is described, followed by a discussion of its
potential problems. To remedy the major deficiency of the
black box approach, poor QEP quality, we describe how to
extend the mediator query processor with a general mecha-
nism for exchanging view definitions between the mediator
peers. In its simplest form this mechanism is equivalent
to full view expansion. After discussing the advantages and
problems of full view expansion we describe what is needed
to achieve the best of both worlds - a generalized approach
to multidatabase view expansion that allows the query op-
timizer of each mediator peer to explore the full range of
possibilities between no and full view expansion.

4.1. Processing multidatabase views as black boxes

Queries in AMOS II are parsed and rewritten [18, 9, 15,
16] into a typed predicate calculus representation, Object-
Log [18], extending Datalog with predicate type signatures.
In this paper we use SQL notation. For local queries rewrit-
ten calculus expressions are transformed by a cost-based
query optimizer into an optimized object algebra expression
[18, 9] which is interpreted to produce the query result. For
multidatabase queries, before the query optimization phase,
the calculus representation of the query is decomposed into
multidatabase subqueries. At each mediator peer its cost-
based optimizer generates optimized QEPs for the each of
the subqueries. The query decomposition is performed in
two main stages [17]: heuristic-basedpredicate grouping
and cost-basedsubquery optimization.

The predicate grouping groups the query predicates into
one or more composite predicates (subqueries). The result
is one or more subqueries per each remote peer. After the
predicate grouping phase the query in Figure 2 is divided
into two subqueries (views)SQ@I01 and SQ@I23 that
consist of predicates fromI01 andI23 (Fig. 3 and 4).

The subquery optimization phase decides on the execu-
tion order of the subqueries which determines the data flow
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create view SQ@I01 as
select p0.pnum, p0.pname
from part@I01 p0
where p0.quality > 7;

create view SQ@I23 as
select p0.pnum
from part@I23 p0
where p0.quality > 7;

Figure 3. Subqueries after predicate grouping

select s0.pname
from SQ@I01 s0, SQ@I23 s1
where s0.pnum = s1.pnum;

Figure 4. quality parts after grouping

between the mediators. The two subqueriesSQ@I01 and
SQ@I23 are sent for compilation and costing to the integra-
torsI01 andI23 to determine variable bindings and execu-
tion order for the subqueries. Based on the binding and cost
information an executable plan is produced for the query
in the client mediator and the subqueries in their respective
mediators. These optimized plans for given binding patterns
are saved in the mediator databases. The same process is
applied recursively for subqueires that are themselves mul-
tidatabase queries in their respective mediators. Notice that
the client mediator does not ‘know’ (and does not have to
know) thatpart@I01 andpart@I23 are actually views.

Distributed data flow graphs. A useful tool to under-
stand distributed QEPs is a graph that represents the flow
of data during the execution of a multidatabase query. A
distributed query execution data flow graph (DDFG) is a di-
rected connected graph where the vertices in the graph rep-
resent mediator peers or data sources. There are two kinds
of edges with respect to each vertex:call edges are out-
edges that represent remote subquery execution requests
(with optional parameters),data edges are the in-edges of
a vertex representing the incoming flow of tuples that cor-
respond to each request. All edges are numbered according
to their execution order. DDFGs reflect only the distribu-
tion aspects of a query execution plan. Many DDFGs may
correspond to a single multidatabase query.

For thequality parts example query the black box ap-
proach to distributed query compilation described above
generates DDFGs similar to those in Figure 5. All other
DDFGs corresponding to the same query are different only
in the order the nodes from the same layer are accessed. As
one may expect the DDFGs on Figure 5 are very similar to
the LVIGs for the same query in Figure 1. Thus the black
box approach to query compilation produces QEPs that fol-
low the logical view composition topology.

Advantages and disadvantages of the black box ap-
proach. Treating remote views as black boxes has some
advantages. When remote views are not expanded a multi-
database view definition is often smaller and refers to fewer
mediators than the expanded one. All the compilation ef-
fort spent to generate plans for the remote views can be
reused because AMOS II stores precompiled parameterized
views as functions that can be directly invoked. Therefore
we can expect better compilation times when no views are
expanded. Another advantage is that the integrators do not
have to reveal their view definitions to the client mediator.
This respects the autonomy of the mediators and the black
box approach may be the only possible one if a peer media-
tor doesn’t reveal view definitions to other mediators.

The main disadvantage of the black-box approach is that
it can lead to suboptimal QEPs. In the context of a peer
mediator system sub-optimality can be due to several rea-
sons. A QEP may not be able to make use of hidden exist-
ing indexes in other mediators or sources. Similarly it is not
possible to increase the selectivity of subqueries by merg-
ing predicates from remote views in different mediators. As
in Figure 5 intermediate mediators are accessed despite that
their view definitions do not access any local data. In deep
mediator networks this may result in considerable network
overhead and unnecessary load on mediators. In the case of
queries with LVIGs having TREE topology the distributed
subquery scheduler at each mediator peer has fewer options
for distributed join ordering. For queries with LVIGs hav-
ing CSM topology a client cannot detect that more than one
of its sub-mediators access data from the same source as in
the scenario on Figure 5(b).

4.2. Full expansion of multidatabase views

To solve the problems of the black box approach de-
scribed in Section 4.1 a logical step is to follow the approach
employed in modern DBMSs (distributed or not) - to fully
expand all view definitions. For thequality parts example
query this implies that the definitions of the viewpart in
the integratorsI01 andI23 should be revealed to the client
mediator.

After collecting the expanded definitions of all the re-
mote subqueries, the subqueries in the original query are
replaced by their expanded definitions and all predicates
are grouped into subqueries. The query processing contin-
ues with the cost-based subquery optimization phase in the
same way as in the black box approach.

Figure 6 shows some possible DDFGs for the
quality parts query from Figure 2 after performing full
view expansion. TheCLIENT mediator eliminates all re-
dundant mediators (dotted circles). In the theCSM sce-
nario in Figure 6(b) the view definitions at the two integra-
tors are combined in a single query together with the query
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predicates and the translatorT is accessed only once. When
supported by the data sources the combined predicates can
be pushed to the sources which may further improve perfor-
mance.

While full view expansion is very promising in terms
of potential benefits in execution time, the cost to com-
pile queries over fully expanded views may be prohibitively
high. An expanded remote view definition may reveal that
it has been defined through many mediators thus resulting
in an explosion of the number of peers the query optimizer
must consider. For example if we scale our scenario to ten
integrators, each of them having an integrated view over ten
translators, full view expansion of a query over the ten inte-
grators will lead to a distributed query involving a hundred
peers. At the same time each of the subqueries of the dis-
tributed plan may contain many join predicates. As there is
no global catalog in a peer mediator system the query opti-
mizer must execute a remote cost estimate request for every
query fragment that can be executed in a remote peer. This
may result in a high cost of getting the cost. Finally due
to incorrect cost estimates typical in a distributed mediator
system the optimizer might still produce sub-optimal QEPs.

Finally, full view expansion does not respect mediator
and source autonomy by forcing all mediators to reveal their
view definitions. This makes full VE unsuitable for integra-

tion of data from independent information providers.

4.3. Selective expansion of multidatabase views

A natural idea is to generalize the processing of multi-
database views so that the query processor adapts itself to
the query being compiled, the logical composition topology
of the multidatabase views being queried, and the auton-
omy requirements of each mediator peer. Such a general ap-
proach should combine the good sides of both the black box
and the full view expansion approaches: reasonable query
compilation cost, good query execution performance, and
respect of site autonomy.

We have implemented such a generalized mechanism in
the AMOS II mediator system, nameddistributed selective
view expansion (DSVE). It allows to selectively expand only
some of the multidatabase views. DSVE is generic in the
sense that it allows various strategies to be used to select
which of the subqueries in a multidatabase query should be
view expanded. In particular, when no remote views are
expanded DSVE is reduced to the black box approach, and
when all subqueries are expanded DSVE is equivalent to the
full view expansion approach. We use the termpartial view
expansion (partial VE) for all other DSVE strategies.

To achieve good performance DSVE’s view selection
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strategy should expand views if it leads to high QEP qual-
ity improvement without dramatically increasing the opti-
mization time for the expanded query. The DSVE strategy
should scale well over the number of remote views. To pre-
serve the autonomy of the mediator peers the strategy used
in DSVE should require as little information as possible to
be imported from mediator peers.

To investigate the tradeoffs between compilation time
and QEP quality with varying number of expansions, we
start with a family of simple strategies where each strategy
performs a fixed number,NExp, of expansion requests per
query. WhenNExp is equal or bigger than the total number
of subqueries, DSVE is equivalent to full view expansion.
If NExp = 0 DSVE reduces to the black box approach.
Let us denote each of these strategies asDSV E N . Fig-
ure 7 shows the resulting DDFG after the compilation of
the quality parts test query when theDSV E 1 strategy
was used to expand the view in integratorI01. In the fol-
lowing section we perform a set of experiments where we
vary theDSV E N strategy for both the TREE and CSM
mediator composition scenarios from Section 3.

5. Experimental evaluation

The experimental goals are:i) quantify tradeoffs be-
tween no, full and partial VE;ii) test hypothesis that DSVE
may lead to best overall performance;iii) understand prop-
erties of a DSVE strategy with good overall performance.

In all experiments we execute scaled versions of the test
queryquality parts in Figure 2 for both scenarios. This al-
lows us to include the topology of the LVIG of the query as
a parameter in the experiments. We investigate the scalabil-
ity of view expansion by varying number of expanded views
and the number of integrators joined by the test query.

5.1. Experimental setup

We used three 600 MHz Dell Optiplex GX1 computers
with 512 MB RAM running Windows 2000 interconnected
by a fast 100 Mbit LAN. Each of the mediator layers (client,
integrator, translator) run on separate computers. The query
compiler of AMOS II generated synchronous QEPs allow-
ing us to run several mediators on the same computer with-
out any interference. During the experiments it was ensured
that each of the nodes preallocates enough RAM to com-
plete the experiment without swapping. All translators ac-
cessed a DB2 RDBMS through an ODBC wrapper. The
PART tables in the DB2 databases were populated with
synthetic data, all with the same number of rows and even
distribution of all join columns. All join columns of the
PART tables were indexed.

5.2. Compilation tradeoffs

First measurements investigate how the compilation time
for a multidatabase query over multidatabase views depends
on the number of view expansions for varying number of
integrator views. Figures 8 and 9 show this dependency for
LVIGs with TREE and CSM topology. Each point in the
graphs corresponds to one compilation experiment. There
is one curve per fixed number of expansions. Points with
the same x-axis (same number of integrators) correspond to
the same query compiled with different number of view ex-
pansions. The curves in the graphs partially coincide when
the number of expansions are equal to or more than the
total number of integrators. While our experiments were
performed for all possible numbers of expansions between
none and full, for clarity we removed some the experimental
curves that do not change our conclusions.

The compilation cost of a multidatabase query is dis-
tributed among the components of the query compiler:
the local query compiler and the distributed query opti-
mizer. Both optimizer components use dynamic program-
ming (DP) to find the optimal executable order of sub-
queries and the predicates in subqueries. Therefore query
compilation cost depends exponentially both on the num-
ber of remote sub-queries and the number of predicates per
sub-query.
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Figure 8. Query compilation times for differ-
ent DSVE strategies, TREE topology

Figure 8 shows experimental results for queries with
TREE topology LVIGs. The y-axis of the graph is in loga-
rithmic scale because of high value ranges. As expected,
the more expansions are performed, the longer compila-
tion time. Full VE expansion leads to exponentially grow-
ing compilation time and for 5 integrators it is 186 times
more than with no VE. For 6 integrators and full VE (curve
expandall) the experiment could not complete in 10000
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seconds. Two factors contribute to the exponential behavior
of full VE: i) DP is used to find optimal execution order of
the remote subqueries;ii) in our scenario each expansion of
a view on the integrator level reveals two more views from
the translator level, thus increasing the distributed query op-
timizer search space. All other strategies result in compi-
lation times between the two naive strategies: black box
(curveexpandnone) and full VE (curveexpandall).
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Figure 9. Query compilation times for differ-
ent DSVE strategies, CSM topology

The experiments for queries withCSM LVIG topology
(Figure 9) uncover completely different behavior than with
TREE topology. The total time to compile the worst case
of 5 integrators is 257 times less than with the TREE topol-
ogy. Contrary to the common belief that the more views
are expanded, the higher compilation cost, here we observe
the opposite behavior up to 5 integrators: the more views
are expanded, the less compilation time. This unexpected
result is due to savings both in the local and the distributed
query optimizer components. When expanded, the views
on the integrator level reveal that they are defined in terms

of the same mediator, the translatorCSM on Figure 1(b).
After all expanded views are merged and their predicates
are grouped into a single subquery (executed at the transla-
tor T ) it is simplified by query rewrites (Section 4.2). As a
result the distributed sub-query optimizer at the client medi-
ator has fewer predicate groups to optimize (just one) while
the number of predicates for the local optimizer does not
grow. After the number of integrators grows over 5, full VE
leads to slower compilation time due to the large number
of relational sources being accessed by the large subquery
resulting from the view merge. This subquery is compiled
in the translatorT and increases the compilation time there.

We conclude that the more distinct sub-views are re-
vealed by VE, the higher is compilation cost, and the de-
pendency is exponential in the worst case. Furthermore if
DP is used for query optimization full VE becomes too ex-
pensive when it results in more than 9 to 10 distinct sub-
views. Finally, expansion of views with a common sub-
mediator does not increase compilation time dramatically,
and in some cases it may result in lower compilation time.

5.3. Execution plan quality

The next step in our evaluation of VE is to check two
hypotheses made earlier:i) the more views are expanded
the better the quality of the resulting QEP andii) par-
tial VE leads to sufficiently good plans with low compila-
tion costs. Figure 10 represents the execution time of the
test queryquality parts in Figure 2 scaled to 5 integra-
tor views where allPART tables contain 6000 tuples. The
test query is precompiled for both LVIG topologies (TREE
andCSM ) with varying number of view expansions result-
ing in different QEPs. The number of expansions varies
between 0 (black box) and 5 (full VE). The quality of the
QEPs is evaluated by measuring their actual running time.

For both topologies we observe improvement in the QEP
quality in Figure 10 when the number of expansions grows.
This confirms assumptioni). Notice that full VE improves
the plan quality in theTREE topology with only 24%
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Figure 10. Plan quality for 5 integrators

number of
expansions 0 1 2 3 4 5
TREE
abs. comp. (sec.) 5.5 5.7 9.5 24.3 231.3 983.6
rel. comp. 1 1.04 1.7 4.4 41.8 177.9
improvement 1 1.01 1.04 1.1 1.1 1.3
rel. cost for
improvement 1 1.03 1.66 3.99 38.38 139.01
CSM
abs. comp. (sec.) 4.6 4.3 3.5 2.9 2.7 3.8
rel. comp. 1 0.9 0.8 0.6 0.6 0.8
improvement 1 1.01 2.7 5.5 8.8 10.2
rel. cost for
improvement 1 0.91 0.28 0.12 0.07 0.08

Table 1. Compilation cost vs quality

while in theCSM topology the improvement is 10 times.
Table 1 compares the ratio between the relative time to

compile a query with varying number of expansions and the
corresponding relative quality improvement for the experi-
ment on Figure 10. The table consists of two similar parts,
one for the test query being compiled and run against a
LVIG with TREE topology, and one for theCSM toplogy.
For each topology the first row [abs. comp.] shows the ab-
solute times to compile the query, the next row [rel. comp.]
shows the compilation times relative to the time for 0 view
expansions. The row [improvement] shows the ratio of the
execution time with no expanded views (as a worst case) to
all execution times from Figure 10. Finally the row [rel.
cost for improvement] shows the ratio between the [rel.
comp.] cell and the [improvement] cell which is an esti-
mate of how much did it cost in compilation time to achieve
an improvement in the quality of the QEP.

For theTREE topology the last row [rel. cost for im-
provement] shows that the more views we expand the more
costly it is to improve the quality of the QEP while at the

same time from row [improvement] we can see that even
with full view expansion (5 expansions) we achieve only
minor improvement of 1.28 times (22%) for which it took
177.9 times longer (983.6 seconds) to compile the query. In
this case a good tradeoff is to perform partial expansion of
3 integrator views which takes only 4.4 times longer (24.3
sec.) to achieve 1.1 times (9%) improvement. Therefore in
the case of aTREE topology partial VE produces a better
plan with relatively low cost, while full VE leads to pro-
hibitively high cost for plan improvement which confirms
assumptionii). We can also notice that even with no VE at
all the resulting QEP is pretty good.

The compilation and execution of the test queries in the
CSM topology exposes radically different behavior. Par-
tially expanding 3 integrator views improves the plan qual-
ity 5.5 times where the compilation time is 60% of the time
for the non-expanded case. Therefore assumptionii) is true
in the case ofCSM topology as well. Full VE in this case
leads to 10.2 times improvement in the quality of the QEPs
which requires less time (only 80%) than with no VE.

The conclusions are that in the general case partial VE
produces sufficiently good plans with relatively low compi-
lation cost. If we know that we are compiling a query over
views with aTREE topology of the LVIG, the compilation
cost can be radically reduced by not expanding any views at
all without sacrificing the quality of the QEP. By contrast,
when compiling queries against views withCSM topology,
full VE can lead to radical improvements in the quality of
the QEPs with very low compilation cost.

6. Conclusions and future Work

We proposed a new approach,distributed selective
view expansion (DSVE), to process compositions of mul-
tidatabase views in a peer mediator system. In DSVE, some
of the views defined in remote mediators are selectively
expanded to balance between query compilation time and
QEP quality for best overall performance. To minimize the
number of expansion requests and to allow optimizations of
the expanded remote views DSVE uses predicate grouping
to combine query predicates into subqueries. We present
a performance study of DSVE with respect to its scalability
over the number of remote views both for query compilation
and query execution. As a reference we use two traditional
approaches, the black box and the full VE approach which
are special cases of DSVE.

The experiments show that neither of the two reference
approaches (black box and full VE) is suitable for a peer
mediator system, because none of them performs well in
all cases. Contrary to the common belief that VE is always
beneficial, our experiments show that it is not favorable to
always perform full VE because in some cases it leads to
very high compilation costs without radical improvements
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in query execution time. In LVIGs withTREE topology
VE increases the number of views directly visible to a client
node, and given that cost estimates are highly unreliable in a
peer mediator system, this often results in suboptimal plans.
Therefore VE forTREE-like LVIGs defeats its own pur-
pose - to improve the quality of the QEPs. On the contrary,
more view expansions for queries withCSM -like LVIGs
result in compilation times orders of magnitude lower than
in a TREE-like LVIG, while the quality of the plans im-
proves up to 12 times. In the case ofCSM -like LVIG
topologies VE can drastically reduce the query execution
time when information from several hidden sub-mediators
can be combined. The topology of the LVIG of a multi-
database query plays a crucial role in the VE process. For
TREE topologies the best strategy is to expand only few
of the remote views while for theCSM topology all (or
almost all) views should be expanded.

The performance improvements of DSVE in processing
queries over logically composed mediators are due to more
selective queries, smaller data flows between the servers,
fewer servers involved in the query execution, while spend-
ing relatively little effort in query compilation. Our perfor-
mance study shows that DSVE allows for efficient query
processing in logically composed mediators.

We are currently designing a view expansion strategy for
DSVE that selects for expansion the views most likely to
lead to an improved QEP with low compilation cost. Such a
strategy should utilize the information hidden in the topol-
ogy of the LVIG to leverage the common view definitions
for better plans and lower compilation cost. A DSVE strat-
egy should also evaluate the potential number of remote
subqueries it will produce for the distributed optimizer and
take into account the total number of predicates per sub-
query to reduce the distributed and local query compilation
costs.
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