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Abstract. The mediator-wrapper approach to integrate data from heterogeneous data sources has usually been
centralized in the sense that a single mediator system is placed between a number of data sources and applications.
As the number of data sources increases, the centralized mediator architecture becomes an administrative and
performance bottleneck. This paper presents a query decomposition algorithm for a distributed mediation archi-
tecture where the communication among the mediators is on a higher level than the communication between a
mediator and a data source. Some of the salient features of the proposed approach are: (i) exploring query execution
schedules that contain data flow to the sources, necessary when integrating object-oriented sources that provide
services (programs) and not only data; (ii) handling of functions with multiple implementations at more than
one mediator or source; (iii) multi-phase query decomposition using a combination of heuristics and cost-based
strategies; (iv) query plan tree rebalancing by distributed query recompilation.
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1. Introduction

An important factor of the strength of a modern enterprise is its capability to effectively
store and process information. As a legacy of the mainframe computing trend in the recent
decades, large enterprises often have many isolated data repositories used only within a
portion of the organization. The number of such isolated repositories increases even today
due to organizational reasons. The inability of these systems to interoperate and provide the
user with an unified view of the data and the resources of the whole enterprise is a major
obstacle in taking the corporate structures to the next level of efficiency.

The wrapper-mediator approach [29] divides the functionality of a data integration system
into two units. The wrapper provides access to the resources using a common data model and
a common query representation. The mediator provides a coherent view of the enterprise
resources according to the needs of the user, and processes the queries posed by the user.
The query processing is one of the key technical challenges in a design and implementation
of a mediator system. The queries are usually specified in a declarative query language and
decomposed into query execution plans (schedules) to be executed in the mediator or in the
sources by a process named query decomposition.
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It has been identified in previous research on mediator systems [6, 11, 14, 22] that a
distributed mediation architecture is necessary in order to avoid administrative and perfor-
mance bottlenecks while providing modularity, scalability and reuse of specification in the
integration process. The mediation in such a framework is performed by a set of distributed
cooperating software components/mediators. While the distribution is inherit to a mediation
environment due to the distribution of the data sources, a distributed mediation framework
introduces interaction between the mediators that is on a higher level than the interaction
between the mediators and the data sources. A mediator in such a network does not treat
the other mediators as just another type of a data source.

Although distributed mediation has been identified as a promising research direction, most
of the reported prototypes (with an exception of [22]) have centralized architectures [6, 13].
In this paper we present the query decomposition process in the AMOSII mediator system.
In addition to being a distributed, the object-oriented (OO) approach used in AMOSII
allows for integration of sources that provide operations (programs, logic) as opposed to
the traditional assumption that the sources store only data. This leads to query execution
schedules that perform shipment of data to the sources,1 as opposed to the approaches
where the mediator first retrieves the relevant data from the sources and then composes the
requested result.

Another feature of the approach described in this paper is that it allows the user to define
operations executable in more than one source or mediator. Some source types have certain
basic operations implemented in every data source instance (e.g. comparison operators in
relational databases). When more than one source of the same type is attached to the same
mediator there is a choice where to execute such operations. The source types are organized
in a hierarchy for reuse of the specifications of the basic operations.

An important issue in the design of a query decomposer for a mediator system is the
division of the functionality between the wrapper and the mediator software components.
The decomposer, being a central part of the mediator, should provide the facilities that
are commonly needed for integration of data sources, so these features need not be re-
implemented in each wrapper. On the other hand, since the query decomposer is a complex
piece of software, it should have as simple design as possible in order to be maintainable
and have satisfactory performance. The work presented in this paper offers a trade-off
where the decomposer has simple but effective facilities for handling sources with different
capabilities. The intent is to provide facilities to handle most of the data sources using very
simple wrappers and an efficient decomposition process. The sources with more specific
requirements can be handled by implementation of a more elaborate wrapping software
layer. Although this does not allow for modeling the capabilities of the data sources to
details as provided by other approaches (e.g. [28]) that are based on context-free grammars
and rules, it provides faster query decomposition, leading to more efficient query processing
while having simple wrapper definitions for most of the commonly encountered types of
data sources.

The query decomposition process described in this paper is performed in several heuristic
and cost based phases that can be grouped into three stages:

– Query fragment generation. This phase breaks the query into a set of fragments each
executed at a single source/mediator.
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– Cost based scheduling of the execution of the query fragments. Different data flows are
explored. The fragments are compiled in the wrappers/data sources to obtain execution
cost estimates for different data flow patterns.

– Rebalancing of the left-deep tree generated by the previous stages, by a distributed query
fragment (re)compilation at the participating mediators and sources.

The final distributed execution plans operate over bulks of data rather than over single
instances.

The paper proceeds as following. Section 2 presents an overview of the basic features of
the AMOSII system. Related work is surveyed in Section 3. The central part of the paper is
Section 4 which presents the query decomposition in AMOSII . Section 5 summarizes the
paper.

2. Overview of the AMOSII system

As a platform for our research we used the AMOSII mediator database system [9] developed
from WS-Iris [21]. The core of AMOSII is an open light-weight and extensible DBMS. For
good performance, and since most the data reside in the data sources, AMOSII is designed as
a main-memory DBMS. Nevertheless, it contains all the traditional database facilities, such
as a recovery manager, a transaction manager, and a OO query language named AMOSQL
[9]. An AMOSII server provides services to applications and to other AMOSII servers.

Figure 1 illustrates the three layer architecture of AMOSII where the mediator is placed
between the top level containing applications, and the bottom level containing various kinds
of data sources. Each mediator server has a kernel containing the basic DBMS facilities
that is extensible through plug-ins that are program modules written in some regular pro-
gramming languages. AMOSII currently supports plug-ins written in C, Java and Lisp.

Figure 1. AMOSII architecture.
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In order to access data from external data sources AMOSII mediators may contain one or
several wrappers that interface and process data from external data sources. The wrappers
are implemented by program modules in a mediator server having specialized facilities
for query processing and translation of data from a particular kind external data sources.
It contains both interfaces to external data repositories and knowledge how efficiently to
translate and process queries involving accesses to a particular kind of external data sources.
More specifically the wrappers perform the following functions:

– Schema importation: the explicit or implicit schema information from the sources is
translated into a set of AMOSII types and functions.

– Query translation: object calculus is translated into equivalent query language expres-
sions referencing functions in the plug-ins that use API calls to invoke functions in the
sources.

– OID generation: when OIDs are required for the data in the sources, the query language
expressions to be executed in the source are augmented with code or API calls to extract
the information needed to generate these OIDs.

Analogously, different types of applications require different interfaces to the mediator
layer. For example, there are call level interfaces allowing AMOSQL statements to be
embedded in the programming languages Java, C, and Lisp. Figure 1 illustrates three such
call-in interfaces. It is even possible to closely embed AMOSII with applications, e.g. a
Computed Aided Engineering (CAE) system [25]. The AMOSII kernel is then directly
linked with the application.

The kernel of AMOSII can be also extended with plug-ins for customized query opti-
mization, data representations (e.g. matrix data), and specialized algorithms that are needed
for integrating data from a particular application domain. Through the plug-in features
of AMOSII , domain oriented algorithms can easily be included in the system and made
available as new query language functions in AMOSQL.

The data model of AMOSII, also used as a common data model for data integration, is
an OO extension of the DAPLEX [27] functional data model. It has three basic constructs:
objects, types and functions. Objects model entities in the domain of interest. An object
can be classified into one or more types making the object an instance of those types. The
set of all instances of a type is called the extent of the type. The types are organized in
a multiple inheritance, supertype/subtype hierarchy. If an object is an instance of a type,
then it is also an instance of all the supertypes of that type. Object attributes, queries,
methods, and relationships are modeled by functions. The non-literal types are divided into
stored, derived and proxy types. The instances of the stored types are explicitly stored in
the mediator and created by the user. The extent of a derived type is a subset of the ex-
tents of one or more supertypes specified through a declarative query over the supertypes.
The proxy types represent objects stored in other AMOSII servers or in some of the sup-
ported kinds of data sources. The derived and proxy types are described in greater detail
in [15].

The functions in AMOSII are divided by their implementations into four groups. The
extent of a stored function is physically stored in the mediator (c.f. object attributes).
Derived functions are implemented by queries in the query language AMOSQL (c.f. views
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and methods). Foreign functions are implemented in some other programming language,
e.g. C++ or Java (c.f. methods). To help the query processor, a foreign function can have
associated cost and selectivity functions. The proxy functions are implemented in other
AMOSII servers.

The AMOSQL query language is similar to OQL and based on OSQL [23] with extensions
of multi-way foreign functions, active rules, late binding, overloading, etc. For example,
assuming three functions parent, name and hobby defined over the type person, the query
on the left below retrieves the names of the parents of the persons who have ‘sailing’ as
a hobby:

create function sap(parent p)
-> string as

select p, name(parent(p)) select name(parent(p))
from person p from person p
where hobby(p) = ‘sailing’; where hobby(p) = ‘sailing’;

On the right above a derived function is defined that retrieves the names of the parents
of a person if the person has ‘sailing’ as a hobby. The difference between the query and
the function is that in the function the variable p is bound, i.e. given a specific value, while
in the query it is unbound (i.e. free, ranging over the whole Person extent). A vector de-
noting the binding used for each argument and result variable during a function invocation
is named a binding pattern. A derived function can be executed with different binding pat-
terns, granted that the functions in its body are executable with the used binding pattern
[21]. The following query demonstrates how the function defined above can be used to
retrieve the children of ‘John Doe’ having ‘sailing’ as a hobby. Note that in this case the
result of the function is bound while the argument is not bound:

select p
from person p
where sap(p) = ‘John Doe’;

The query processing in AMOSII (figure 2), first translates the AMOSQL queries
into a type annotated object calculus representation. For example, the result of the cal-
culus generation phase for the first query above is given by the following calculus

Figure 2. Query processing in AMOSII.
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expression:

{p, nm |
p = Personnil→person( ) ∧
d = parentperson→person(p) ∧
nm = nameperson→charstring(d) ∧
‘sailing’ = hobbyperson→charstring(p)}

The first predicate in the expression is inserted by the system to assert the type of variable
p. It defines the variable p to be member of the result of the extent function for the type
Person. In case of a derived type, the extent function contains a query defining the extent
in terms of predicates over the supertypes. The extent function can be used to generate the
extent of a type, as well as to test if a given instance belongs to a type. Therefore, a predicate
containing a reference to an extent function is called a typecheck predicate.

In the second processing phase, the calculus optimizer expands the derived functions
bodies (including the derived types extent functions) and applies type-aware rewrite rules
to reduce the number of predicates [7, 17].

After the rewrites, queries operating over data outside the mediator are decomposed into
single-site query fragments to be executed in different AMOSII servers and data sources.
This query decomposition process is the main topic of this paper. The algebra generation
phase translates the formalism used during the query decomposition into an executable
object algebra representation, accepted by the object algebra interpreter.

An interested reader is referred to [17] for more detailed description of the data integration
framework of AMOSII , and to [7, 9, 10, 15, 21] for more comprehensive descriptions of
the query processing phases preceding the query decomposition.

3. Related work

The work presented in this paper is related to the areas of data integration and distributed
query processing. This section references and briefly overviews some representative exam-
ples of projects in these areas. A more elaborate comparison of the AMOSII system with
other data integration systems is presented in [15].

One of the first attempts to tackle the query optimization problem in a distributed databases
environment was done within the System R* project [3]. In that project an exhaustive,
centrally performed query optimization is used to find the optimal plan. Due to the problem
size, in our work we use a search strategy that performs an exhaustive strategy over only a
portion of the whole search space. This method is combined with several heuristic-based
phases that improve the plan and reduce the optimization time.

As opposed to the distributed databases, where there is a centralized repository containing
meta-data about the whole system, the architecture described in this paper consists of
autonomous systems, each storing only locally relevant meta-data. Most of the mediator
frameworks reported in the literature [4, 6, 8, 12, 13, 22, 24, 28] propose centralized query
compilation and execution coordination. In the Pegasus project [6] it is indicated that a
distributed mediation framework is a promising research direction, but to the extent of our
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knowledge no results in this area are reported. A centralized query processor in Pegasus
identifies portions of the query tree that can be evaluated in a single source and converts them
into Virtual Tables (VTs). It then generates a left-deep query tree having VTs or locally stored
tables as leaves and internal nodes representing operators of extended relational algebra.
Finally, re-balancing is performed over the left-deep tree based on the associativity and
commutativity properties of the join and cross-product operators. In AMOSII we propose a
fully distributed query compilation and tree re-balancing where more than one participating
mediators can compile multi-source portions of the submitted query.

In DISCO [28], the query processing is performed over plans described in a formalism
called universal abstract machine (UAM) that contains the relational algebra operators
extended with primitives for executing parts of query plans in the wrappers. The mediator
communicates with the wrapper by using a grammar describing the operator sequences
accepted by the wrapper. It can also (in some cases) ask for the cost of a particular op-
erator sequence. This method is more elaborate than the method for the description of
data source capabilities in AMOSII, but it is more complex and time-consuming, due to the
combinatorial nature of the problem of constructing the sub-plans executed in the wrappers.

The Garlic system [13] has also a centralized wrapper-mediator architecture. Decompo-
sition in Garlic is achieved by performing rule-based transformation of the initial algebra
query representation that can shift a part of the plan to be executed in the wrapper/source.
As opposed to the approach presented in this paper, the query processor in Garlic does not
have any knowledge about the capabilities of the individual sources. Therefore, in order
to find out if a sub-query is executable in a data source the query processor must ask the
corresponding wrapper. This approach combined with an exhaustive enumeration leads to a
large number of sub-query compilation requests submitted to the wrapper. Common subex-
pression analysis is not used to reduce the amount of data retrieved from the source. Garlic
supports a join implementation named BindJoin that sends parameters to the sources, but
only on a single tuple level. Finally, Garlic does not store data locally and does not support
functions that are implemented in more than one data sources, as described in this work.

The DIOM project [26], proposes a distributed framework for integration of relational
data sources where the relational operators can be executed either in the mediators or in
the data sources. The query optimization strategy used in DIOM first builds a join operator
query tree (schedule) using a heuristic approach, and then assigns execution sites to the
join operators using an exhaustive cost-based search. AMOSII, on the other hand, performs
a cost-based scheduling and heuristic placement. Furthermore, the compilation process in
DIOM is centrally performed, and there is no clear distinction between the data sources
and the mediators in the optimization framework. Finally, in DIOM only the join operator
can be scheduled to be executed at more than one site, lacking the flexibility of the multiple
implantation functions mechanism in AMOSII where this applies to arbitrary user-defined
operators and functions.

4. Query decomposition in AMOSII

Given a query over multiple data sources, the goal of the query decomposition is to deter-
mine the portions of the original query, query fragments, executed at each of the sites, and
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to schedule their executions to produce the query result. As noted earlier, AMOSII is a dis-
tributed mediator system. This implies a decomposition framework that allows cooperation
of a number of distinct AMOSII servers during the query processing. While distribution is
present in any mediation framework due to the distribution of the data sources, the distributed
mediator framework in AMOSII introduces another higher level of interaction among the
AMOSII servers. In other words, an AMOSII server does not treat another AMOSII server
as just another data source. More specifically, if we compare the interaction between an
AMOSII server and a wrapper (and through it with a data source), and the interaction
between two AMOSII servers, there are two major differences:

– AMOSII can accept compilation and execution requests for query fragments over data
in more than one data source, as well as data stored in the local AMOSII database. The
wrapper interfaces accept fragments that are always over data in a single data source.

– AMOSII supports materialization of intermediate results used as input to locally executed
query fragments and generated by a fragment in another AMOSII server. A wrapper pro-
vides only execute functionality for queries to the data source. By contrast, the query
execution interface of AMOSII provides a ship-and-execute functionality that first re-
ceives and stores locally an intermediate result, and then executes a query fragment using
it as an input.

4.1. Motivation and overview

Two query execution plans are equivalent if, for any state of the database, they produce
the same result. Equivalent plans can have very different execution times (costs). In order
to avoid unnecessary large execution times, during the query decomposition process many
different, but equivalent plans are considered. To illustrate the magnitude of the number of
equivalent query execution plans for a query over multiple data sources, we use a query
plan representation as n-ary operator trees. A straight forward query decomposition would
estimate the cost of each plan tree and then select the cheapest plan. Note that such an
exhaustive method is not used in AMOSII; it is used here solely to demonstrate the enormous
search space of the optimization problem. Each tree node in such an operator tree contains
a simple predicate from the query calculus expression, and is assigned a data source for
execution. Some predicates can be executed at more than one data source. A tree is executed
by first executing the root node children, then shipping the results to the execution site (data
source) where the root node is assigned, and finally executing the root node predicate. Since
in a non-trivial case the number of possible n-ary trees with p nodes is exponential to p,
and the number of different site assignments is exponential to the number of predicates
executable at more than one data source d, the total number of trees is O(a p · sd), where a
is a constant and s is the number of sites involved.

This estimate shows that an exhaustive search of the whole search space is not feasible.
Therefore the decomposition strategy presented in this paper is based on a combination
of cost-based search strategies and heuristic rules that lower the number of the examined
alternatives. The aim is not to find an optimal plan. Instead, we strive to to produce a
“reasonably” efficient plan for most of the queries, while exploring only a limited portion
of the search space.
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The description of the query decomposition in this section assumes conjunctive predicate
expressions as input. The query decomposer handles disjunctions in two ways, depending
on the origin of the predicates in the disjuncts:

– Single source disjunctions contain predicates that are executed at a single data source.
They are treated as a single predicate with the cost, the selectivity and the binding pattern
induced form the disjuncts.

– Multiple source disjunctions are handled by normalization into disjunctive normal form.
The decomposer then processes each disjunct in the normalized query separately.

From a parsed and flattened query calculus expression the query decomposer produces
a query decomposition tree. The parsing and the flattening of multi-database queries is not
different from queries over local data [21]. The query decomposition process is performed
in four phases as illustrated in figure 3.

The decomposition produces a query execution plan where query fragments are exe-
cuted in various data sources having different query processing capabilities. This mismatch
in the capabilities of the sources has a great impact on the query decomposition. There-
fore, in order to give a basis for the detailed description of the decomposition phases

Figure 3. Query decomposition phases in AMOSII.
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later in this section, we first present the AMOSII model for description of data source
capabilities.

4.2. Describing the data source capabilities

The functions used in an AMOSQL query can be divided into two categories: functions
implemented and executable in exactly one data source, single implementation functions
(SIFs); and functions that are implemented and can be executed in more than one data
source, multiple implementations functions (MIFs).

The user-defined local functions as well as the proxy functions are SIFs. For example,
if a function namePerson→string is defined over the instances of the type Person in a source
named EMPLOYEE DB, then the implementation of this function is known only in that
mediator and therefore it can be executed only there. An example of MIFs are the comparison
operators (e.g. <, >, etc.) executable in AMOSII servers, relational databases, some storage
managers, etc. The MIFs can also be user-defined. Since, in our framework, each user-
defined type is defined in only one data source, a MIF may take only literal-typed parameters.
A framework that would support replicated user-defined types and MIFs taking user-defined
type parameters would require that the state (values) of the instances of these types is shipped
between the mediators, in order to be used at the data source where the MIF is executed. In
the framework presented here, only OIDs and the needed portions of the state of the instances
are shipped among the mediators and the data sources. Extending the integration framework
to handle replicated user-defined types is one of the topics of our current research. To the
extent of our knowledge, such features are not supported by any of the mediator prototypes
for data integration reported in the literature.

Depending on the set of MIFs that a data source implements, the sources are classified
into several Data Source Kinds (DSKs). Inversely, the set of MIFs associated with a DSK is
a generic capability of this DSK; the DSK supports the MIF. Besides a generic capability,
each data source instance can also have specific capability defined by the user-defined types
and single implementation functions exported to AMOSII. To simplify the presentation, in
the rest of this section we use the term capability to refer to to the generic capability of a
DSK.

In order to reuse the capability specifications, the DSKs are organized in a hierarchy where
the more specific DSKs inherit the capability of the more general ones. This hierarchy is
separate from the AMOSII type hierarchy and is used only during the query decomposition
as described below. Figure 4 shows an example of an AMOSII DSK hierarchy. All DSK
hierarchies are rooted in a node representing data sources with only the basic capability
to execute simple calculus predicates that invokes a single function/operator in this source
and returns the result to the mediator. Data sources of this kind cannot execute MIFs. At
the next capability levels, DSKs are defined that have the capability to perform arithmetic,
comparison and join operations. The arithmetic and comparison DSKs are defined using
the usual set of operators, shown in the figure.

The two kinds join capabilities single collection join and general join, are not specified
using MIFs as for the other DSK capabilities. In the calculus used in AMOSII , the equi-
joins are represented implicitly by a variable appearing in more than one query predicate.
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Figure 4. Data source capabilities hierarchy.

Accordingly, a wrapped data source with a join capability can process several predicates
connected by common variables as a single unit. Based on the properties of the commonly
used data sources, there is a need to distinguish between two kinds of join capabilities. First,
there are sources that are capable of combining and evaluating conditions over only a single
data collection in the source (e.g. a table in a storage manager). These kinds of sources are
defined using a DSK that inherits only the single collection join capability. An example of
such a data source is a storage manager storing several data tables, each represented in the
mediator as a proxy type. Each table can be scanned with associated primitive conditions.
The conditions to a single table can be added together. However, operations over separate
tables need to be submitted separately. Therefore, for each table, the MIF operators are
grouped together with the proxy type typecheck predicate, and submitted to the wrapper.
One grouped predicate is submitted for each different collection. A system with such features
fits the capability description of the comparison DSK in figure 4.

The general join capability is inherited by DSKs representing sources capable of pro-
cessing joins over multiple collections (e.g. relational database sources). The decomposer
sees each collection as a proxy type. It combines the operations over several proxy types
into a single query fragment that is sent to join capable data sources.

New DSKs are defined by inserting them into the DSK hierarchy. For example a DSK
representing a software capable of matrix operations is named Matrix, and placed under the
DSK hierarchy root node in figure 4. This implies that matrix sources supports the execution
of one operation at a time. A DSK allowing combining of matrix operations would have
been defined as a child of one of the join DSKs.

4.3. Predicate grouping

The predicate grouping phase attempts to reduce the optimization problem by lowering
the number of the predicates considered in the optimization. In this phase, if possible, the
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individual predicates executed at a given data source are grouped into one or more query
fragments, each represented by a composite predicate. The query fragments are treated
afterwards as a single predicate. Each query fragment is optimized in the wrapper or the
data source where it is forwarded for execution. Each fragment is parameterized with the
calculus variables appearing both in the associated composite predicate and the rest of
the query.

Two major challenges arise in grouping the query predicates into fragments:

– Grouping heuristic: an exhaustive approach to the grouping would not reduce the query
optimization problem. A heuristic approach must be used.

– Grouping of the MIF predicates: how to group the predicates that reference multiple
implementation functions from DSKs.

Since exploring all the possible groupings of the predicates into query fragments is not
feasible AMOSII applies the following two grouping rules:

– Joins are pushed into the data sources whenever possible.
– Cross-products are avoided.

Using these two heuristic rules results into good query plans under certain assumptions
about the input queries. The first rule is based on the observation that usually the result of a
join is not orders of magnitude bigger than the operands, and that the sources that support
joins might take advantage of auxiliary structures (e.g indeces) to perform the join faster
than the mediator. By favoring this approach we also avoid storing intermediate results in
the mediator. Sources for which it can be a priori determined that this properties does not
hold can be declared of a DSK that does not have the general join capability which will
prevent joins in the source. The second rule favors performing cross product operations in
the mediator instead of in the sources. Assuming that the time to complete two separate
accesses to the data source will not be substantially larger than the time to complete one,
this approach should always lead to a better query execution plan.

The grouping process in AMOSII uses a query fragment graph that is similar to the
query graphs in the centralized database query processors. Each graph node represents a
query fragment. Initially each fragment composes of a single query predicate. Fragments
containing one or more common variables are connected by an edge. Each edge is labeled
with the variables it represents. The variables labeling the edges connecting a fragment with
the rest of the graph represent the parameters of the fragment.

Query fragments composed of predicates referring to only SIFs are named SIF fragments.
Analogously, the fragments composed of MIF predicates are MIF fragments. All fragments
in the graph are assigned to a site.2 The SIF fragments always contain SIF references from
a single site. Accordingly, each SIF fragment is assigned to its corresponding site. The MIF
fragments are assigned to a site in the later decomposition phases. Each fragment is also
associated with a DSK. SIF fragments are given the DSK of the site where they are assigned.
The MIF fragments are attributed DSK based on the functions referenced in the fragment.
Initially each fragment contains only one calculus predicate, referencing only one MIF
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function. Therefore the fragment can be unambiguously attributed the DSK containing the
predicate function in its capability set.

The grouping of the query fragment graph is performed by a series of fusion operations
that fuse two fragments into one. The result of a fusion is a new fragment representing the
conjunction of the predicates of the fused fragments. The new fragment is connected to
the rest of the graph by the union of the edges of the fused fragments. To preserve the
unambiguous assignment of DSKs to MIF fragments, only MIF fragments associated with
the same DSK are fused. Furthermore, the DSK of the fused MIF fragments must have at
least a single collection join capability for a fusion to be applicable. SIF fragments are fused
only with other SIF fragments associated with the same site, according to the following
conditions, based on the site capabilities:

– Site without join capability: Fragments to be executed at this kind of sites are not fused
and contain only a single predicate. The system will add typecheck predicates for all the
variable used in the predicate, to provide typing information that might be needed for
translation and function resolution in the wrapper.

– Single collection joins site: Two fragments that are to be executed at a site capable of
only single collection joins fused if they represent operations over the same collection in
the source, represented by a proxy type in the query.

– General join site: Two connected SIF query fragments executed at such a site are always
fused.

Assuming a query fragment graph G = 〈N , E〉, where N = {n1 . . . nk} is a set of
nodes (query fragments), and E = {(n1, n2) : n1, n2 ∈ N } is a set of the edges between the
nodes, the predicate grouping algorithm can be specified as follows:

while ∃ (ni , nk) ∈ E : ni and nk satisfy the fusion conditions do
nik := fuse(ni , nk);
E := E − {(ni , nk)}
E := E ∪ {(nik, nm) : (∃(nl , nm) ∈ E : nl = ni ∨ nl = nk) ∨

(∃(nm, nl) ∈ E : nl = ni ∨ nl = nk)};
E := E − {(ni , nm)} − {(nm, ni )} − {(nk, nm)} − {(nm, nk)};
N := N − {ni , nk} ∪ {nik};

end while

After each fusion, the fused fragments are replaced in the graph by the new fragment, and
all the edges to the original fragments are replaced by edges to the new fragment. The
fuse operation conjuncts the query fragments and adjusts the other run-time information
stored in the fragment node (e.g. typing and variable information) to reflect the newly
created query fragment. The algorithm terminates when all possible fragment fusions are
performed.

After performing all the possible fusions, the graph contains fragments that are to be
submitted to the data sources as a whole. However, this is not the final grouping. The
grouping is performed again after the MIF fragments are assigned sites (to be discussed
below). Note that MIF fragments of different DSKs are not grouped together at this stage.
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At this stage the graph contains query fragments composed of either only MIF predicates
of a same DSK, or only SIF predicates.

The following example, used as a running example through the rest of this section, il-
lustrates the grouping process. The query below on the left contains a join and a selection
over the type A in the source DB1, and the type B in the source DB2. Two functions are
executed over the instances of these types: faA→int( ) in DB1, and f bB→int( ) in DB2. The
calculus generated for this query is shown on the right:

{ r |
select res(A) a = Anil→A( ) ∧
from A@DB1 a, B@DB2 b b = Bnil→B( ) ∧
where fa(a) + 1 < 60 and va = fa(a) ∧
fa(a) < fb(b); vb = f b(b) ∧

va1 < 60 ∧
va1 = plus(va, 1) ∧
va < vb ∧
r = res(a) }

The example query is issued in an AMOSII mediator and is over data stored in the data
sources DB1 and DB2. In the example, we will assume that these two sources have Join
capability (e.g. relational databases or AMOSII servers). In the initial query fragment graph,
shown in figure 6(a), each node represents a single-predicate query fragment. The nodes
(query fragments) are numbered with the rank of the predicates in the above calculus ex-
pression. In figure 6(a), the predicates are shown beside each graph node. The nodes are
also labeled with their assigned site, or with “MIF” if they represent a MIF fragment. The
graph edges are labeled with the variables that connect the fragments.

Figure 6(b) shows the result of the grouping phase. The fragments n8, n1 and n3 are all
assigned to the site DB1 and make a connected subgraph; therefore they are fused into the
fragment:

a = Anil→A( ) ∧ va = fa(a)∧ r = res(a)

The same applies for n4 and n2 at DB2. Although, n6 is connected with both n5 and n7, these
MIF fragments cannot be fused because they correspond to different DSKs: arithmetic and
comparison respectively.

4.4. MIF fragments execution site assignment

The graph produced by the previous phase contains SIF fragments with an assigned execu-
tion site, and MIF fragments that are still not assigned to a site. In order to generate query
fragments for the individual data sources, the next step is to assign execution sites to the
MIF fragments. A MIF fragment can be executed at any site known to the mediator that is
capable of performing the operations (functions) referenced in the fragment. Furthermore,
it could be beneficial to assign (replicate) a MIF fragment to more than one execution site
where it is combined and translated, together with the other query fragments assigned to
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this site into an execution plan that is cheaper to execute. Because of the declarative nature
of the query fragments, their replication does not change the result of the query execution.
Any assignment of execution site(s) to a MIF fragment yields a correct and executable query
schedule; the difference is only in the costs (execution times) of the generated plans.

Searching the space of possible site assignments using an exhaustive strategy would
require examining every combination of known sites as execution sites for each MIF frag-
ment. This would require performing full query optimization for each alternative using
backtracking, resulting ultimately in an algorithm with an exponential complexity. To avoid
this expensive process, we tackle the site assignment problem for MIF fragments by using
a heuristic approach aided, in certain cases, with partial cost estimates.

The heuristic used in AMOSII is based on analysis of the execution costs affected by the
placement of a MIF fragment at a site. These costs are:

– The cost of the execution of the MIF fragment at the assigned site.
– The change of the execution costs of the other query fragments assigned at the same site

(due to additional applicable optimization).
– The intermediate results shipment cost.

The first cost varies due to different speeds of the sites in the federation. The cost of the
execution of other predicates can change when a MIF fragment is combined with a SIF
fragment placed at the same site, as for example, when the newly assigned MIF fragment
contains a selection condition that reduces the SIF fragment execution time in the data
sources. Finally, this kind of a selection will also influence the size of the intermediate
results.

In order to simplify the placement problem, we recognize several different sub-cases and
in each one examine only some of the above costs. In each case, the following goals are
pursued in the order they are listed:

1. Avoid introducing additional cross-site dependencies among the fragments, caused by
having a single calculus variable appearing at multiple sites. These dependencies often
lead to costly distributed equi-joins by shipment of intermediate results among the sites.

2. Place each MIF fragment so that it has common variables with one or more SIF fragments,
in order to facilitate possible rewrites that can reduce the cost of accessing the data sources
and reduce the intermediate results sizes.

3. Reduce the execution time for the individual MIF fragments.
4. When it is not possible to assign a site to a MIF fragment on the basis of the previous

three criteria, if possible, execute the predicate in the mediator where the query was
submitted.

The placement algorithm does not attempt to satisfy these goals simultaneously, but rather
tries to satisfy one at the time in the order they are listed above.

While the set of the possible execution sites for a MIF predicate is fixed (all the sites having
the required capability), and does not depend on the order in which the MIF fragments are
placed, the placement heuristics presented below uses the already placed fragments as a
source of information for placing the next fragment. Different placement order can therefore
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provide different available information at fragment placement time. When considering a site
for an execution of a query fragment, the available information is larger when more of the
other MIF fragments that will be also placed at the same site are already placed. To maximize
the information available during the fragment assignment, the query fragments requiring
more capability are placed before the fragments requiring less capability. A fragment that
requires less capability is always assigned to a site that is also considered when a fragment
requiring more capability is assigned. Hence, if a fragment requiring less capability is
assigned before a fragment requiring more capability, the placement heuristics can use the
information in the former to decide on the placement of the later. This is not always true in
the opposite direction, because the fragment requiring less capability might be assigned to
a site that does not have the capability to process the fragment requiring more capability,
making the information gained by the former placement unusable during the consequent
placement of the later. Therefore, the fragments are placed in an order induced from the
partial order of their capabilities where fragments with more capabilities are placed before
the fragments with a subset of their capabilities.

After a MIF fragment is placed at an execution site, the new graph is regrouped by
the grouping algorithm in order to group the newly assigned fragment with the fragments
already assigned to the chosen site.

The site assignment process works as follows. First, each calculus variable that labels
an edge in the graph is assigned the set of sites where it appears, i.e. the set of sites of the
fragments that are connected by a graph edge labeled with this variable. Since this variables
represent parameters for the query fragment, this set is referred to as parameter site set.
Next, each of the MIF fragments is processed. For each fragment, first an intersection of
the site sets of the fragment parameters is computed. This intersection represents the sites
that operate over the same data items as the MIF fragment.

Figure 5 shows five sub-cases of the placement problem, distinguished by the properties
of the parameter’s site sets intersection and the query fragment. The rest of this section
examines each of the cases in greater detail.

Case 1: Singleton site sets intersection. If the intersection is not empty and contains only
one site, then the fragment is assigned to that site. This allows the optimizer to devise a
strategy where no intermediate results are shipped between the mediators when the query

Figure 5. MIF fragment clasification using parameter site sets and execution costs.
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Figure 6. Query graph grouping sequence for the example query.

fragment is executed. All the parameters can be produced locally at the chosen site. Placing
the query fragment at a site where only a subset of the needed parameters can be produced
implies that the missing parameters must be shipped in before the fragment is executed. An
example of a Case 1 placement is shown in figure 6(b) where fragment 6 is connected only
by the variable va to fragment 831. This fragment is assigned to the same site as 831, i.e.
DB1. After the grouping of the graph the result is as presented in figure 6(c).

Cases 2 and 3: Several sites in the parameter site sets intersect. In this case, MIF frag-
ments are placed on the basis of their execution costs when all the parameters are bound.
If a fragment has a cost lower than a predetermined low constant threshold, then the it
is considered to represent a cheap selection. The query fragment is therefore replicated,
placing one copy at each of the sites in the intersection. This strategy is particularly useful
for query processing in multi-database environments. In a classical distributed database
environment, it would suffice to execute the selection at only one site. The query pro-
cessor could then ship the intermediate result to the other sites, and use this already re-
duced set of instances as the inner set in the joins. That strategy is not possible when
data sources do not support materialization of intermediate results. Thus, the selections
should be pushed into all the applicable data sources to reduce the processing times in the
sources, as well as minimizing proxy object generation in the wrappers associated with these
sources.
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Case 4: All parameter site sets empty. A parameter has an empty site set if it appears only
in MIF fragments that have not yet been placed. If all site sets of the fragment parameters
are empty, assuming a connected query graph, we can conclude that all the neighboring
fragments are also unplaced. In order to obtain more information for the placement of such
fragments, the placement is postponed and the fragment is omitted. Omitted fragment are
processed after processing the rest of the fragments. If all MIF fragments have all parameter
site sets empty, the first fragment is placed for execution in the mediator where the query is
issued, if possible. Otherwise, it is placed at the site where it will be executed fastest, i.e. at
the most powerful site.

Assuming, that the site assignment proceeds in the same order as the nodes are num-
bered, in the situation shown in figure 6(b) the algorithm will attempt to place n5. Since n5

is connected to only MIF fragments, its parameter site sets intersection is empty. Thus, n5

is skipped as described above, and considered again when the rest of the MIF fragments are
placed. The graph at this point is presented in figure 6(d). Now, the site set of the parame-
ter va1 is Asetva1 = {DB1} since n5 is connected to n8316 at DB1, by an edge labeled va1.
Fragment n5 is therefore placed at DB1. After the grouping, the final query graph is shown
in figure 6(e).

Case 5: Non-empty site sets with empty intersection. In this last case, we consider placing
a query fragment having a non-empty intersection of its parameters’ site sets, but not all
of the sets are empty. In other words, there is no site that can produce all the parameters
needed for the execution of the fragment, while all of the parameters are present at at least
one site. The placement process in this case is based on a simplified cost estimate. The
estimate calculation takes into account only the query fragments that are neighbors in the
query graph to the currently placed fragment. Moreover, the cost estimate is calculated by
taking into account only the graph edges of the currently processed query fragment. Another
simplification of the problem is that this kind of query fragments are placed at exactly one
site. Since no site contains all the data needed for the execution of the query fragment, the
missing data must be shipped to the execution site from other sites. By placing the query
fragment at one site, we avoid plans where the parameters for the MIF fragment are shipped
to multiple sites.

For each of the possible placements, the sum of the execution costs of the predicates in the
neighboring query fragments and the necessary data shipment is estimated. The predicate is
placed at a site where this cost is the lowest. To describe the calculation of this cost, let the
set of the neighboring fragments be N = {nsn1

1 , . . . , n
snl
l }; the set of sites these fragments

are placed at S = {s1, . . . , sm }, m ≤ l; the currently placed fragment parameter variables
A = {a1, . . . , ak}; and finally, the corresponding parameter site set of each of these variable:
As = {aSet1, . . . , aSetk}.

The execution cost of all the query fragments at site s, assuming that each fragment is
executed over BS (bulk size), tuples is defined as the sum of the costs of the execution costs
of the individual query fragments:

exec cost(s, BS, A) =
∑

j=1...l,s=s j

cost
(
n

sn j

j , BS, A
)
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The cost function returns the cost of executing a fragment with the parameters in the set
A unbound (i.e. emitted as a result), so that they can be consumed by the currently placed
fragment. In calculating the estimate, the number of input tuples is fixed to a predetermined
constant BS that denotes the size in tuples of the bulks of intermediate results shipped
between the AMOSII servers during the streamed execution. This number is used since
the size of the results cannot be precisely estimated before all the fragments are placed and
scheduled for execution. Using such a constant value for the estimates provides a good basis
for comparison, however, it is important that this constant is larger than 1 in order to correctly
estimate the effect of techniques as sub-query materialization in queries containing nested
sub-queries. In such cases, the query processor might decide to materialize the sub-query
result and use it in the processing of the whole input. The cost of the materialization is
amortized over the processing of all the input tuples and therefore:

cost
(
n

sn j

j , BS, A
) �= BS · cost

(
n

sn j

j , 1, A
)

Nested sub-queries are common in the system-generated functions for support of the
AMOSII OO view system spanning over multiple mediators and data sources [16], making
this kind of cost estimate necessary.

When a site s is chosen for a query fragment, the grouping algorithm is applied to the
neighbor subgraph nodes placed at this site. The sum of the execution costs of the all
fragments at this site is denoted with pa exec cost(s, BS). Assuming that a subset Al of the
parameter set A is produced locally at s while the rest of the parameters At = A − Al are
shipped from the neighboring fragments, the execution cost estimate can be expressed as a
sum of the new cost at the site where the fragment was placed and the unchanged costs at
the other sites:

ece(s) = pa exec cost(s, BS) +
∑

i=1...l,si �=s

exec cost(si , BS, At )

To obtain a complete cost estimate, besides the execution cost estimate, we need to
compute an estimate for the intermediate results shipping cost. Here, we assume that each
of the missing parameters in At is shipped to the site s from the cheapest possible alternative.
The cost of shipping the parameter ai ∈ At from a site r where it is produced by the query
fragments in N to a site s where it is consumed is:

tec(ai , N , S) = BS · selectivity(N , At ) · sizeof (type(ai )) · WBrs

+ selectivity(N , At ) · WIrs

Where WBrs is the weight of the cost of the network link between the sites r and s per byte
and WIrs is the message initiation cost (we assume that each message contains BS tuples);
selectivity(N , At ) returns the selectivity of the query fragments in N with all parameters in
At unbound; sizeof ( ) returns a size of a given tuple of types; and type( ) returns a tuple of
data types for a given tuple of variables. The unit of cost in AMOSII is the time to execute
a single access in the main-memory storage manager. The network weights WBrs and WIrs
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represent the ratio between this unit and the time to ship one byte between the sites R and
S and to initiate a message respectively. The parameter shipping cost can be expressed as:

tec(S) =
∑

ai ∈At

min
ni ∈N

tec(ai , N , S)

The complete cost estimate for placing the fragment at the site s is:

ce(s) = ece(s) + tec(s)

The fragment is assigned to the site so such that

∀s ∈ S ce(so) ≤ ce(s)

Although all the possible site assignments produce a correct execution plan, the cost
estimate calculation can fail for some sites because some of the query fragments might not
be executable with the incomplete binding patterns used to calculate the estimate. Such
sites are ignored in the assignment process. In a rare case, it is possible that all the estimate
computations fail. In this case, an arbitrary site is chosen from the set of sites capable of
handling the query fragment.

In order to determine the complexity of the cost estimate calculation we can observe
that the terms used in the equations above can all be obtained either from the system
catalogue (e.g. sizeof ( ) function and the network weights), or from compilation of the
fragments in the subgraph (the cost( ) and selectivity( ) functions). The maximum number
of compilations needed to obtain this data is 2l, where l is the number of neighboring
fragments of the fragment being placed in the query graph. This estimate is based on the
observation that each neighboring fragment is compiled twice: once for the case when
the fragment is placed at the same site with the neighboring fragment, and once when it
is placed elsewhere. Normally, the queries posed to the mediator have connected query
graphs, implying that l ≤ n, n being the number of sites involved in the query. Hence, the
cost of the site assignment will usually not be larger than 2n single site query fragment
compilations, some of which might be reused in the latter decomposition phases. We also
note that n here does not represent all the sites involved in the query, but rather the sites
that operate over the parameters of the placed fragment.

In figure 6(c) the fragment n7 represents an example of case 5 placement problem. The
example illustrates the problem of the placement of the join condition va < vb. Figure 6(d)
shows the graph after placing n7 at DB2.

A more elaborate example of this case is illustrated by the query graph shown in
figure 7(a). The upper right side of the figure shows the sets of fragments, sites, parameters
and parameter site sets used in the calculations of the estimates. There are three sites in-
volved with a total of 4 fragments. Assuming Join capability, the resulting grouped graphs
for each placement alternative are shown in the figure 7(b–d). Depending on the costs and
selectivities of the fragments the optimizer chooses one of these alternatives.

This concludes the description of the query decomposition phases that produce the query
fragments sent to the individual data sources. The following sections will present a method
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Figure 7. Case 5 example and the possible outcomes.

for scheduling the execution of these fragments and assembling the result to the query from
the results of the query fragments.

4.5. Cost-based scheduling

The result of the first two query decomposition phases is a query fragment graph where each
fragment is assigned an execution site. The fragments are connected by edges representing
equi-joins over the values of common variables. To translate this query graph into an
executable query plan, the query processor must decide on the order of the execution of the
query fragments. This order influences the data flow between the sites. The query processor
builds an execution schedule to describe the execution order and the flows between the
sites.

The query fragments are represented by system generated derived functions with a sig-
nature based on the data types of the parameters. When a fragment is executed in a source
that is not an AMOSII mediator, the derived function is defined in the mediator that wraps
the source. The bodies of derived function representing non AMOSII query fragments
are generated by the corresponding wrappers. Usually, these call foreign functions imple-
mented in C, Java or Lisp that access the data source and perform the requested operations.
For example, the relational wrapper implemented within the AMOSII project creates an
SQL statement from the object calculus, and then invokes the foreign function sql [1] that
passes an SQL statement to an ODBC data source. The sql function is called from within
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the calculus expression generated for the query fragment and is contained in the derived
function body. In addition to this expression, the function body can contain expressions for
generating OIDs based on the data retrieved from the relational database.

Examining all the possible execution schedules is not feasible for larger queries. To illus-
trate the hardness of this problem, we examine the alternative execution schedules for the
query example from the previous subsection. The final query graph for this query contains
two query fragments, each at one of the two participating sites. The definition of the de-
rived functions representing the query fragments are as follows (ignoring the source specific
translations):

in DB1: in DB2:
QFdb1type va→boolean(va) ⇐⇒ QFdb2type r,type va→boolean(r, va) ⇐⇒
{ {

b = Bnil→B( ) ∧ a = Anil→A( ) ∧
vb = f b(b) ∧ va = fa(a) ∧
va < vb} va1 = plus(va, 1) ∧

va1 < 60 ∧
r = res(a)}

These two function definitions are as the query fragments would be executed with all
their parameters unbound. Such binding patterns are used because the real binding patterns
are at this time still unknown. They are determined later in the scheduling process and the
functions are recompiled to generate the plans for their execution with the correct binding.
During the scheduling, a query fragment can be recompiled more than once using different
binding patterns, depending on the placement in the currently generated schedule. Since a
derived function recompilation does not perform the calculus optimization, it is beneficial
to define these functions once and recompile them possibly multiple times.

The execution of the example query begins by evaluating one of the functions at one
of the sites. Next, the other fragment function is evaluated and the results shipped to
a join and materialization capable site, where an equi-join over the variable va is per-
formed. Although, in general, any join capable site could join the intermediate results,
in this work we consider only the sites where a query fragment is evaluated. Under this
assumption, only one of the intermediate results is to be shipped, to the site where the
other is produced. Therefore, at the site of the second query fragment, we can either first
evaluate the second query fragment and join the results, or use the join attributes in the
tuples of the materialized intermediate result.3 For example, if QFdb1 is executed first
and the resulting va values are shipped to DB2, we could either first execute the func-
tion QFdb2, and match the resulting tuples with the materialized values of va, or invoke
QFdb2 with the values of the parameter va bound to the values in the shipped set. In order
to determine the optimal schedule, the query processor must calculate and compare the
costs of the different strategies. The cost calculation depends on the execution cost and
the selectivity of each of the query fragments, and the cost of shipping data among the
systems.

This analysis illustrates that the number of alternatives is large even in a simple example
where the query is decomposed in only two query fragments as above. Hence, the strategy
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Figure 8. A query processing cycle described by a decomposition tree node.

described in this section searches only a portion of the search space of possible execution
plans. The plan chosen by this search is then improved using additional heuristic described
in the next section.

The generated execution schedules are described by decomposition trees (DcTs). Each
DcT node describes one data cycle through the mediator. Figure 8 illustrates one such cycle.
In a cycle, the following steps are performed:

1. Materialize successively portions of the intermediate results in an AMOSII server where
they are to be processed.

2. Execute a remote query fragment and join the result with the intermediate result produced
in step 1.

3. Ship the results back to the mediator.
4. Execute one or more local query fragments in the mediator.

The result of a cycle is always materialized in the mediator. A sequence of cycles can
represent an arbitrary execution plan. Not all cycle steps are required in every DcT node.

The intermediate results used as an input in the cycle are represented recursively by a
list of child DcT nodes, the materialization list. In order to simplify the query processing,
currently the tree building algorithm considers at this stage only materialization lists with
one element (left-deep trees), and therefore the intermediate result always has the form of
a single flattened table.

Steps 1 through 3, which involve communication with an another AMOSII server, are
performed by the an distributed equi-join operator that performs an equi-join between the
intermediate result generated from the materialization list and the result of the execution of
an remote query fragment, represented by a remote derived function [18]. Each DcT node
contains the necessary information generated during the query compilation that describes
the remote query fragment and the way it is invoked. More specifically this description
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Figure 9. Two decomposition trees for the example query.

consists of the following items:

– proxy OID for the remote derived function representing the query fragment
– parameter bindings and typing information
– execution cost and selectivity estimates of the query fragment for a given binding

Step 4 is specified by a list of locally executed query fragments, post-processing list. These
query fragments are represented by locally defined derived functions and are executed over
the result of the equi-join operation specified by the previous steps. The order of the post-
processing list determines the sequence of applications of the fragments, determined by the
optimizer.

Figure 9 shows two trees generated for the example query. These trees illustrate the
scheduling alternatives where the equi-join of the results of the execution of the two query
fragments is performed at DB1 and DB2, respectively. Because we consider only left-deep
trees, joins in the mediator are not considered at this stage. The trees also determine the
relative order of the execution of the query fragments. The order of the operations given
above implies that the trees are executed bottom-up. This in turn determines the execution
binding pattern for each query fragment. The same query fragment in different trees can
have different binding patterns and thus different execution costs. In the left DcT in figure 9
QFdb2 is executed with the variable va unbound, while in the tree on the right this variable
is bound. If the function fa(a) is expensive, or has high selectivity, then the execution of
QFdb2 with va unbound can have a much higher cost than when va is bound. This cost
variation combined with the cost variation of QFdb1 influences the cost of the whole tree.

The cost of an execution schedule represented by a DcT node is calculated recursively
by adding the costs of the steps in figure 8 to the costs of the subtrees in the materialization
list. The cost calculation depends on the algorithms used to implement the query processing
cycle steps described in [18].

The left-deep DcTs are generated using a variation of the dynamic programming ap-
proach. The algorithm attempts to avoid generation of all the possible plans by keeping a
sorted list of partial plans and adding to the list all the possible extensions of the cheapest
one. When the cheapest plan is also a complete plan, then it is one of the plans with the
lowest cost. This algorithm, used also for the singe-site is described in detail in [16].
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We conclude the subsection with an observation that the described strategy is more general
given OO data sources than the strategies used in some other multi-database systems, as for
example, [8, 20, 24] where the joins are performed in the mediator system. Such strategies
do not allow for mediation of OO sources that provide functions which are not stored,
but rather performed by programs executed in the data source (e.g. image analysis, matrix
operations). In this case, it is necessary to ship intermediate results to the source in order
to execute the programs using the result tuples as an input. From this aspect, the strategy
presented above generalizes and improves the bind-join strategy in [13].

4.6. Decomposition tree distribution

The scheduling phase described in the previous subsection produces a left-deep DcT rep-
resenting a query execution schedule for the input query. Each DcT node describes a query
processing step that involves passing data through the mediator. Some of the steps pass
data from one data source to another, copying it through the mediator. In an environment
consisting of a several AMOSII servers, it is desirable to design schedules where the super-
fluous data transfers and the involvement of the coordinating mediator are eliminated. In
such a schedule, the participating mediators communicate directly during the execution of
the query fragments. The result of the query fragment computation is then shipped to the
coordinating mediator. For example, the trees in figure 9 describe plans in which the values
of va are shipped from DB2 to the mediator and then to DB1, in the tree on the left, and
vice versa in the tree on the right. It would be less costly if the mediator instructs DB2 to
ship the values directly to DB1, or vice-versa.

In order to construct schedules that perform “sidewise” transfer of data, the DcT generated
by the previous phase is restructured using a series of node merge operations, performed over
two consecutive nodes, lower and upper respectively. The merge operation is applicable
over two DcT nodes if both specify an equi-join with a remote fragment result and the lower
node does not specify post-processing involving locally executed query fragments. In such a
case, during the bottom up evaluation of the plan represented by the DcT, after the equi-join
specified by the lower node the result is in the mediator. In the next query evaluation step
specified by the upper DcT node, this intermediate result is shipped to the site where the
remote query fragment of this node is executed, in order to perform the equi-join. If the
sites are wrapped by different AMOSII servers, instead of shipping the intermediate results
between the sites through the mediator, the plans generated by the merge operation will
perform a direct shipping of the intermediate results between the mediators wrapping these
sites. For example, the left tree in figure 9 describes a plan where QFdb2 is executed at DB2
and the result is shipped to the mediator. The upper node then ships the same result from
the mediator further to DB1, where it is used in an equi-join.

In the case when the lower DcT node specifies locally executed query fragments are to be
applied to the intermediate result before the next remote equi-join, the intermediate result
needs to be shipped to the mediator and the merge operation is not applicable.

The node merge operation is shown in figure 10. Two consecutive nodes with the required
properties are identified (figure 10(a)) and substituted with a single node. The new node has
the post-processing list from the upper node and an remote fragment descriptor assembled
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Figure 10. Node merge: a) the original tree b) the result of the merge operation.

from the remote fragment descriptors of the merged nodes. In order for the new tree to rep-
resent a correct query schedule, the derived function representing the two remote fragment
should perform the same operations as the derived functions in the original nodes. There-
fore, the function in the new node is a combination of the functions of the original nodes.
Since these functions are remote, to avoid the unnecessary bypass of the data throughout the
mediator, the new function is compiled and executed at the site where the original functions
were to be executed. This is done by defining an envelope derived function that calls the two
original functions representing the query fragments in the merged DcT nodes. The envelope
function is compiled at both of the participating sites (or at the one site if both of the remote
query fragments to be merged are executed at the same site) and the cheaper alternative is
chosen. This, in turn, is compared with the cost of the original tree and if it has a lower cost,
the modified tree is accepted instead of the original.

Figure 11 illustrates the possible data flows between the three AMOSII servers in the
example from figure 9(a). In figure 11(a) the data flow of the execution of the original
schedule is presented. The query execution starts by the mediator contacting DB2 to execute
QFdb2 in step 1, and shipping across the results in step 2. Next, from the result of the previous
step, the mediator sends the values of the parameter va to DB1 where QFdb1 is executed
and the result is joined with the incoming set of va values. For each joined value of va a
temporary boolean value is returned indicating which of the incoming va values joined with
the result of the execution of QFdb2. Finally, after joining the result shipped in step 4 with
the result of step 2, the mediator emits the values of r for which the temporary iteration
variable tmp is TRUE.

This strategy would be very inefficient in cases when the set of va values is very large
and the net links connecting the mediator with DB1 and DB2 are very slow (e.g. due
to geographical dislocation). Also, note that with this strategy the va values are shipped
twice.

The strategy illustrated in figure 11(b) is obtained by merging the nodes of the DcT in
figure 9(a) and placing the envelope function at DB2. Here, the values of va are sent directly
from DB2 to DB1, shipping them therefore only once. Figure 11(c) represents the execution
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Figure 11. Execution diagrams of the decomposition tree of the example query before node merge and after.

strategy of the transformed DcT in figure 9(a) where the envelope function is placed at DB1.
This strategy performs the best when QFdb1 has large selectivity and/or the network link
between the mediator and DB2 is slow.

A series of node merge operations can produce longer data flow patterns that do not
necessarily pass through the query issuing mediator. One feature of the trees produced by
node mergers is that the envelope functions are themselves multi-database functions over
data in multiple data sources. The compilation process creates a DcT for each envelope
function at the remote site where they are defined. A repeated application of DcT node
merging can break a DcT into a set of DcT located at multiple AMOSII servers. Hence,
the process can be viewed as DcT distribution. Compared with the traditional query tree
balancing [6] the node merge exhibits the following differences:

– Distributed compilation: node merging is a distributed process where envelope functions
are compiled at nodes other than the mediator. This distributed compilation process is
decentralized and does not need a centralized catalogue of optimization information that
is a potential bottleneck when the number of mediators increases.

– Distributed tree: The resulting tree is not stored in one AMOSII server, but rather is
spread over the participating servers that expose only an already compiled function for
the query fragment sent by the coordinating mediator.
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In a tree produced by the cost-based scheduling there might be more than one spot that
qualifies for a merge operation. An important issue in applying node merging is where in the
DcT to apply the the operation. Different sequences of merge operations can produce dif-
ferent results. The simplest solution to this problem is to perform an exhaustive application
of all possible sequences of merge operations by backtracking. However, it is clear that this
will require a large number of query fragment compilations and is therefore not suitable.
An alternative is to use hill-climbing from a few randomly chosen positions and perform
the process until no transformation can be made such that a cheaper tree is produced. The
process can be guided by heuristics that prioritize DcT nodes where the transformation
can be especially useful, and avoid merging nodes that are unlikely to produce a merged
node with lower cost. An interested reader is referred to [15, 16, 19] for a more detailed
description and an experimental evaluation of the DcT distribution.

5. Summary and conclusion

The distributed mediator architecture has been proposed to alleviate the administrative and
performance bottleneck in the centralized wrapper-mediator architecture for data integra-
tion. Query decomposition is one of the central query processing phases in every mediator
system. This paper presented a query decomposition algorithm used in the distributed medi-
ator system AMOSII . The algorithm distinguishes between different kinds of data sources
and the mediators that interact to provide an answer to a user query. The interaction be-
tween the mediators is on a higher level than the interaction between a mediator and a data
source. More specifically, a mediator can accept compilation of a sub-query over more than
one source and allow for shipping of intermediate results to be used as parameters to a
sub-query. The presented algorithm first uses heuristics to determine the sub-queries for the
individual data sources and mediators, then builds a left-deep schedule for execution of the
sub-queries using a dynamic programming approach, and finally re-balances the schedule
using a distributed query compilation.

Another feature of the approach presented in this paper is that it is object-oriented (OO)
and allows integration of OO sources. When integrating OO sources that might encapsulate
programs rather than data, it is necessary to consider execution schedules that ship data to
the sources where it is used as input to the programs. This type of schedules are opposed to
the schedules build by the traditional query decomposition approaches where the data is re-
trieved from the sources and then the query result is composed by post-processing operations
in the mediator. The algorithm also considers the situation when several sources implement
the same operation. In such cases, the execution site for the operation is determined using
a partial cost calculation.

One important issue addressed in this paper is that of the division of the query processing
facilities between the query decomposer and the wrappers. A simple query decomposer
requires more complex wrapper implementations. A wrapper in such a case must be able
to perform more sophisticated transformations in order to produce representation of the
query fragment that is executable by the data sources. Furthermore, the same features might
be needed and re-implemented in several wrappers. A more elaborate query decomposer,
on the other hand, leads to a slower query decomposition and less maintainable code.
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The design of the query decomposer described in this work aims to provide a functionality
sufficient for easy integration of the majority of the data sources we have accounted for, while
keeping the design as simple as possible. Compared to other approaches to the integration
of heterogeneous data sources based on grammars and rules it allows for partitioning of
the query into fragments without repeated probing for fragments that are executable in the
data sources. Data sources that cannot be described by MIFs and join capability might
require wrappers capable of restructuring the query fragments sent by the decomposer so it
can be successfully translated into code executable in the data sources. In this process, the
wrapper writer can use some externalized local query optimizer facilities to perform some
commonly required tasks (e.g. enumeration, costing, sorting, compilation etc.), needed in
wrappers for several data source types. Nevertheless, we believe that such cases are rare.

With an appropriate change of the heuristics used in the early phases, the algorithm
can be adapted for use in environments where the services (programs) can move from one
source to another. Another challenge is to extend the query decomposition to produce plans
suitable for parallel execution. Finally, in order to extend the use of the AMOSII system
to a dynamic environment, we are currently developing query processing and optimization
techniques that deal with unavailability of the sources, and dynamically explore alternative
paths to the required data and services.

A simplified version of the presented algorithm is implemented in the AMOSII system
on a Windows NT platform.
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Notes

1. The terms “source” and “data source” are used interchangeably, although the sources might contain programs
rather than data.

2. The term site is used to refer to both AMOSII servers and data sources of all other kinds. The terms site
assignment and query fragment placement are used interchangeably.

3. This is a conceptual view of the execution; AMOSII has streamed execution model where the intermediate
results are shipped in bulks.
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