Presented at DEXA’91 (Database and Expert Systems Applications), Berlin, Germany, 1991

Building Adaptive Applications using Active Mediators

Tore Risch*
Hewlett-Packard Laboratories
1501 Page Mill Rd.,
Palo Alto, CA 94303

Abstract

We have extended current DBMS technology to sup-
port applications in dynamic and heterogenous envi-
ronments. Our approach raises the level of software
support available from DBMSs to include an intermedi-
ate layer of software to mediate between databases and
their use by applications and users. In particular we
are demonstrating active mediators, where the applica-
tion instructs a mediator to actively monitor databases
for change in information that the application depends
on. We identify how mediators can support applications
that are sensitive to change.

A prototype platform for these classes of mediators
has been developed. As a uniform interface language
throughout the system we use OSQL, a declarative
object-oriented query language. OSQL statements are
optimized using concepts extracted from Datalog and
relational database research.

1 Introduction

Future computing environments will have large numbers
of workstations connected via communication networks.
Workstations will have powerful computation capabili-
ties; server stations store, maintain, and do inferences
over local data- and knowledge-bases, or information
bases. Each information base is maintained locally by
human experts and is likely to be autonomous from
other information bases. Data resources, servers, and
applications are heterogeneous. The environment needs
to support frequent changes and additions to these data
and computation resources. Information and control
often has to be exchanged among different information
bases. We will have a large distributed information net-
work, through which it is possible to access data stored

The work was done while visititing the Hewlett-Packard
Stanford Science Center.

Gio Wiederhold
Department of Computer Science

Stanford University
Stanford, CA 94305

in a variety of local forms, integrate the data, and obtain
information without the use of human intermediaries, as
is common today.

Wiederhold [26] has proposed to introduce an interme-
diate mediator layer of software between databases and
their applications and users. The mediator layer insu-
lates individual users and servers from the necessity to
maintain detailed models of the different and changing
data sources within the information system.

We use the mediator concept to extend current DBMS
technology to support such distributed, heterogeneous,
and dynamic environments. Mediators make it easy
to 'plug in’ new data resources once there is a public
interface protocol. In this work we focus on active me-
diators, where the application instructs a mediator to
actively monitor databases for changes to information
that the application depends on, and provide primitives
for applications to adapt to these changes. We discuss
what classes of mediator modules are needed to support
active databases.

In Section 2 we motivate our work by describing a rele-
vant real-life problem scenario. In Section 3 we describe
the components of a mediator architecture serving as a
platform to solve these real-life problems with references
to related work. In Sections 4 and 5 we give an overview
of the design of our mediator platform. Finally, Section
6 summarizes the work and indicates directions for fu-
ture work.

2 A Scenario

To illustrate what new services are needed beyond what
is provided by present DBMSs, it is fruitful to think
of some possible problem scenarios. In this section we
discuss one such scenarios, namely the problem of man-
ufacturing production planning in a distributed envi-



ronment with many independent production sites. The
scenario mainly has grown out of discussions with peo-
ple in HP Labs.

In our problem scenario we have a large corporation
with production facilities distributed over many sepa-
rate sites around the world. The computer environment,
is heterogeneous, different sites use different DBMSs.
The hardware and software environments differ as well.

The corporation continuously receives orders that are
composed of items that are produced at different sites.
Often one has the choice to produce the same item at
many sites, and one then makes choices depending on
production costs, transportation costs, production ca-
pacity, etc. There are often dependencies between the
production of order items, so that one site must wait
for some other site to produce some subpart before the
item can be made. The customers are promised deliv-
ery at some specific date, and it is important to neither
deliver too early (because of cost of inventory) or too
late.

When an order arrives, the possible production sites
are polled to determine their capacities, costs, sched-
ules, etc. Given this data and the customer’s expecta-
tions, distributed production schedules for the order are
produced for the various sites. We have implemented
database support for executing such plans; we have not
attacked the scheduling problem itself. The schedules
are based on the polled data which occasionally change
while the schedules are executed. Thus we have to be
able to cope with world changes that may modify the
plan while it is being executed. In the worst case some
critical site may stop entirely and the plan will have to
be completely redone. Because of the complexity of the
planning problem, it is likely that the planning is bro-
ken down into many local interconnected planners, and
normally not all of them have to be replanned at once.

Similar scenarios can be constructed for other related
areas, e.g., computer network service planning systems,
and project planning and tracking systems.

3 Mediator Classes

We will now continue by discussing a possible architec-
ture covering the production planning scenario. archi-
tecture.

We have identified the following three classes of media-
tors (Figure 1):

Task Models

We break out domain knowledge now hidden in appli-
cation programs and store them in a special kind of
mediator which implements sharable and inspectable
domain knowledge bases. We call such a domain knowl-
edge base a Task Model. The task models allow us to
maintain knowledge more easily by storing it in these
limited-sized and specialized knowledge bases.

In our scenario, the actual task planners are applica-
tion programs that generate plans for carrying out the
distributed tasks as specified by users. The output of a
task planner is a set of task models to be executed by the
sites together. This interaction need not be completely
automated; the plans could be done in cooperation with
users, where the expert manually develops task models
to carry out the plan.

While planners provide some of the most advanced and
demanding applications for the mediator architecture,
the architecture also supports ordinary application pro-
grams that retrieve distributed data through mediators,
e.g. to produce weekly production summary reports.

We use extensions to OSQL, WS-OSQL, as the lan-
guage to build task models. We have developed a plat-
form for efficient representation of task models based
on a main memory WS-OSQL compiler [15] interfaced
with Iris. An overview of this platform is given in Sec-
tion 5. Related work includes work on extracting com-
plex objects from databases[2, 22], structuring knowl-
edge bases [25], and storing business rules in knowl-
edge base modules [8]. Unlike these system we use the
same extended OSQL query language as a uniform rep-
resentation of both persistent data and task models.
Task model OSQL queries are optimized using tech-
niques from optimizing relational databases and Data-
log [7, 20]. Our research aims at developing small, mod-
ular, inspectable, easily maintainable, and well inte-
grated knowledge modules rather than large scale com-
plex knowledge bases [12, 16].

Monitors

We need some mechanism to handle the problem of dy-
namically changing contents and locations of data. For
example, when an initial scheduling plan is made, the
assumption is that the data, critical for the execution
of the plan, is not changing. In practice these data
are frequently invalidated. Therefore the planner is no-
tified when data is updated that was assumed to be
constant when the plan was made. Now the plan must
be adapted as well.



Application

/

Task Model

Integrator

Task Model

Application

Task Model

Integrator

Source Source

Data Data Data
Source

Data Data
Source Source

Figure 1: Examples of Mediators

Mediators continuously monitor these invariant data
and notify the planner when the invariants change to a
significant extent. Let’s call these mediators monitors.
Traditional DBMSs are passive since they passively re-
spond to requests from application programs. With
monitors the database becomes an active database,
because procedures of application programs are in-
voked from the DBMS, when triggered by state changes
in data sources. This technique provides a way to
pass control between cooperating application programs
through a database.

We have extended OSQL to include primitives for mon-
itoring state changes in Iris databases and implemented
the extension for the Iris prototype [12, 13]. Related re-
search includes work on coordinating long running ac-
tivities [5, 23], blackboard architectures [11], forward
chaining rule based systems[4], and constraint propaga-
tion languages[18]. We use the same extended OSQL
language both for passive and active queries and both
within task models and for persistent databases. We
describe our database monitors in Section 4.

Integrators

The knowledge sources can be represented in different

ways. For example, different sites may use different
DBMSs and data models, similar data may be rep-
resented with different data formats, etc. We there-
fore need mediators that retrieve and combine results
from different knowledge sources, check their consis-
tency, and present a higher level view to applications
[10]. We call these mediators integrators. Integrators
decouple the application from the necessity to maintain
multiple data models for all knowledge sources. The
Pegasus project at HP Labs [1] aims at using OSQL to
support such integrator models. We include its concepts
here to make the overall picture complete.

Interface Language

Finally we need to define formal languages between the
various mediator levels. The application programs need
a standard interface language. Lower level software also
needs well defined interfaces. For example, we need
some standard way to interface new knowledge sources
so that mediators 'understand’ them. We are using an
extended version of the OSQL language [3, 6, 9] as such
a uniform interface language.



4 Monitors

Database change monitors are computer programs that
observe changes in the contents of database access
queries, e.g., the current price of some commodity, the
highest paid employee in a department, or the expenses
of a department relative to its sales. We have im-
plemented database change monitors [13] within the
object-oriented DBMS Iris [6].

We use non-procedural extensions to OSQL as the lan-
guage to express what type of changes are of interest for
a given application. This is achieved by the program-
mer specifying a query (view) whose result is monitored
for change. The programmer thus registers interest in
a class of database state changes and delegates to the
DBMS to generate a plan to infer when these value
states change because of database updates. The al-
gorithms to track such value changes are complicated
and depend on information outside of the scope of the
programs interest. Hence the programmer should be
freed from having to specify their details. The system
provides monitor tuning parameters that instruct the
system to filter out insignificant state changes thereby
decreasing the notification frequency.

The programmer must specify what happens when the
value of a monitored view changes. A convenient way
to do this is to specify a tracking procedure or tracker,
which is a procedure of the application that is invoked
by the DBMS when monitored data change. The DBMS
thus keeps track of which tracking procedures monitor
which object attributes and contains a mechanism to
call the tracking procedures upon data changes. Moni-
toring processes are autonomous relative to updating
processes, so that committing transactions need not
wait for tracking procedures to finish, a distinction vis-
a-vis POSTGRES triggering [19].

Possible tasks for tracking procedures include

e Notifying the end user that data have changed.
o Refreshing data browsers

e Modifying values in mediators.

e Changing processing heuristics in mediators.

e Changing stored abstractions in mediators.

e Informing applications that data views which the
application depends on have changed.

We allow the programmer to specify the monitor tuning
parameters time intervals and tracking periodicity At.
If tuning parameters are specified the monitors are not
triggered immediately when the database value state
change happens, but will be delayed as specified. For
example, in business situations, some monitors are best
checked once a day or some time before the end of the
week [23]. Some applications require the monitor to be
notified every time there is a data change. Sometimes
this checking must be done before committing the up-
dating transactions, which can be very expensive. The
programmer is given a primitive to make this choice.

A range interval, the change significance Av, can be
declared so that tracking procedures are not invoked
unless the monitored value has changed more than the
interval. The change significance is specified as absolute
range limits, or as the variance relative to the magni-
tude of the value.

It is advantageous if the active DBMS can do this kind
of dynamic filtering before notifying the application, in
order to decrease the frequency of notification for inten-
sively updated data. The application can dynamically
change the difference interval to decrease the reactivity
if it is performing some change-intensive task. Dynamic
filtering is required, for example, by real-time monitor-
ing AT systems where the tracker initiates time consum-
ing reasoning activities [21].

5 Active Task Models

The DBMS architectures developed for conventional
databases are not always feasible for supporting active
databases. In particular, disk based databases are often
too slow for applications requiring fast responses. Our
architecture is a combination of traditional persistent
data representation for conventional applications and
main memory techniques for time critical mediators.

Task models represent domain knowledge bases. We
represent our task models using the Iris data model
whose lingua franca is the OSQL query language. Task
models are presumed to contain moderate data vol-
umes but complex structures. To obtain reasonable
performance we need to represent task models in main
memory. Therefore we have developed a main memory
OSQL database implementation: WS-IRIS (Worksta-
tion IRIS) [15]. WS-IRIS is a fully operational DBMS
for a workstation. WS-IRIS manages main-memory
databases and, for better efficiency, it uses main mem-
ory data structures instead of the disk oriented data
structures of classical DBMSs. It also provides transac-



tions, limited concurrency control, logging, and recov-
ery.

WS-IRIS contains an extensible cost-based query op-
timizer that translates queries in an extended OSQL
dialect, WS-OSQL, into Datalog [20] programs for sub-
sequent interpretation. It incorporates techniques for
conventional query optimization, where effective for our
main memory storage management. We also use opti-
mization techniques tailored for the object-oriented na-
ture of WS-OSQL.

The task model platform is interfaced with Iris so that
data can be extracted from Iris databases into task mod-
els. With the Pegasus [1] extension to Iris we will be
able to access heterogeneous data sources.

In order to support our scenario we also need to repre-
sent task models that are sensitive to changes both in
underlying data sources and in local data. We there-
fore have implemented database change monitors both
within WS-IRIS and in the IRIS prototype. Primitives
have been added to OSQL to monitor changes of views
of both local and global data. For example, a task model
may have a set of rules for selecting a preferred part
based on some local thresholds, e.g., maximum delivery
time and failure rate. Using monitors the task model
can instruct the system to execute some rule whenever
some other part becomes the preferred one. The tuning
parameters At and Av add some stiffness to the sys-
tem by filtering out temporary and insignificant data
changes.

6 Discussion

We have described an architecture which has been im-
plemented to support database applications that are
sensitive to changes in an underlying heterogeneous
data sources. Using such a system one writes applica-
tions that adapt to change rather than prohibit change
as is customary in traditional database transaction sys-
tems. We used the mediator concept [26] to identify
three kinds of mediators which we found important in
such an architecture:

1. Active Task Models are domain knowledge bases
which contain both conventional rules and rules
sensitive to change in both local and external data.

A planned generalization is to include the notion
of time in the system in a coherent way in order to
support rules that access timing information about
data and knowledge [17, 24].

2. Database Change Monitors are mediators which de-
tect changes in underlying data source by tracking
changes in derived views. The monitors will no-
tify the active task models when significant data
changes are detected. The programmer specifies
declaratively what constitutes significant change so
that the monitors can filter insignificant notifica-
tions.

3. Integrators are meditators which, using schema in-
tegration and data conversion facilities [10], inte-
grate heterogeneous data representations to be pre-
sented uniformly to other mediators.

As a common interface language to the different media-
tor modules we use extensions to OSQL [6], WS-OSQL
[12]. The approach has been demonstrated by a proto-
type implementation, WS-IRIS (Workstation Iris) [12].

An important application area for active mediators is in
the support of systems where persistent data is checked
out into main memory work areas, which are here rep-
resented as active task models. During long sessions
the user would work directly with specific and hence
efficient active task models and only occasionally check
data back into the central database. This complements
the view object paradigm proposed by Wiederhold [22]
and implemented in the PENGUIN project [2]. Here we
provide the same uniform query language, OSQL, both
for the shared database, the extraction of data into work
areas, and for representing the work areas themselves.

Active  task models also have applications
in CAD/CAM and CASE systems, where a design is
stored persistently in a database. A group of designers
intend to work cooperatively on a specific design. They
therefore check out the design into an active task model.
The designers would work concurrently on the design in
the active task model using some supporting software
tools. The tools would use monitors to notify designers
when some other designer modifies some data that is
of interest. Winslett et al [27] describe an architecture
for consistency maintenance in a design database, which
could be supported by active task models.

An advantage with having data communicated between
applications stored in a database is that the data then
also is accessed using a query language instead of being
hidden inside data structures within the applications.
Having a query language permits a level of integration
that is hard to obtain with direct use of communication
protocols.

ACKNOWLEDGEMENTS:



The KSYS group at Stanford (supported partially by
DARPA contract N39-84-C211) provided insights into
the mediator concept. Peter Lyngbaek and the DTD

group at HP Labs helped us understand Iris.

Gio

Wiederhold acknowledges support from HP Stanford
Science Center and from NSF contract DMC 86-19595-

Al

References

[1]

2]

3]

[6]

[9]

[10]

R.Ahmed, P.Desmedt, W.Kent, A.Rafii, W.Litwin,
M.Shan: The Pegasus project: Information Man-
agement in a Heterogeneous Database Environ-
ment, [EEE COMPCON, March 1991.

T.Barsalou, G.Wiederhold: Complex objects
for relational databases, Computer-Aided Design,
22(8), Oct. 1990, pp. 457-468.

D.Beech: A Foundation for Evolution from Rela-
tional to Object Databases, Advances in Database
Technology - EDBT ’88, Lecture Notes in Comp.
Sc., Springer-Verlag, 1988, pp. 251-270.

L.Brownston, R.Farell, E.Kant, N.Martin: Pro-
gramming FEzpert Systems in OPS5, Addison-
Wesley, Reading, Mass., 1985.

U.Dayal, M.Hsu, R.Ladin: Organizing Long-
Running Activities with Trigger and Transactions,
Proc. SIGMOD, May 23-25, Atlantic City, 1990,
pp- 204-214.

D.Fishman et al: Overview of the Iris DBMS,
in W.Kim, F.H.Lochovsky (ed.): Object-Oriented
Concepts, Databases, and Applications, ACM
press, Addison-Wesley Publ. Comp., 1989.

R.Krishnamurthy, S.Zaniolo: Optimization in a
Logic Based Language for Knowledge and Data In-
tensive Applications, Advances in Database Tech-
nology - EDBT ’88, Lecture Notes in Comp. Sc.,
Springer-Verlag, 1988, pp. 16-33.

P.Lucas, T.Risch: Representation of Factual Infor-
mation by Equations and their Evaluation, Proc.
Intl. Conf. on Software Eng., Tokyo, Japan, Sept.
13-16, IEEE, New York, 1982, pp. 153-167

P.Lyngbaek and the OODB Team at CSY: OSQL:
A Language for Object Databases, Technical report,
HP Labs, HPL-DTD-91-4, 1991.

L.deMichiel: Performing Operations over Mis-
matched Domains, Proc. of IEEFE Data Eng. 5, Los
Angeles, Feb. 19809.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

P.Nii: The Blackboard Model for Problem Solving,
AT Magazine, Vol. 7, No. 2, Spring 1986, pp. 38-53.

T.Risch, R.Reboh, P.Hart, R.Duda: A Functional
Approach to Integrating Database and Expert Sys-
tems, Communications of the ACM 31, 12 (Dec.
1988), pp. 1424-1437.

T.Risch: Monitoring Database Objects, Proc.
VLDB, Amsterdam, the Netherlands, 1989.

T.Risch: Tuning the Reactivity of Database Moni-
tors, Technical Report, HP Labs, HPL-90-17, 1990
(also part of [26]).

T.Risch:  The Translation of Object-Oriented
Queries to Optimized Datalog Programs, Technical
Report, HP Labs, HPL-DTD-91-9, 1991.

E.H.Shortcliffe:  Computer-based medical consul-
tations: MYCIN, American Elsevier, New York,
1976.

R.Snodgrass, I.Ahn: Temporal Databases, IEEFE
Computer, Vol. 19, No. 9, Sept. 1986, pp. 35—42.

G.L.Steele Jr., G.J.Sussman: CONSTRAINTS, in
APL79 Conf. Proc., (Rochester, USA), pp. 208-
225.

M.Stonebraker: The design of POSTGRES, Proc.
SIGMOD, 1986, pp. 340-355.

J.D.Ullman: Prin-
ciples of Database and Knowledge-Base Systems,
Volume I and II, Comp. Sc. Press, 1988.

R.Washington, B.Hayes-Roth: Input Data Man-
agement in Real-Time AI Systems, 11th Intl. Joint
Conf. on Artificial Intelligence, 1989, pp. 250-255.

G.Wiederhold: Views, objects, and databases,
IEEE Computer, 19(12), 1986, pp. 37-44.

G.Wiederhold, X.Qian: Modeling Asynchrony in
Distributed Databases, 3rd Intl. Conf. on Data
Eng., Los Angeles, CA, Feb. 3-5, 1987, pp. 246-
250.

G.Wiederhold, S.Jajodia, W.Litwin: Dealing with
Granularity of Time in Temporal Databases,
Nordic Conf. on Adv. Inf. Syst. Eng., Springer,
1991.

G.Wiederhold, P.Rathmann, T.Barsalou, B.S.Lee,
D.Quass: Partitioning and Composing Knowledge,
Inf. Systems, Vol.15, No.1, 1990, pp. 61-72.



[26]

[27]

G.Wiederhold,

T.Risch, P.Rathmann, L.DeMichiel, S.Chaudhury,
B.S.Lee, K.H.Law, T.Barsalou, D.Quass: A Media-
tor Architecture for Abstract Data Access, Stanford
Comp. Sc. Dept., STAN-CS-90-1301, 1990.

M.Winslett, K.Hall, D.Knapp, G.Wiederhold: Use
of Change Coordination in an Information-rich
Design Environment, [EEE Design Automation
Conf., Las Vegas, June 1989.



