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Abstract 

Terrain-aided navigation is a database application in which an 
aeroplane locates itself by matching the height trajectory with 
a terrain-elevation map on board the aircraft. Without an 
index a matching algorithm has to be applied to the whole 
map. This paper shows that an indexing technique, termed the 
IP-index, can efficiently filter out sub-areas of the map to pro- 
vide starting positions for the matching algorithm (to improve 
the efficiency). Performance measurements of the IP-index in 
terrain-aided navigation are given in this paper. The IP-index 
is a dynamic indexing technique for large 1-D sequences on 
the value domain. It supports interpolation assumptions on 
the sequences, i.e., it can be used to query implicit values in 
addition to explicit values. It can be implemented by regular 
ordered indexes such as B-trees. 

Keywords: sequences, indexing, interpolation, query process- 
ing, terrain-aided navigation. 

1 Introduction 
Terrain-aided navigation is to use the terrain height over the 
mean sea level, the terrain elevation, to draw conclusions 
about the position of an aircraft. The idea is: A map with sam- 
pled terrain elevation measured in a uniformly spaced grid is 
stored on board the aircraft. Flying over an area, the aircraft 
altitude over mean sea-level is measured with a barometric 
sensor and the ground clearance is measured with a radar. The 
difference between the altitude and the ground clearance is an 
estimate of the terrain eIevation, which can be compared to 
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Fig. 1.1: Illustration of the terrain-aided navigation 

the stored values in the map to find out the position of the air- 
craft, see Fig. 1.1. 

Since the matching algorithm is expensive and has to be 
applied to every grid of the map, it becomes very inefficient 
to implement when the number of grids in the map becomes .s 

large (see 161). Therefore, we propose an index that can filter 
out those sub-areas whose terrain elevations are in some 
range around the measured values h. We use a confidence 8 

Gathering samples as the aircraft flies over an area will give a interval (h-10, h+lO) where the probability that the true ele- 
trajectory of measured elevations. The more samples gathered vation value is inside this interval is higher than 99.99% 
the more likely it is that the trajectory is unique and that a according to the probability density function. Then, the sub- k 

good position estimate may be found when comparing the tra- areas whose terrain elevations are inside the interval (h-10, 
jectory with the stored elevations in the map. h+lO) can be used as starting positions of the above matching 

Errors and uncertainty exist in the measurements of the baro- 
algorithm instead of the whole map. 

metric sensor and radiu, For example, flying through different In short, the problem is: given a map which stores sampled 
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local weather conditions will cause the barometric sensor to 
produce biased errors. Thus, the measured terrain elevation is 
an approximation of the real terrain elevation. In order to 
locate the position of the aircraft in the map, a non-linear 
matching algorithm which takes into account the probability 
density function of the measured elevation has been devel- 
oped by [6]. This matching algorithm is applied to every grid 
of the map by processing each new measured elevation in the 
trajectory recursively. 
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ing technique, IP-index [ 111, which can return the sub-areas of 
the map much more efficiently than a regular ordered second- 
ary index. 

The IP-index is a dynamic indexing technique for large 1-D 
sequences. It aims at supporting interpolation assumptions on 
sequences, i.e., it can be used to query implicit values in addi- 
tion to expIicit values. It supports range queries as efficiently 
as exact queries. It can be implemented by any regular ordered 
indexes such as B-trees. 

This paper is organized as following: Section 2 explains why 
the IP-index is needed in real-life applications and discusses 
related work. Section 3 gives an overview of the indexing 
technique. Section 4 shows how to process different kinds of 
queries on data sequences by using the p-index. Section 5 
shows how the IP-index can be applied to terrain-aided navi- 
gation and improve the efficiency of the matching algorithm. 
Section 6 gives the performance measurements. Conclusions 
and future work are given in Section 7. 

2 Related Work 
Sequentiat data brings new challenges to DBMSs. Examples 
of sequential data include: 1) time sequences such as tempera- 
ture reading generated by sensors in scientific measurements; 
2) stock price index in business applications; 3) medical data 
such as a patient’s temperature reading or cardiology data, 4) 
multispectral satellite image data. The terrain elevation map 
in the navigation application (see Section 1) is a special kind 
of sequential data where each row of the map is a sequence of 
terrain elevations. Sequential data require special storage and 
accessing techniques that do not appear in conventional data- 
base systems. For example, large amount of research has been 
dedicated to similarity search for sequences, i.e., finding those 
(sub-)sequences that match a given pattern with some error 
distance [l]r3)[4][13][15]. The applications can be found in 
identifying companies with similar growth patterns, products 
with similar selling patterns, stocks with similar price move- 
ment, images with simiIar weather patterns, etc. 
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Fig. 2.1: Illustration of a vaIue query 

However, we found out that some applications require 
searches for values instead of the shape of sequences. For 
example, if the time sequence in Fig. 2.1 represents a patient’s 
temperature reading over time, the physician will be interested in 
the query like “At what time period did the patient have a tempera- 
ture higher than 37OC (i.e., have a fever)?“. Generally, these kind 
of qneries appear as “when was the value equal to (or above, 
below) some threshold Y’?“, or “when was the value in the 
range (v’, v ” ‘Jr’. We term these kind of queries value queries ). 
in contrast to shape queries. It is not trivial to answer value 
queries since: 1) In most applications, there are some kind of 
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interpolation functions associated with the discrete time 
sequence. In other words, a time sequence is regarded as n 
general function that produces values for any implicit time 
points in addition to those explicit points, When queries con- 
cern the implicit values, a conventional index does not help. 
2) For range value queries on a time sequence, it is not of% 
cient to use a conventional index either. We will explain this 
more in Section 5. 

In order to deal with value queries that involve interpolation 
assumptions on time sequences, we developed a new indexing 
technique termed the IFindex [ll]. The intuition behind the 
p-index is illustrated in Fig, 2.1. The original lime sequence 
is viewed as a sequence of states Si. By connecting each 
neighbour states we get segments Sg&, Si+l J. If we can find 
all the segments Sgj that intersect the line v-v (i.e., the seg- 
ments Sgl, Sgg, Sglo in Fig. 2.1), then we can calculnte tho 
time points when the value was equal to v’ (i.e., f’, t” and 1”’ 
in Fig- 2.1). This is because the time point t’ can be computed 
by applying the interpolation function on the neighbour states 
around Sgt. Likewise, the time point t” can be computed by 
applying the interpolation function on the neighbour states 
around sg6, and the time point t”’ can be computed by apply- 
ing the interpolation function on the neighbout states around 
%%I* 

Thus, a value query for a time sequence is transformed into an 
interval intersecting problem. There have been several lndex- 
ing methods proposed for k-dimensional spatial search, e.g. k- 
d trees[14], R-treesl9J and SR-Tree[lO). There are also some 
index trees proposed in computational geometry to deal with 
interva1 problems, e.g., Interval Trees[7], and Segment 
Tree@]. However, none of the above methods are suitable for 
value queries on time sequences. The reasons ure: 1) Time 
sequences consist of large sets of intervals [St, SI+~] which are 
often dynamically growing, while most spatial data slructures 
assume a fixed search space. 2) The intervals ln tlmo 
sequences have a special property that the end point of Sgf 1s 
the starting point of Sgi+l (i.e. Si,.$ This property makes the 
p-index much more simple compared to spatial search trees 
such as R-trees. 

Although the IP-index [ll] was intended to deal with value 
queries for time sequences, it turned out to work well for any 
1-D data sequences. For example, in this paper the IF-index 
will be applied to the terrain elevation map to find out the sub- 
areas in the map whose terrain elevations are inside the intcr- 
vaI (h’, /r”). The only assumption the XP-index made is that 
the data points in the sequence are ordered, which Is true for 
all sequential data. 

3 The IP-index 
This section illustrates the idea of the IP-index. Although wo 
use time sequences in the illustration, the idea is applicnble to 
any 1-D data sequences (as long as the sequence is ordered). 

A time sequence {TS) is viewed as a sequence of slates, where 
each state is S,=(rt, vi). If we project each value vt on the Y- 
axis, we get non-overlapping intervals I,+, kj+l), whcrc 
each kj is a distinct value of vi (see kl...kd in Fig. 3.1). WC can 
see that all values that belong to one interval have the same 
sequence of intersecting segments (marked to the left in 
Fig. 3.1). In the p-index we associate with each interval [kb 
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Fig. 3.1: Illustration of the IP-index 

$+I) aI1 segments Sgi that span1 it. A simple illustration of the IP- 
index is shown in Fig. 3.1, where we associate each interval 
[ki ++I) with the sequence of spanning segments Sgi. 

Since each segment Sgi is uniquely identified by its starting 
state St, we use Si to represent the segment Sgr in the IP-index. 
We term the starting states of each segments that intersect the 
line v-v’ as the anchor-stares of v’. Then, the sequence of 
intersecting segments can be represented as the sequence of 
anchor-states, which is termed the anchor-state sequence. The 
anchor-state sequence is a state sequence ordered by time. 

Since each interval [ki, kj+l) is uniquely identified by its start- 
ing point kj, we use kj to represent the interval [kj kj+l) in the 
IP-index. 

Suppose that kl<k2<...<k,+. are the ordered distinct values 
of Vi in the TS. Then each index entry Ni in the IP-index has 
the form [key, anchors] where 

9 N$ey=ki 

. N~unchors is the anchor-state sequence for all v’ such that V’aj 
aud ~‘dj+,. It is &O denoted as Mchrs<kj)m 

For example, the IP-index for the simple TS in Fig. 3.1 is: 

unchors(k,)=cS~, Sz> 
unchors(k+eS~> 
unchors(k$=<S2, S3> 
unchors(k&niZ 

To verify our ideas we implemented the IP-index in a main- 
memory database [S] using an AVL-tree 111. The performance 
measurements [II] show that the IP-index dramatically 
improves the performance of value queries. For periodic 
sequences that have a limited range and precision on their 
value domain (most application sequences have this property), 
the IP-index has an upper bound for insertion and search time. 

4 Processing Queries 
To show how the IP-index can be used in terrain-aided naviga- 
tion (to find out those sub-areas whose terrain elevations are 
inside the interval (h’, h”)), let us start from a simpIe exam- 

1. We day a segment Sgi SpanS ~XI intenml Ii When the projection 
of Sg, On the v-aXiS Spans the interval 1, i.e. if Sgi-((2, VJ. (rc. 
ve)) and 11 -(v~. v& then v& and v&,- 
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@le. Suppose that a time sequence represents a patient’s tem- 
perature reading in a hospital. There are several kinds of vaIue 
queries which can be answered given the IP-index. 

1. When did the patient have the temperature equal to 37X!? 
We term this kind of query as an exact query, expressed as 
F’{v’). 

2. During what time period did the patient have the temperature 
higher than 37“C7 
We term this kind of query as an inequuli~ query, expressed as 
F’(v>v’) (or F’jvcv’)). 

3. When did the patient have a temperature uround 37”C? 
We term this kind of query as an interm query, expressed as 
F’(v’-e<v< v’+e). 

We wiI1 see that exact queries can be computed directZy by 
using an IP-index. Inequality queries can be computed given 
that we can compute exact queries. Interval queries can be 
computed given that we can compute inequality queries. In 
Section 5 we will show that by posing interval queries to the 
terrain elevation map we can get all sub-areas whose terrain 
elevations are inside the interval (h’, !I”). 

4.1 Exact Query 
This section shows how to use the IP-index to calculate 
F’(v’). Suppose that $2 is the interpolation function for the 
time sequence and ip-index is the IP-index built for the time 
sequence. Then, as illustrated in Fig. 2.1, we need to find all 
anchor-states Sj for I’, then apply the interpolation function on 
the states around Si to calculate the time points t’. These 
anchor-states are stored in ip-index. Below we give notations 
which are used in this section: 

l Ni - an index entry in the IP-in&x. 

l N&q - the key of the index entry Nr. 

l N~unchors - the anchor-state sequence associated with the 
it&x entry Nr . 

To caIculate au exact value query FJ{v’), we search the IP- 
index to find the index entry NL where 

Nkkey= mUX(Npkq I Npkey 5 Vi} 

Then N~unchors contains the anchor-state sequence for the 
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value Y'. For example, in Fig. 3.1, the index entry NL for the 
value Y’ is [kJ, anchors] where anchors=cS~, Sp. The reason 
is that k3 (=v4) is the first key which is “below” or equal to Y’. 

Therefore, given the IP-index and the interpolation assump- 
tion ifi for a time sequence, the pseudo-code for computing 
an exact query F’{v’) will look like the following: 

exact_query( ip-index, v’,ifn) : . 

F-'{v')=nil /* initialize the result */ 
find the index entry NL in ip-index where 

ML. key=max{Ni . key/ Ni . keylv’] (1) 
/* @d the index enby w&a sfores lhe oncizor-siate 

sequence for Y' */ 
For each state Si in NL.anchors (2) 

F-l(v')=F-l{v')+ 
ifn-I(+, surrounding-states{&)) 

end for each 
return F-l (VI ) 

Figure 4.1: The algorithm of F’(v’) 

Note that there are two steps marked (1) and (2) in this algo- 
rithm. Step (1) searches the index to find the anchor-state 
sequence, step (2) applies the inverse interpolation function 
ijxJ on each anchor-states to get F’(v’). The function 
surrounding-states@ is dependent on the interpolation function 
ifi. For example, if ifn is linear interpolation, then 
SUr~O~ng_St~teS(S~si)i(Si, I!$+*). 

4.2 Inequality Query 
Given an example time sequence TS=<Sl, Sz,...S,> as ilhs- 
trated in Fig. 4.2, according to the algorithm in Fig. 4.2, we 
have F*(~‘)-u*~, PZ, t’gr t’+ It can be seen in Fig. 4.2 that: 

l FJ(V>V’~~fJ. f2), (fg, f& 

l FJW’k4ts, t’d, (fz. f3)r 0’4, &I> 

where zJ is the first time point of TS (i-e., S+ze) and te is the 
Iast time point of TS (i.e., S&me). 

.----- e-v--- _____------- _____- ____--- 
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direction=‘+’ 

Figure 4.2: Illustration of an inequality query 

The observations are: 1) F’(v>v’) (or F’(v<v’)) is a 
sequence of time intervals. 2) Each interval of F’(v>v’) (or 
F’(v<v’)) is composed only by those time points returned by 
F’(v*) (plus is and I,). Now let us see how to compose the 

time points of F*(v’) into corresponding time intervals of 
F’(vW) (or Fl(v<v’)). 

In step (2) of the algorithm of FJ(v’) in Fig. 4.1, the inverse 
interpolation function is applied to each anchor-state Si to get 
t’. At the same time we can check the “direction” of I’, i.e., 

l direction@‘)=‘+’ if Si+~.v~lue>S~vaiue 

l direction( ‘-’ if Si,l.vulueCSi3afrre 

This is illustrated in Fig. 4.3. Notice that we do not store seg- 
ments with Si+l.vQl~e-Si.vnl~e in the IP-index since we o nly 
record intersecting (non-horizontal) segments Sge 

It can be seen from Fig. 4.2 that: 

. ~~(v>v~)-(t’~,f~+~)* where direcfimt(t~-'+' 

l F’[v<v’)=(t’~, t’i+r)* where direction($)-‘-’ 

(The time intervals concerning r , and tc have to be trenled SPC- 
cially by comparing St.vnZue and S@nlue with v’.) 
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t’, t”Z t”2 t’2 f3 t-3 t-q t’q 

Figure 4.4: Illustration of an intervaI query 

In some applications (e.g., the terrain-aided navigation) it is 
desirable to return the “state intervals” instead of the time 
intervals of F’(v>v’) (or F’(vcv’)). For exampIe, in Fig. 4.4 
the state intervals of F’(v>v,) are [Ss, Ss] and [S,. $1. This is 

trivial given that we can calculate F’(v>v,) (or F’(vev,)). 
These “state intervals” can be found by rounding’ the time 
intervals. For example, rounding (t’z, t’z) in fig. 4.4 results in 
[Sz. s31. 

4.3 Interval Query 
Interval queries can be calculated given that we can calculate 
inequality queries. This is because Fz(v,<v<v,,)=F’@ >v’) 

n Fz(v <v”) where ‘n’ means “interval intersection”. For 
example, in Fig. 4.4, we have F’fv >v’)=c(t’~, t’z), (t’s, t’J>, 

F’(v cv”)-c(t,, t,‘z), (t”2, f’s), (Pg. tJ>. There we see that 

Fz(v’<v<v,,)=<(t,z, Pz), (t”2, f2), (t’3, t”3), (t”q. t’&. 

which is the interval intersection of E’(v >v’) and Ez(v <I”‘). 

So, to calculate F’(v,<v<v’,). we do the following: 

1. Calculate Fz@ >v’). 

2. Calculate F’(v<v,,). 

3. Apply interval intersection to the results returned from 1 and 2. 

We will show in next section that by posing interval queries 
on the terrain elevation map we can get all sub-areas whose 
terrain elevations are inside an interval (h’, h”). 

5 Using the IP-index in Terrain-aided 
Navigation 
This section shows how the lP-index can improve the effi- 
ciency of the matching algorithm in terrain-aided navigation. 
First we show how the lP-index can be applied to the terrain 
elevation map to filter out those sub-areas whose terrain ele- 
vations are inside the interval (h’, h”). 

Since the IP-index is designed for 1-D sequences, it cannot be 

1. Hem ‘bmding” means fmding the largest state interval that 
is inside the time interval. 

directly applied to the two-dimensional map. The approach 
is: we view each row of the map as a time sequence (see 
Fig. 5.1). That is, each grid corresponds to a state in a time 
sequence, the position identifier ij corresponds to the times- 
tamp t, and the elevation hvcorresponds to the value v. For 

each time sequence, we pose the interval query F’(h’<Kh”) 
to get the position intervals (ijgos’, ijgor”) where the val- 
ues inside these intervaIs are inside the range (h’, h”). As 
mentioned in Section 4.2, by rounding these intervals we can 
get corresponding column intervals &‘, r]. These column 
intervals are the sub-areas in this row whose terrain eleva- 
tions are inside the interval (h’, h”). 

Now let us look at how the lP-index can improve the effi- 
ciency of the matching algorithm in the terrain-aided naviga- 
tion. As we mentioned in the introduction, the matching 
algorithm finds the true position of the aircraft by applying a 
non-linear algorithm to the whole map recursively for each 
measured elevation in tbe trajectory. Taking a trajectory of 
elevation measurements ht, h2,......hb we can use the lP- 
index to find the sub-areas in the map whose terrain elevation 
are inside the interval (hl-10, ht+lO) (this interval is based on 
the probability density function as explained in the introduc- 
tion), thus providing starting positions for the matching algo- 
rithm. Since the matching algorithm does not have to be 
applied to the whole map, efficiency is improved. 

We define the curdinaiity of an interval (hF10, hz+lO) as the 
number of grids in the map whose terrain eIevation are inside 
this interval. ln the measurements we found out that for a tra- 
jectory hz. h2 ,...... hb the cardmalities of (hi-lo, hr+lO) vary 
very much (see Fig. 6.2). Since the matching algorithm does 
not realIy have to start from the first measurement hl, i.e., it 
can start from any (sub-areas returned from) the interval (hi 
10, hz+lO) and apply the non-linear algorithm backwards (ht- 
1, hi-2 ,..... .hl) and forwards (ht+t, ht+2,.---s-h~, we do not 
always have to take the first interval (hl-10, hl+lO) to return 
the sub-areas. Instead we take an interval (hilO, h&+10) in the 
trajectory which returns a small cardmality (this will be fur- 
ther illustrated in the next section). The matching algorithm 
starts from these small areas (and applies the non-linear algo- 
rithm backwards and forwards in the trajectory) will be much 
more efficient than starting from the whole map. 

The cardinal@ of the interval (hi-lo, hz+lO) can be computed 
easily from the l&index by adding a new field curdinality in 
each index entry. That is, an index entry (see Section 3) is 
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The map (m*n) 

h hi2 hJn 

ha b b 

The sequences 

jhJJ, ~Jz,......h~,) 

{hz,, hJ2~--..h~,,~ 

{h& h&....JJ,) 

Fig. 5.1: Transformation between the map and the data sequences 

modified to [key, anchors, cardinali@] where 

l N+nchors is the anchor-state sequence for all v’ such that v’%j 
and v’C$+p It is also denoted as anChOB(kj& 

9 Npxrdidity is the mnuber of states in the sequence whose 
V&ES zuz ~XJWI to N$QJ (ki>- It is ASO denoted as cardinal- 
ity(f$- 

Then, the E-index insertion algorithm [llf should also be 
slightly modified (for this application) to increment Nt~ardi- 
n&y by 1 whenever a new state arrives whose value is equal 
to N&Y (ki>* 

Then, the cardinality of the interval (P-10, h”+lO) is com- 
puted by adding together Cdidi@(kj) where kj are inside the 
interval (h’-10, h”+IO)..Tbis is efficient since the IP-index is 
an ordered index. 

‘8 

I 1 1 I 1 
fi t-1 p2 f2 

* 
t 

Fig. 5.2: Comparirig to a conventional ordered 
secondary index 

Before we show the measurement results, we would liie to 
point out that a conventional ordered secondary index is not 
sufficient to return the sub-areas whose terrain eIevations are 
inside the interval [F-IO, h”+lO) (though it seems like so). 
Suppose that Fig. 5.2 represents a row of the terrain-elevation 
map. Using an W-index we get F’(h’<vG”)=((r’~, t”~), 

sequences (sub-sequences) {[S,, S3], IS,, S,l}. By contrast, n 
conventional ordered secondary index will return a set of 
states S2, ST, S,, S6 which are ordered by their values instead 
of by their order in the sequence. To group these states S2, ST, 
s3, s,5 into sub-sequences ({[$, SJ], [s& $71) is not a t&h1 
task, especially when the number of sub-sequences returned 1s 
large (In Fig. 5.2 there are only two sub-sequences returned) 
or the number of states inside a sub-sequence is large. Anotbcr 
disadvantage of a conventional secondary index is that it has 
to search for all keys that are between the inlerval (h’, h”) In 
order to find all states whose values are inside the interval (I,‘, 
Y). This indicates that when the interval is large (this is the 
case with the navigation application), the IP-index will per- 
form stably while a conventional secondary index will detcri- 
orate. 

6 Measurements 
In this section we measure how much the IP-index cnn 
improve the efficiency of the matching algorithm in the tcr- 
rain-aided navigation. To make the measurements as close to 
reality as possible, we use a real map over n part of Sweden 
(see Fig. 6.I) which consists of 101 by 101 samples in n unl- 
formiy spaced grid. (It is sampled with 50 m distance between 
each sampIe point, yieiding an area of 25 square kilometrcs of 
terrain.) The eIevation sample for each grid in (he map is not 
the average value over the grid but the measured terrain eleva- 
tion rather exactly in the center of the grid. Some interpolu- 
tion method (e.g., linear interpolation) could easily be applied 
to the map to produce any terrain elevation between the snm- 

pled points. As seen in Fig. 6.1 the terrain elevalion has dif- 
ferent characteristics in different parts of the map. The flat 
area in the upper Ieft comer of the map is a lake. 

50 elevation track files were randomly generated in order to 
cover different parts of the map. The starting positions of 
these tracks were uniformly distributed nIong the leftmost line 
of the map. Likewise their final positions were uniformly dis- 
tributed along the parallel finish line on the other side of the 
grid. Each &rack file represents a trajectory of an aircraft and lt 
contains 80 sampled terrain elevation measurements. 

For a trajectory hl. h2 ,...... /rk, the cardinnllty of each Inlcrval 
(hi-lo, h,+lO) can vary very much, as shown in Fig. 6.2. As (t”~, t’z)), by rounding these intervals we get the state 
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Fig. 6.1: The real map 

we mentioned in Section 5, we would like to take an interval 
&-lo, &+lO) in the trajectory which returns a rather small 
cardinality. The more samples (in a trajectory) we take, the 
higher the probability will be to find a small cardinal@. To 
measure the relationship between the minimum cardinality 
found and the size of the tracks, we calculate the cardinalities 
(using the IP-index as mentioned in Section 5) for the first 
i*10 (i-1...8) samples of the 50 tracks. We recorded the mini- 
mum cardinality found and the corresponding size of the 
tracks. Thus, for each track we get a sequence of minimum 
cardinality mitti (i-1...8) and the corresponding size,-i*10 
(i-1.+.8). Fig. 6.3 shows the avgcmir@ over the 50 tracks. It 
shows that: 1) The minimum cardinality decreases with the 
size of the tracks; 2) After approximate 30 samples, the aver- 
age of the minimum cardinal@ reaches a stable value (i.e.. a 
value around 609). 

cz3laakiha@tmdcfile 
76lq I 

01 
Oh I 

0 10 20 mch&hlhes 30 60 70 80 

Fig. 6.2: Cardinality distribution for a sample track 

Thus we can use the value 609 as the “converge” threshold for 
the lP-index, i.e., we say the IP-index has settled when it finds 
a cardinality less than 609. Taken a trajectory of etevation 
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Fig. 6.4: The histogram of the settling time of the p-index 

measurements hl. hz....hb it is interesting to see how fast the 
IP-index settles. We tested the E-index on the 50 tracks and 
record the number of samples needed to reach the converge 
threshold 609. The histogram is shown in Fig. 6.4. 

Fig- 6.4 shows that the settling time of the IP-index is gener- 
ally small. For most tracks less than 10 samples are needed. 
Notice that when the track does not cover areas with small 
cardinalities (for example, when the aircraft is flying over flat 
areas such as lakes), the cardinality threshold cannot be 
reached even if the whole track is checked. That is the reason 
why some tracks are located in the rightmost line (where the 
settling time is 80) in Fig. 6.4. 

Notice that the measurement results are affected by the appli- 
cation data. For example, the value of the “converge” thresh- 
old (609) used in these measurements are dependent on the 
terrain-variation map and the position of the tracks (in the 
map). It should be tuned for different application data set. 
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This value in turn affects the settling time of the p-index. 

NevertheIess, these measurements show how the IP-index 
should be used in the navigation application to find good start- 
ing positions for the matching algorithm. That is: for any track 
file we calcuIate the cardinality for each sampIe hi, and stop 
either when the first cardinality is found which is lower than 
the threshoId (i.e. 609 in the example), or when the Windex 
reaches its “converge threshold” (i.e. 30 samples in the exam- 
ple since the minimum cardinality will not continue to 
decrease based on statistics shown in fig. 6.3). Suppose we 
stop at the sample hJ in the trajectory, then we pose the range 

query F1(hs-lO<vUr,+lO) to find the sub-areas in the map 
whose terrain elevations are inside the interval &-IO, k,+lO). 
These sub-areas are returned to the matching algorithm to 
serve as the starting positions (recall in Section 5 that the 
matching algorithm can work backwards and forwards). Since 
the number of grids inside these areas are guaranteed to be 
small, the matching algorithm will always be mu& more effi- 
Gent than starting from the whole map. 

7 ConcIusions and Future Work 
Many applications require value queries concerning implicit 
interpolation assumptions on data sequences. For this purpose 
we developed a novel indexing technique termed the p-index 
[ll], which supports implicit value queries including exact 
queries F’(v’J and range queries F’(v’cvc v”). In this paper 
we show how the IP-index can be used in terrain-aided navi- 
gation and dramatically improve the efficiency of the match- 
ing algorithm. 

Terrain-aided navigation requires efficient filtering out of sub- 
areas in a map whose terrain elevations are inside an interval 
(h’, h”). A conventional ordered secondary index is not effi- 
cient in returning these sub-areas. By contrast, if we build an 
IP-indexes for each row of the map, we can get the sub-areas 
efficiently by posing a range query F’(h’CvUI”) to each row. 
Also, by associating cardinality information in the p-index 
we can efficiently find those sub-areas with small cardinality 
to serve as srarting positions of the matching algorithm. 

In future work we plan to extend the IP-index to index on two- 
dimensional sequences. In that case we can apply the IP-index 
on the whole map directly without having to buiId an IP-index 
for each row. Also we would lie to implement the p-index 
for huge maps that can only be stored in disks and be able to 
cash part of the index {for a sub-area of the map) to main- 
memory when required by the application. 
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