Using a Sequential Index in
Terrain-Aided Navigation

Ling Lin
Department of Computer Science

Linkoping University, Sweden
linli@ida.liu.se
http://www.ida.liu.se/~linli

Abstract

Terrain-aided navigation is a database application in which an
aeroplane locates itself by matching the height trajectory with
a terrain-elevation map on board the aircraft. Without an
index a matching algorithm has to be applied to the whole
map. This paper shows that an indexing technique, termed the
IP-index, can efficiently filter out sub-areas of the map to pro-
vide starting positions for the matching algorithm (to improve
the efficiency). Performance measurements of the IP-index in
terrain-aided navigation are given in this paper. The IP-index
is a dynamic indexing technique for large 1-D sequences on
the value domain. It supports interpolation assumptions on
the sequences, i.e., it can be used to query implicit values in
addition to explicit values. It can be implemented by regular
ordered indexes such as B-trees.

Keywords: sequences, indexing, interpolation, query process-
ing, terrain-aided navigation.

1 Imtroduction

Terrain-aided navigation is to use the terrain height over the
mean sea level, the terrain elevation, to draw conclusions
about the position of an aircraft. The idea is: A map with sam-
pled terrain elevation measured in a uniformly spaced grid is
stored on board the aircraft. Flying over an area, the aircraft
altitude over mean sea-level is measured with a barometric
sensor and the ground clearance is measured with a radar. The
difference between the altitude and the ground clearance is an
estimate of the terrain elevation, which can be compared to
the stored values in the map to find out the position of the air-
craft, see Fig. 1.1.

Gathering samples as the aircraft flies over an area will give a
trajectory of measured elevations. The more samples gathered
the more likely it is that the trajectory is unique and that a
good position estimate may be found when comparing the tra-
jectory with the stored elevations in the map.

Errors and uncertainty exist in the measurements of the baro-
metric sensor and radar. For example, flying through different

Permission to make digital/hard copics of all or part of this material for
personal or classroom use is granted without fee provided that the copies
are not made or distributed for profit or commercial advantage. the copy-
right notice, the title of'the publication and its date appear. and notice i
given that copyright is hy permission of the ACM. Inc. To copy othenwise,
10 republish. to post on servers or to redistribute to lists, n.-quir::s specific
permission and/or fee.

CIKM 97 Lasl'egas Nevada U5

Copyright 1997 ACM 0-89791-970-x:97°11..S3.50

177

Tore Risch

Department of Computer Science
Linkoping University, Sweden
torri@ida.liu.se
http://www.ida.liu.se/~torri

local weather conditions will cause the barometric sensor to
produce biased errors. Thus, the measured terrain elevation is
an approximation of the real terrain elevation. In order to
locate the position of the aircraft in the map, a non-linear
matching algorithm which takes into account the probability
density function of the measured elevation has been devel-
oped by [6]. This matching algorithm is applied to every grid
of the map by processing each new measured elevation in the
trajectory recursively.

%mn

Altitude | | Ground clearance

Terrain elevation

Mean sea-level

Fig. 1.1: Illustration of the terrain-aided navigation

Since the matching algorithm is expensive and has to be
applied to every grid of the map, it becomes very inefficient
to implement when the number of grids in the map becomes
large (see 16]). Therefore, we propose an index that can filter
out those sub-areas whose terrain elevations are in some
range around the measured values k. We use a confidence
interval (h-10, 7+10) where the probability that the true ele-
vation value is inside this interval is higher than 99.99%
according to the probability density function. Then, the sub-
areas whose terrain elevations are inside the interval (h-10,
h+10) can be used as starting positions of the above matching
algorithm instead of the whole map.

In short, the problem is: given a map which stores sampled
terrain elevation in each grid, how can we efficiently find out
those sub-areas whose terrain elevations are inside interval
(k’, B”’)? One may argue that a regular ordered secondary
index can return all the grids that have terrain elevation inside
the interval (#°, A”). But to group the set of grids returned
into sub-areas is not a trivial task {for detailed explanation
see Section 5). In this paper we propose using a novel index-

\
Ay

o ¢ RSP e b N Sy
i R

A T e ey T
RGN I R

TETEVLITIP S B i e Sk W At S ey T . . erra B
TR S NI R A R o 5 TS AOT L Dan

ing technique, IP-index {113, which can retum the sub-areas of
the map much more efficiently than a regular ordered second-
ary index.

The IP-index is a dynamic indexing technigue for large 1-D
sequences. It aims at supporting interpolation assumptions on
sequences, i.e., it can be used to query implicit values in addi-
tion to explicit values. It supports range queries as efficiently
as exact queries. It can be impiemented by any regular ordered

imAd
indexes such as B-tzees.

This paper is organized as following: Section 2 explains why
the TP-index is needed in real-life applications and discusses
related work. Section 3 gives an overview of the indexing
technique. Section 4 shows how to process different kinds of
queries on data sequences by using the IP-index. Section 5
shows how the IP-index can be applied to terrain-aided navi-
gation and improve the efficiency of the matching algorithm.
Section 6 gives the performance measurements. Conclusions
and future work are given in Section 7.

2 Related Work

Sequential data brings new challenges to DBMSs. Examples
of sequential data include: 1) time sequences such as tempera-
ture reading generated by sensors in scientific measurements;
2) stock price index in business applications; 3) medical data
such as a patient’s temperature reading or cardiology data, 4)
multispectral satellite image data. The terrain elevation map
in the navigation application (see Section 1) is a special kind
of sequential data where each row of the map is a sequence of
terrain elevations. Sequential data require special storage and
accessing techniques that do not appear in conventional data-
base systems. For example, large amount of research has been
dedicated to similarity search for sequences, i.e., finding those
(sub-)sequences that match a given pattern with some error
distance [1J{3][41[131{15]. The applications can be found in
identifying companies with similar growth patterns, products
with similar selling patterns, stocks with similar price move-
ment, images with similar weather patterns, etc.

v'=371

Fig. 2.1: Illustration of a value query

However, we found out that some applications require
searches for values instead of the shape of seguences. For
example, if the time sequence in Fig. 2.1 represenis a patient’s
temperature reading over time, the physician will be interested in
the query like “At what time period did the patient have a tempera-
ture higher than 37°C (i.e., have a fever)?”. Generally, these kind
of queries appear as “when was the value equal to (or above,
below) some threshold v’?”, or “when was the value in the
range (v’, ¥"")?". We term these kind of queries value gueries
in contrast to shape queries. It is not trivial to answer value
queries since: 1) In most applications, there are some kind of

. 178

interpolation functions associated with the discrete time
sequence. In other words, a time sequence is regarded as a
general function that produces values for any implicit time
points in addition to those explicit points. When queries con-
cern the implicit values, a conventional index does not help.
2) For range value queries on a time sequence, it is not effi«
cient to use a conventional index either. We will explain this
more in Section 5.

In order to deal with value gueries that involve interpolation
assumptions on time sequences, we developed a new indexing
technique termed the IP-index [11). The intuition behind the
IP-index is illustrated in Fig. 2.1. The original lime sequence

is viewed as a sequence of states §; By connecting each

sie clokos v ook angreante Oa Tf wrn nnn fin

ﬁeighbﬁur Stales we gei SegmcnisS g ‘-ﬁ{Sj, S;.,. j}. If we can find
all the segments Sg; that intersect the line v=v' (i.e., the seg-
ments Sg;, Sgg Sgip in Fig. 2.1), then we can calculate the
time points when the value was equal to v' (i.e., ¢, 1 and '
in Fig. 2.1). This is because the time point ¢’ can be computed
by applying the interpolation function on the neighbour states
around Sg;. Likewise, the time point £ can be computed by
applying the interpolation function on the neighbour states
around Sgg, and the time point #” can be computed by apply-
ing the interpolation function on the neighbour states around
Sgi0s

Thaus, a value query for a time sequence is transformed into an
interval intersecting problem. There have been several index-
ing methods proposed for k-dimensional spatial search, e.g. k-
d trees{14], R-trees{9] and SR-Tree[10]. There are also some
index trees proposed in computational geometry to deal with
interval problems, e.g., Interval Trees{7], and Segment
Trees[5). However, none of the above methods are suitable for
value queries on time sequences. The reasons are: 1) Time
sequences consist of large sets of intervals [S}, Sp,;] which are
often dynamically growing, while most spatial data structures
assume a fixed search space. 2) The intervals in time
sequences have a special property that the end point of Sg; is
the starting point of Sg;.; (i.e. S, p). This property makes the
IP-index much more simple compared to spatial search trees
such as R-trees.

Although the IP-index [11] was intended to deal with value
queries for time sequences, it turned out to work well for any
1-D data sequences. For example, in this paper the IP-index
will be applied to the terrain elevation map to find out the sub-
areas in the map whose terrain elevations are inside the inter-
val (&’, #”). The only assumption the IP-index made fs that
the data points in the sequence are ordered, which is frue for
all sequential data.

3 The IP-index

This section illustrates the idea of the IP-index. Although we
use time sequences in the illustration, the idea is applicable to
any 1-D data sequences (as long as the sequence is ordered).

A time sequence {TS) is viewed as a sequence of slates, where
each state is S;=(t;, v;). If we project each value v; on the y-
axis, we get non-overlapping intervals [, f-[kj. ch,, 1), where
each k; is a distinct value of v; (sce k;...k¢ in Fig. 3.1). We can
see that all values that belong to one interval have the same
sequence of intersecting segments {marked to the lcft in
Fig. 3.1). In the IP-index we associate with each interval {k;

15 " e
33 K : -

Fig. 3.1: Ilustration of the IP-index

k;,.p) all segments Sg; that span’ it. A simple illustration of the IP-
index is shown in Fig. 3.1, where we associate each interval
[kj, kj,.) with the sequence of spanning segments Sg;.

Since each segment Sg; is uniquely identified by its starting
state S;, we use S; to represent the segment Sg; in the IP-index.

‘We term the starting states of each segments that intersect the
line v=v’ as the anchor-states of v'. Then, the sequence of
intersecting segments can be represented as the sequence of
anchor-states, which is termed the anchor-state sequence. The
anchor-state sequence is a state sequence ordered by time.

Since each interval [k;, k;,.;) is uniquely identified by its start-
ing point k_,-, we use k_,- to represent the interval [kj, kj+ 1) in the
IP-index.

Suppose that k;<ky<...<k;<... are the ordered distinct values
of v; in the 7S. Then each index entry N; in the IP-index has
the form [key, anchors] where

° N,-.key=k_,-.
* Npanchors is the anchor-state sequence for all v’ such that v'2k;
and v'<k;j, ;. It is also denoted as anchors(k).

For example, the IP-index for the simple 7§ in Fig. 3.1 is:

anchors(k;)=<S;, S;>
anchors(ky)=<S;>
anchors(ks)=<S,, S3>
anchors(ky)=nil

To verify our ideas we implemented the IP-index in a main-
memory database [8] using an AVL-tree [1]. The performance
measurements [11] show that the IP-index dramatically
improves the performance of value queries. For periodic
sequences that have a limited range and precision on their
value domain (most application sequences have this property),
the IP-index has an upper bound for insertion and search time.

4 Processing Queries

To show how the IP-index can be used in terrain-aided naviga-
tion {to find out those sub-areas whose terrain elevations are
inside the interval (k’, &”")), let us start from a simple exam-

1. We say a segment Sg; spans an interval /; when the projection
of Sg; on the v-axis spans the interval I, i.e. if Sg=((%;, v, (¢
v,.)) and J;=(v,, vp), then v,<v, and v 2vp,.

179

ple. Suppose that a time sequence represents a patient’s tem-
perature reading in a hospital. There are several kinds of value
queries which can be answered given the IP-index.
1. When did the patient have the temperature equal to 37°C?
‘We term this kind of query as an exact query, expressed as
Flo).
2. During what time period did the patient have the temperature
higher than 37°C?
‘We term this kind of query as an inequality query, expressed as
Flv>v') (o1 Flvav)).
3. When did the patient have a temperature around 37°C?
We term this kind of query as an interval query, expressed as
F! (V'-e<v< V' te). .
We will see that exact queries can be computed directly by
using an IP-index. Inequality queries can be computed given
that we can compute exact queries. Interval queries can be
computed given that we can compute inequality queries. In
Section 5 we will show that by posing interval queries to the

terrain elevation map we can get all sub-areas whose terrain
elevations are inside the interval (&#’, 4”).

4.1 Exact Query

This section shows how to use the IP-index to calculate

F1(v’). Suppose that ifn is the interpolation function for the
time sequence and ip-index is the IP-index built for the time
sequence. Then, as illustrated in Fig. 2.1, we need to find all
anchor-states §; for v*, then apply the interpolation function on

the states around S; to calculate the time points ¢’. These
anchor-states are stored in ip-index. Below we give notations
which are used in this section:

e N;— an index entry in the IP-index.

¢ N;key — the key of the index entry N;.

® Npanchors — the anchor-state sequence associated with the
index entry N;.

To calculate an exact value query F~ 1tv'), we search the IP-
index to find the index entry N; where

NL.key= max{Ni.key i N,-.key < Vi}

Then Nj.anchors contains the anchor-state sequence for the

value v’. For example, in Fig. 3.1, the index entry Ny for the
value v’ is [k3, anchors] where anchors=<S,, S3>. The reason
is that k; (=v,) is the first key which is “below” or equal to v".

Therefore, given the IP-index and the interpolation assump-
tion ifnn for a time sequence, the pseudo-code for computing
an exact query F~ 14y’) will 1ook like the following:

exact_query(ip-index,v’,ifn):
Fi¢v’)=nil /* initialize the result */
find the index entry Ny in ip-index where
N;,.key=max{N;.key|N;.key<v’]} (1)
/* find the index entry which stores the anchor-state
sequence for v’ */
Foxr each state S; in N;.anchors (2)
Flev)=F (v’)+
ifn™ (v’, surrounding_states(S;))
end for each
return Fl¢v’)

Figure 4.1: The algorithm of F/(v")

Note that there are two steps marked (1) and (2) in this algo-
rithm. Step (1) searches the index to find the anchor-state
sequence, step (2) applies the inverse interpolation function

ifn‘l on each anchor-states to get F~ I(v'). The function
surrounding_states(S;) is dependent on the interpolation function

ifa. For example, if ifn is linear interpolation, then
surrounding_states(S)={S; S+.13-

4.2 Imequality Query

Given an example time sequence TS=<Sj, Sz,...Sg> as illus-
trated in Fig. 4.2, according to the algorithm in Fig. 4.2, we
have FI(v’ J=<t'}, '3, '3, £ 4> Tt can be seen in Fig. 4.2 that:
o Flasvy=<(r1,r2), 2.2 9>

o Flyay Y=<t 1), €283, War 1>

where 2, is the first time point of TS (i.e., S.time) and 2, is the
last time point of TS (i.e., Sg.time).

direction="+"

R L L IR)

Figure 4.3: Direction of the interpolated time points

1 i 1 P
H

Figure 4.2: INlustration of an inequality query

The observations are: 1) FY(v>v’) (or F° Ivev')) Is a
sequence of time intervals. 2) Each interval of Flv>v') (or
Fl(y<y’)) is composed only by those time points returncd by
Fl {v’} (plus 1, and ,). Now let us sce how to compose the

time points of Fl(v’) into corresponding time intervals of
Flp>v) (or Flv<v')).

In step (2) of the algorithm of F~ 1¢y) in Fig. 4.1, the inverse
interpolation function is applied to each anchor-state Sjto get

¢£. At the same time we can check the “direction” of £, i.e.,
o direction(t’)="+" if S;,;.value>S;.value
o direction(t }="-" if 8}, 1.value<S.value

This is illustrated in Fig. 4.3. Notice that we do not store seg-
ments with Sy, s.value=S;value in the IP-index since we only

record intersecting (non-horizontal) segments Sg;.

It can be seen from Fig. 4.2 that:
o Fiysv)=(r';, U';,)* where direction{t)="+'
o Fly<v')=(r';, ¥ 1. 1)* where direction(tp="-"

(The time intervals concerning f, and ¢, have to be treated spe-
cially by comparing Sy.value and Sg.value with v’.)

...................................... :
1]

)

v S; .
Sg; .

, & ‘
VE—-—— =R~ '
]

]

b % .

' 1

)

[» :

? t '

direction="~" !

'

13

]

2 12

t'3 t"3

Figure 4.4: Nustration of an interval query

In some applications (e.g., the terrain-aided navigation) it is
desirable to return the “state iniervals” instead of the time

intervals of F/(v>v") (or F/(v<v")). For example, in Fig. 4.4
the state intervals of F! (v>v') are [S,, S3] and [Sg, S7]. This is
trivial given that we can calculate F~ Iy>v') (or Flw<v)).

These “state intervals” can be found by rounding! the time
intervals. For example, rounding (#';, t’5) in Fig. 4.4 results in

[S2, Ss3l.

4.3 Interval Query

Interval queries can be calculated given that we can calculate
inequality queries. This is because F~ 1 V' <v<y”)=F" 1(v >v’)
N F '(v <v"”) where 'n’ means “interval intersection”. For
example, in Fig. 4.4, we have F~ 1 (v>V)=<(t'y, '3), ('3, £ 0>,
F- I(V <v")=<(t, £71), (72, 1”3), ("4, 1.)>. There we see that
Fly<vay”)=<(t'), 7)), (173, 1'2), (3. 1"3), (74 19>,
which is the interval intersection of F1{v>v’) and F (v <v”).

So, to calculate F 1 (v'<v<v”), we do the following:
1. Calculate Fl(v>v’).

2. Calculate Fl(v<v™).

3. Apply interval intersection to the resuits returned from 1 and 2.

We will show in next section that by posing interval queries
on the terrain elevation map we can get all sub-areas whose
terrain elevations are inside an interval (&', A”’).

5 Using the IP-index in Terrain-aided
Navigation

This section shows how the IP-index can improve the effi-
ciency of the matching algorithm in terrain-aided navigation.
First we show how the IP-index can be applied to the terrain

clevation map to filter out those sub-areas whose terrain ele-
vations are inside the interval (4’, h”).

Since the IP-index is designed for 1-D sequences, it cannot be

1. Here “rounding™ means finding the largest state interval that
is inside the time interval.

181

directly applied to the two-dimensional map. The approach
is: we view each row of the map as a time sequence (see
Fig. 5.1). That is, each grid corresponds to a state in a time
sequence, the position identifier ij corresponds to the times-
tamp ¢, and the elevation h;; corresponds to the value v. For

each time sequence, we pose the interval query F- Iy <v<n”)
to get the position intervals (ij pos’, ij pos”) where the val-
ues inside these intervals are inside the range (&’, hA”). As
mentioned in Section 4.2, by rounding these intervals we can
get corresponding column intervals [ij’, ij”’]. These column
intervals are the sub-areas in this row whose terrain eleva-
tions are inside the interval (&, &").

Now let us look at how the IP-index can improve the effi-
ciency of the matching algorithm in the terrain-aided naviga-
tion. As we mentioned in the introduction, the matching
algorithm finds the true position of the aircraft by applying a
non-linear algorithm to the whole map recursively for each
measured elevation in the trajectory. Taking a trajectory of
clevation measurements k;, hy,......h;, we can use the IP-
index to find the sub-areas in the map whose terrain elevation
are inside the interval (#;-10, k;+10) (this interval is based on
the probability density function as explained in the introduc-
tion), thus providing starting positions for the matching algo-
rithm. Since the matching algorithm does not have to be
applied to the whole map, efficiency is improved.

We define the cardinality of an interval (h-10, h;+10) as the
number of grids in the map whose terrain elevation are inside
this interval. In the measurements we found out that for a tra-
jectory hy, hy,......1, the cardinalities of (k;-10, h;+10) vary
very much (see Fig. 6.2). Since the matching algorithm does
not really have to start from the first measurement %y, i.e., it
can start from any (sub-areas returned from) the interval (h;-
10, k;+10) and apply the non-linear algorithm backwards (h;.
Is hi—2’h]) and forwards (hi-i-l' hi+2' hk)’ we do not
always have to take the first interval (h;-10, h;+10) to return
the sub-areas. Instead we take an interval (#;-10, h;+10) in the
trajectory which returns a small cardinality (this will be fur-
ther illustrated in the next section). The matching algorithm
starts from these small areas (and applies the non-linear algo-
rithm backwards and forwards in the trajectory) will be much
more efficient than starting from the whole map.

The cardinality of the interval (k-10, h;+10) can be computed

easily from the IP-index by adding a new field cardinality in
each index entry. Thatis, an index entry (see Section 3) is

The map (m*n) The sequences
kil b2 hy,| —————® BBy}
h21 h22 h2n —_— {}lZm h;z, ’12"}

Bt 'h”’z ihmn — {hmts BygseesenBpn ¥

Fig. 5.1: Transformation between the map and the data sequences

modified to {key, anchors, cardinality] where

* Npkey=k;
* Ni.anchors is the anchor-state sequence for all v’ such that v'2k;
and v’<k;, . It is also denoted as anchors(k;).

* N.cardinality is the number of states in the sequence whose
values are equal to Nkey (k;). It is also denoted as cardinal-
ity(k).

Then, the IP-index insertion algorithm {11} should also be

slightly modified (for this application) to increment N;.cardi-

nality by 1 whenever a new state arrives whose value is equal

to Npkey (k).

Then, the cardinality of the interval (R’-10, h2’"+10) is com-

puted by adding together cardinality(k;) where k; are inside the

interval (A’-10, h’’+10).. This is efficient since the IP-index is
an ordered index.

i\

Fig. 5.2: Comparing to a conventional ordered
secondary index

»

Before we show the measurement results, we would like to
point out that a conventional ordered secondary index is not
sufficient to return the sub-areas whose terrain elevations are
inside the interval (5’-10, k”’+10) (though it seems like so).
Suppose that Fig. 5.2 represents a row of the terrain-elevation
map. Using an IP-index we get F~ I <y<w)={(r FP 28
(t”2, £3)}, by rounding these intervals we get the state

sequences (sub-sequences) {[S3, S3}, [Ss S71}. By contrast, a
conventional ordered secondary index will return a set of
states S, Sy, S3, S which are ordered by their values instead
of by their order in the sequence. To group these states Sy, Sy,
S, S5 into sub-sequences ({[S,, S31, IS, S71} is not a trivial
task, especially when the number of sub-sequences returned is
large (In Fig. 5.2 there are only two sub-sequences returned)
or the number of states inside a sub-sequence is large. Another
disadvantage of a conventional secondary index is that it has
to search for all keys that are between the interval (8, 5”) in
order to find all states whose values are inside the interval (4',
A”). This indicates that when the interval is large (this is the
case with the navigation application), the IP-index will per-
form stably while a conventional secondary index will deteri-
orate.

6 Measurements

In this section we measure how much the IP-index can
improve the efficiency of the matching algorithm in the ter-
rain-aided navigation. To make the measurements as close to
reality as possible, we use a real map over a part of Sweden
(see Fig. 6.1) which consists of 101 by 101 samples in a unl-
formly spaced grid. (It is sampled with 50 m distance between
each sample point, yielding an area of 25 square kilometres of
terrain.) The elevation sample for each grid in the map is not
the average value over the grid but the measured terrain eleva-
tion rather exactly in the center of the grid. Some interpola-
tion method (e.g., linear interpolation) could easily be applicd
to the map to produce any terrain elevation between the sam-
pled points. As seen in Fig. 6.1 the terrain elevation has dif-
ferent characteristics in different parts of the map. The flat
area in the upper left corner of the map is a lake.

50 elevation track files were randomly generated in order to
cover different parts of the map. The starting positions of
these tracks were uniformly distributed along the leftmost line
of the map. Likewise their final positions were uniformly dis-
tributed along the parallel finish line on the other side of the
grid. Bach track file represents a trajectory of an aircraft and It
contains 80 sampied terrain elevation measurements.

For a trajectory ky, ha,..... -1z, the cardinality of each interval
(510, h:+10) can vary very much, as shown in Fig, 6.2, As

LI O

Fig. 6.1: The real map

we mentioned in Section 5, we would like to take an interval
(5;-10, h+10) in the trajectory which returns a rather small
cardinality. The more samples (in a trajectory) we take, the
higher the probability will be to find a small cardinality. To
measure the relationship between the minimum cardinality
found and the size of the tracks, we calculate the cardinalities
(using the IP-index as mentioned in Section 5) for the first
i*10 (i=1...8) samples of the 50 tracks. We recorded the mini-
mum cardinality found and the corresponding size of the
tracks. Thus, for each track we get a sequence of minimum
cardinality min; (i=1...8) and the corresponding size;=i*10
(i=1...8). Fig. 6.3 shows the avg(min;) over the 50 tracks. It
shows that: 1) The minimum cardinality decreases with the
size of the tracks; 2) After approximate 30 samples, the aver-
age of the minimum cardinality reaches a stable value (i.e., a
value around 609).

7000

E g

g

g

cardinafities of eacz intervals
.-

30 40 50 60 70 80
each interval in the track

Fig. 6.2: Cardinality distribution for a sample track

Thus we can use the value 609 as the “converge” threshold for
the IP-index, i.e., we say the IP-index has settled when it finds
a cardinality less than 609. Taken a trajectory of elevation

183

the relationship betwsen min_card and the size of tacks

g8 3 8

nverége of mén_card found
]

-

"y
8 .
=
»
.
.

Y T T T T T T T T N IS TTTIT TNy FRVPN
O frorsranantonisrrainiinnienand assarasisansnansab

°¢’
-
[

3 4 5
track size ("10)

Fig. 6.3: The relationship between
the number of samples taken and
the average of the minimum cardinality found

-
[=]

the numbor of trajectorles
[::]

L 0

[10 20 30 40 50. 60 70 80
the number of samples taken

Fig. 6.4: The histogram of the settling time of the IP-index

measurements iy, hy,...hy, it is interesting to see how fast the
IP-index setiles. We tested the IP-index on the 50 tracks and
record the number of samples needed to reach the converge
threshold 609. The histogram is shown in Fig. 6.4.

Fig. 6.4 shows that the settling time of the IP-index is gener-
ally small. For most tracks less than 10 samples are needed.
Notice that when the track does not cover areas with small
cardinalities (for example, when the aircraft is flying over flat
areas such as lakes), the cardinality threshold cannot be
reached even if the whole track is checked. That is the reason
why some tracks are located in the rightmost line (where the
settling time is 80) in Fig. 6.4.

Notice that the measurement results are affected by the appli-
cation data. For example, the value of the “converge” thresh-
old (609) used in these measurements are dependent on the
terrain-variation map and the position of the tracks (in the
map). It should be tuned for different application data set.

X

D I S vCyRp Sy S o s,
€ By R L S e

PRSP I, g T LR e T e

———

This value in turn affects the settling time of the IP-index.

e Nevertheless, these measurements show how the IP-index
- should be used in the navigation application to find good stast-
ing positions for the matching algorithm. That is: for any track
file we calculate the cardinality for each sample #; and stop
either when the first cardinality is found which is lower than
the threshold (i.e. 609 in the example), or when the IP-index
reaches its “converge threshold” {i.e. 30 samples in the exam-
ple since the minimum cardinality will not continue to
decrease based on statistics shown in Fig. 6.3). Suppose we
stop at the sample kg in the trajectory, then we pose the range

query Fl(h-10<v<h+10) to find the sub-areas in the map
whose terrain elevations are inside the interval (,-10, h+10).
These sub-areas are returned to the matching algorithm to
serve as the starting positions (recall in Section 5 that the
matching algorithm can work backwards and forwards). Since
the number of grids inside these areas are guaranteed to be
small, the matching algorithm will always be much more effi-
cient than starting from the whole map.

7 Conclusions and Futuore Work

Many applications require value queries conceming implicit
interpolation assumptions on data sequences. For this purpose
we developed a novel indexing technique termed the IP-index
{11], which supports implicit value queries including exact
queries F~ 1(y') and range queries F~ 4 <y< v”). In this paper
we show how the IP-index can be used in terrain-aided navi-
gation and dramatically improve the efficiency of the match-
ing algorithm.

Terrain-aided navigation requires efficient filtering out of sub-
areas in a map whose terrain elevations are inside an interval
(h’, B’). A conventional ordered secondary index is not effi-
cient in returning these sub-areas. By contrast, if we build an
IP-indexes for each row of the map, we can get the sub-areas
efficiently by posing a range query F Ty <v<h™) to each row.
Also, by associating cardinality information in the IP-index
we can efficiently find those sub-areas with small cardinality
1o serve as starting positions of the matching algorithm.

In future work we plan to extend the IP-index to index on two-
dimensional sequences. In that case we can apply the JP-index
on the whole map directly without having to build an IP-index
for each row. Also we would like to implement the IP-index
for huge maps that can only be stored in disks and be able to
cash part of the index (for a sub-area of the map) to main-
memory when required by the application.

Acknowledgements

The authors would like to thank Niclas Bergman for coopera-
tion in the terrain-aided navigation and providing relevant
materials.

References

1. G.M. Adelson-Velskii and E. M. Landis. Doklady Akademia
Nauk SSSR, 146, (1962), pp. 263-266; English transiation in
Soviet Math, 3, pp. 1259-1263.

184

10.

11.

12.

13.

14,

15.

R. Agrawal, C. Faloutsos and A. Swami, “Efficient Similac-
ity Search in Sequence Databases”. In Proc. of the Fourth
International Conference on Foundations of Data Organiza-
tion and Algorithms, pp. 69-84, Chicago, Oct. 1993.

R. Agrawal, K. Lin, H. S. Sawhney, K. Shim, “Fast Similar-
ity Search in the Presence of Nois¢, Scaling, and Translation
in Time-Series Databases”. In Proc. VLDB, Conf., pp. 490-
501, 1995.

R. Agrawal, G. Psaila, D. L. Wimmers and M. Zait, “Query-
ing Shapes of Histories”. In Proc. 21st VLDB Conf., pp. 502-
514, 1995.

1. L. Bently, “Algorithms for Klee's Rectangle Problems",
Computer Science Department, Camegie-Mellon University,
Pittsburgh, 1972.

.

N. Bergman, “A Bayesian Approach to Terrain-Aided
Navigation”, Technical Report, LiTH-ISY-R-1903,
Linkoping University, Oct. 1996,

H. Edelsbrunner, “Dynamic Rectangle Intersection Search-
ing” , Institute for Information Processing, Rept. 47, Techni-
cal University of Graz, Graz, Austria.

G. Fahl, T. Risch and M. Skéld. An architecture for Active
Mediators. In Proc. Intl. Workshop on Next Generation
Information Technologies and Sysiems, pp. 47-53, Haifa,
Israel, 1993.

A. Guttman, “R-Trees: A Dynamic Index Structure for Spa-
tial Searching”. In Proc. ACM SIGMOD Conf., Junc 1984,
Boston, MA.

C. P. Koloyson and M. Stonebraker, “Segment Indexes:
Dynamic Indexing Techniques for Multi-Dimensicnal Inter-
val Data”. In Proc. ACM SIGMOD Conf., pp. 138-148,
1991.

L. Lin, T. Risch, M. Skold, D. Badal, “Indexing Values of
Time Sequences”, in Proceedings of Sth Internatlonal
Conference on Information and Knowledge Manage-
ment, pp. 223-232, Rockville, Maryland, Nov. 1996,

L. Lin, “A Value-Based Indexing Technique For Time
Sequences”, Lic. Thesis No 597, Linkdping University, Jan,,
1597, ISBN 91-7871-888-0.

C.S.Li, P, S. Yuand V. Castelli. HierachyScan, “A Hicrach-
ical Similarity Search Algorithm for Databases of Long
Sequences”. In Proc. Data Engineering Conf., pp. 546-553,
Feb. 1996.

K. Ooi, B. McDonell and R. Sacks-Davis, “Spatial kd-tree: i
Indexing mechanism for spatial database”. In IEEE COMP- '
SAC 87, 1987.

H. Shatkay, S. B. Zdonik, “Approximate Querics and Repre-
sentations for Large Data Sequences”. In Proc. Data Engine-
ering Conf., pp.536-545, Feb. 1996.

oy

A W o rer rA ? -
e YN W N] RTINS TR
e R 3 R € NG RE < 3 AT S

A A W

