
Chapter 1

Monitoring Complex Rule
Conditions

Tore Risch
Martin Sköld

In N.Paton (ed.): Active Rules in Database Systems, Springer-Verlag, New York,
1999, ISBN 0-387-98529-8.

1

Abstract

This chapter describes and discusses the problem of efficient checking of com-
plex rule conditions expressed as database queries. For this several methods
have been proposed that are based on the technique of incremental evalua-
tion. With incremental evaluation the state of a rule condition is materialized
and, after an update, the new state of the condition is defined incrementally in
terms of differences to the materialized state generated by the update. First an
overview of the traditional methods for incremental evaluation is given. Then
a partial differencing calculus is defined for set algebra and is then mapped to
the relational operators. Examples are given on how the calculus has been used
to define an algorithm that allows trade-offs between space and time efficiency
when checking complex rule conditions.

1.1 Introduction

The discussion in this chapter concerns the efficient evaluation of complex rule
conditions. The discussion is applicable both to CA and ECA rules with complex
rule conditions. Systems based on CA rules (e.g. AI production rule systems)
have traditionally used more complex rules than ECA rules of active databases.
However, as more advanced active database systems are being developed the
need for efficient handling of complex rule conditions will increase for ECA
rules as well.

The condition part of a rule is allowed to be more or less complex in different
active database systems. If it is expressed as a general database query it can
span very large parts of the database. A naive method of checking such a
rule condition is to execute the complete rule condition whenever an event that
triggers the rule has occurred. This, however, can be very costly. For example,
a rule attached to update events of the salaries of employees might have a rule
condition that specifies that the rule action is executed only when the sum of
the incomes of all employees is larger than the salary budget. The execution
cost for a query that adds together all employee salaries is proportional to the
number of employees in the database. It would be very inefficient if the ADBMS
would check the complete query representing the condition every time the salary
of an employee is updated.

The example illustrates that for optimization of rule conditions it is not
always sufficient to rely solely on conventional query optimization techniques.
Special optimization techniques are needed to execute complex rule conditions
with reasonable efficiency. Such optimizations can make use of special knowledge
about rules. In our example, it is favorable to store the sum of all employee
salaries in the database and then incrementally update the sum whenever the
salary of some employee is changed. The condition checking only has to check
whether the materialized sum is larger than the budget.

The example illustrates the need for an important class of optimization tech-
niques for rule conditions based on incremental evaluation of rule conditions.
Incremental evaluation avoids recomputing the rule condition completely for
every event by incrementally computing the influence of an update event on a
materialized part of a condition. In the example, when an income of an em-
ployee or manager is updated, we use the incremental difference between the
old and the new income to calculate the influence on the sum on the update.

This chapter first makes an overview of some well-known incremental eval-
uation techniques and how they have been used in databases. In particular we
discuss how well suited the various techniques are for monitoring rule conditions
in active databases.

To illustrate and formalize the technique a partial difference calculus is pre-
sented that formally defines incremental changes to rule conditions in an active
DBMS. The calculus is based on a form of incremental evaluation named partial
differencing of rule conditions. The calculus gives us a formalism to optimize
rule condition checking with respect to both space and time. Space optimiza-
tion is achieved since the calculus does not presuppose materialization of all

1

intermediate results of monitored conditions to find its previous state. As an al-
ternative to complete materialization of the rule condition, the calculus provides
a method to do a logical rollback from the new database state to the old one.
Thus by using the calculus, a rule optimizer has the choice of not materializing
when favorable.

The calculus has been applied in the implementation of an incremental al-
gorithm that efficiently monitors complex rule conditions [SR96]. To optimize
space usage the algorithm uses a breadth-first, bottom-up propagation based on
the calculus combined with the possibility to do logical rollbacks. Time opti-
mization is achieved by materializing some (but not all) intermediate results
and then incrementally computing as little as possible at each update. The
algorithm is particularly favorable for database transactions with few updates
and where the rule conditions are complex and the rule checking is deferred
until the end of transactions (deferred coupling mode). However, the technique
can also be used for immediate coupling mode. The algorithm and the calculus
are applicable both to CA (production) rules and to ECA rules.

1.2 Incremental evaluation techniques

Finite differencing [PK92] is an incremental evaluation method to calculate
changes to functions in terms of changes to its arguments. As a simple example,
if we have a function

netpay = income - taxes - fees

and increase the income with ∆income while taxes and fees stay fixed, we get
the same change in netpay, i.e.:

∆netpay = ∆income,
If the old state of netpay is materialized the new state can be computed by

just incrementing netpay with ∆income. It is favorable to use such incremental
evaluation if it is cheaper to look up the materialization than to compute the
subtraction1. The example illustrates that it is often (but not always) cheaper
to incrementally compute the incremental difference to the value of a function
than to fully recompute it.

The example illustrates the chain rule [PK92] for the minus function:
If F = X − Y then ∆F

∆X = ∆X and ∆F
∆Y = −∆Y , where ∆F

∆X denotes the
change to F , given the change ∆X to X and ∆F

∆Y denotes the change to F
given the change ∆Y to Y . Thus we get the partial difference expressions
∆F = ∆F

∆X = ∆X if ∆Y is empty and ∆F = ∆F
∆Y = −∆Y if ∆X is empty.

Early work on finite differencing was done by Paige and Koenig [PK92]
who used the technique for improving the efficiency of programs in the set-
oriented programming language SETL by program transformations. In that
work differentiation operators were defined for the basic set functions in the

1This is actually not the case here, but would be so if the operator had been a more
expensive, e.g. a set or an aggregation operator.

2

SETL language. The transformed programs were faster since results of functions
could then be materialized to avoid recomputations of large sets.

Paige and Koenig also discovered that finite differencing could be applied
on materialization of derived data in databases [KP81]. In [KP81] finite differ-
encing is used for materializing derived data in a functional data model. Finite
differencing for maintaining materialized views in the relational model was first
developed in [BLT86] where it was shown how to incrementally maintain mate-
rialized relational Select-Project-Join (SPJ) views. Work on incremental main-
tenance of materialized views in Datalog can be found in [GM95, KM92, DS93].
In [QW91] the relational algebra is extended with some incremental operators
that can be used for differencing relational algebra expressions.

[RCBB89] proposed incremental evaluation of relational Select-Project-Join
(SPJ) queries in ECA rule conditions. The motivation for this was that ECA
rules with complex rule conditions need incremental evaluation techniques for
efficient evaluation of the condition part. The work was based on defining an
algebra for computations over database changes, ∆-relations. Each relation had
an associated ∆-relation where the tuples that got added and deleted during
an update operation were stored. Each SPJ-view also had ∆-relations which
were computed though a chain-rule for SPJ queries. An incremental evaluation
algorithm for rule condition monitoring was also proposed by [HD91].

In [CW91] it is shown how active rules can be used for maintaining materi-
alized views. The rules are semi-automatically generated from the user defined
views to be materialized. The generated ECA rules are parameterized to allow
for a simple form of incremental evaluation.

A classical algorithm for incremental evaluation of rule conditions in AI is
the RETE algorithm [For82]. It is used to incrementally evaluate rule condi-
tions (called patterns) in the OPS5 [BFKM85] expert system shell. OPS5 is a
forward-chaining production rule system where all patterns are checked using
RETE. Thus, in difference to active database systems, all the instantiations of
all patterns (i.e. all queries) in the current OPS5 program are incrementally
maintained, and regular demand driven database queries are not supported.
In RETE the system records each incremental change (insertions or deletions,
called tokens) to the stored data. For patterns that reference other patterns
(i.e. derived patterns) a propagation network is built that incrementally main-
tains the instances of the derived patterns. The propagation network may con-
tain both selections (represented as alpha nodes) and joins (represented as beta
nodes). The alpha nodes (selections) are always propagated before the beta
nodes (joins).

The main problem with using RETE for rule matching in large databases
is that RETE is very space inefficient for large databases since RETE saves
all intermediate results for all rule conditions. RETE furthermore does not do
join optimizations which may result in a combinatorical explosion of the size
of the working memory [Mir87]. Its memory usage therefore often becomes
substantially larger than the database itself. To improve the performance of
RETE the TREAT [Mir87] and A-TREAT [Han92] algorithms were developed.
These algorithms are shown to be more efficient for large databases [WH92].

3

TREAT avoids the combinatorical space explosion by using relational database
optimization techniques [Mir87]. A-TREAT further reduces the memory usage
by avoiding to materialize some intermediate results by defining some selec-
tion nodes in the propagation network as simple relational expressions [Han92]
(named virtual alpha nodes). A related approach is proposed in [FRS93a] where
an algorithm is presented that can take a set of rules and return the set of
relational expressions that is most profitable to materialize to support efficient
execution of the rules. These are examples of how to trade query execution time
for space in rule condition checking.

By contrast relational differencing techniques [RCBB89] transform relational
expressions into one or several incremental expressions. The nodes in the prop-
agation network do not reflect hard-coded primitive operations as in alpha and
beta nodes, but represent temporary storage of data propagated from the nodes
below. The arcs represent variables in these expressions.

In the partial differencing technique described below, the propagation net-
work will contain separate relational expressions associated with each arc of the
network representing the specific changes coming from each input node. These
partial changes are accumulated in the nodes through a special operator, called
delta-union (∪∆). This has the advantage that the partial incremental expres-
sions are simpler and more efficient to optimize and evaluate, in particular for
deferred rules where few changes are made in the transaction [SR96, Sko97].

In Heraclitus[GHJ96] a database programming language is proposed that
supports incremental evaluation by having deltas, i.e. incremental changes,
as first class data types. This allows for different rule semantics to be imple-
mented, but leaves it to the programmer to define how to incrementally evaluate
database expressions. Since incremental expressions can be rather complicated
it is preferable if the system could automatically generate them, rather than
letting the programmer explicitly define them. The Heraclitus approach is very
similar to ECA rules, which also can be used to manually maintain materialized
views [SJGP90].

1.3 Differencing Relational Expressions

Let P be a relation whose values depend on the values of the relations Q and R
which we call the influents of the affected relation P . Thus the definition of P is
defined as some function P = op(Q, R) where op(x, y) is some set (or relational
algebra) operator.

In full differencing the changes to P is defined in terms of some combina-
tion of changes to Q and R that depends on the operator op. Thus ∆P =
op′(∆Q, ∆R), where op′(x, y) is an incremental version of op(x, y). Full differ-
encing of relational algebra was done by [RCBB89, BLT86] and of Datalog by
[GM95, KM92, DS93]. The problem with full differencing of relational algebra
or Datalog expressions is that the differential operator, op′(x, y) is complex for
many expressions such as SPJ joins and aggregation operators. It is therefore
difficult to use conventional query optimization techniques to optimize the dif-

4

ferentiated expressions. Also we notice that transactions are often small with
few updates and therefore it is common that ∆P and ∆Q are not both updated
in the same transaction.

Instead of full differencing we define partial differencing rules where changes
to P are defined in terms of separate changes for each of its influents. Let ∆P

∆Q

and ∆P
∆R denote changes to P given changes in Q and R, respectively. ∆P can

be expressed as a function of the partial differential functions ∆P
∆Q and ∆P

∆R . We
will define how to automatically derive the partial differentials ∆P

∆Q and ∆P
∆R from

the definition of P , and how to calculate the total change ∆P from the partial
differentials. If there is an update of R, but not of Q, we can use the partial
differential ∆P

∆R to compute ∆P = ∆P
∆R (∆R). Analogous for changes to Q, but

not to R, we define ∆P as ∆P = ∆P
∆Q (∆Q). The partial differential operators

∆P
∆Q and ∆P

∆R give much less complicated expressions than the full differential
operator op′.

Also notice that the partial differencing calculus itself does not say anything
about what intermediate relational expressions (views) are materialized or not;
it just tells how to calculate a change of an expression given a change to one of
its influents. It is up to the rule compiler to use the calculus and to materialize
intermediate results in the best possible way. In some cases the incremental
expressions need to refer back to the old value of some intermediate result. If
the intermediate result is materialized, this a straight-forward data access. If
it is not materialized, the old value can still be computed by a so called logical
rollback defined in the calculus below.

Partial differencing has the following properties compared to other approaches
for incremental evaluation:

• Often the number of updates in a transaction is small and often one or
very few tables are updated. Therefore, only one or very few partial differ-
entials are affected and need to be checked in each transaction. Compared
to using conventional finite differencing [BLT86, RCBB89] each partial dif-
ferential becomes a relatively simple database query that can be optimized
using traditional cost-based query optimization techniques [SAC+79]. The
partial differentials can be automatically generated by a rule compiler.
The regular query optimizer is then applied on the partially differenced
expression assuming few changes to a single influent. The cost model of
the query optimizer should be adapted to support this assumption.

• Insertions are more common than deletions and the calculus for deletions
is much more complicated and costly than the calculus for insertions.
The partial differentials for handling insertions and deletions do not have
the same structure since conditions that depend on deletions are actually
historical queries that must be executed in the old database state when
the deleted data were present. This makes negative differentials different,
more complicated, and not easily mixable with positive ones. We therefore
separately define positive and negative partial differentials, denoted ∆P

∆+Q

5

and ∆P
∆−Q , respectively.

Based on the calculus, an algorithm has been developed [SR96] for effi-
cient rule condition monitoring. The algorithm propagates incremental changes
through a propagation network that describes how each monitored condition is
defined in terms of its subconditions. For correct and efficient handling of both
insertions and deletions in the absence of materializations the algorithm requires
a breadth-first, bottom-up propagation through the propagation network. The
propagation of deletions is performed only when records are deleted since the
more complicated calculus for deletions make their partial differencing slower
than insertions.

In order to significantly reduce permanent memory utilization the algorithm
immediately releases intermediate change materializations as the propagation
proceeds upwards in the propagation network. One can regard this as if a
wavefront of change materializations that is propagated breadth-first up through
the network.

A rule system has been implemented that uses the algorithm for monitor-
ing complex rule conditions [SR96]. The default semantics of our active rules
[RS92] uses the CA model where each rule is a pair, <Condition,Action>, where
the condition is a declarative database query, and the action is a database pro-
cedural expression. ECA-rules have also been implemented [Mac96] and the
techniques presented here are applicable for evaluating complex rule conditions
of ECA-rules as well; the event part just further restricts when the condition is
tested. Set-oriented action execution [WF90] is supported since data instances
can be passed from the condition to the action of each rule by using shared
query variables. Deferred condition evaluation is supported by delaying the
condition checking until a check phase usually at commit time. In the check
phase, change propagation is performed only when changes affecting activated
rules have occurred, i.e. no overhead is placed on database operations (queries
or updates) that do not affect any rules. After the change propagation, one
triggered rule is chosen through a conflict resolution method. Then the action
of the rule is executed for each instance where the rule condition is true based
on the net changes of the rule condition.

Next we proceed by presenting an example incremental condition monitoring
of active rules. The example will illustrate incremental evaluation by showing
how our calculus is used to efficiently implement active rules in the AMOS
DBMS [SR96].

1.4 Monitoring Active Rule Conditions in AMOS

Active rules have been introduced into AMOS [RS92, FRS93b] (Active Media-
tors Object System), an Object Relational DBMS. The data model of AMOS
is based on the functional data model of Daplex [Shi81] and Iris [FAC+89].
AMOSQL, the query language of AMOS, is a derivative of OSQL [Lyn91]. The
data model of Iris is based on objects, types, and functions. In AMOS the data

6

model is extended with rules. Everything in the data model is an object, includ-
ing types, functions, and rules. All objects are classified as belonging to one or
several types, which are equivalent to classes. Functions can be stored, derived,
or foreign. Stored functions equal object attributes or base relational tables,
derived functions equal methods or relational views, and foreign functions are
functions written in some procedural language2. Stored procedures can be de-
fined as functions that have side-effects. AMOSQL extends OSQL with active
rules, a richer type system, and multidatabase functionality.

1.4.1 Rules in AMOSQL

The condition in an AMOSQL rule is a query and the action is a procedural
expression.

The syntax for the CA rules is as follows:

create rule rule-name parameter-specification as
[for each variable-declaration-commalist]

when predicate-expression
do procedure-expression

The predicate-expression can contain any boolean expression, including con-
junction, disjunction, and negation. Rules are activated and deactivated sepa-
rately for different parameters.

The semantics of a rule is as follows: If an event of the database changes
the truth value for some instance of the condition to true, the rule is marked as
triggered for that instance. If something happens later in the transaction which
causes the condition to become false again, the rule is no longer triggered. This
ensures that we only react to net changes, i.e. logical events. A non-empty
result of the query that represents the condition is regarded as true and an
empty result is regarded as false.

Let us define an example database for a factory inventory:

create type item;
create type supplier;
create function quantity(item) -> integer;
create function max_stock(item) -> integer;
create function min_stock(item) -> integer;
create function consume_freq(item) -> integer;
create function supplies(supplier) -> item;
create function delivery_time(item,supplier) -> integer;
create function threshold(item i) -> integer as

select consume_freq(i) * delivery_time(i, s)
+ min_stock(i)

for each supplier s where supplies(s) = i;

2Foreign functions allow for extending the DBMS with new operations for specific database
applications

7

create rule monitor_items() as
for each item i
when quantity(i) < threshold(i)
do order(i,max_stock(i) - quantity(i));

The monitor items rule monitors the quantity of all items in stock and orders
new items when the quantity of some item drops below the threshold, consider-
ing the time to get new items delivered. The procedure order does the actual
ordering. The consume-frequency defines how many instances of a specific item
are consumed on average per day.

Next we populate the database and activate the rule monitor items:

create item instances :item1, :item2;
set max_stock(:item1) = 5000;
set max_stock(:item2) = 7500;
set min_stock(:item1) = 100;
set min_stock(:item2) = 200;
set consume_freq(:item1) = 20;
set consume_freq(:item2) = 30;
create supplier instances :sup1, :sup2;
set supplies(:sup1) = :item1;
set supplies(:sup2) = :item2;
set delivery_time(:item1, :sup1) = 2;
set delivery_time(:item2, :sup2) = 3;
activate monitor_items();

The activated rule will now monitor the items and trigger if the quantity
falls below the threshold (i.e. below 140 of :item1 and below 290 of :item2).

1.4.2 Rule Compilation

The rule compiler generates the condition function cnd monitor items from
the condition of the rule monitor items. This function returns all the items
with quantities below the threshold. Condition monitoring is then regarded as
monitoring changes to the condition function [Ris89].

create function cnd_monitor_items() -> item as
select i for each item i
where quantity(i) < threshold(i);

The action part of the rule generates a stored procedure that takes an item
as argument and orders new items to fill the inventory.

create function act_monitor_items(item i) -> boolean as
order(i, max_stock(i) - quantity(i));

At run-time the act monitor items procedure will be applied to the set of
changes calculated from the differential denoted ∆cnd monitor items:

for each item i in ∆cnd monitor items() do act monitor items(i);

8

We distinguish between strict and nervous rule execution semantics [SR96].
With strict semantics the action procedure is executed only when the truth value
of the monitored condition changes from false to true in some transaction (i.e.
we consider exactly the changes to the condition function since the last time it
was checked). With nervous semantics the rule sometimes also triggers when
there has been an update that causes the rule condition to become true without
having been false previously. Nervous semantics is often sufficient; however, in
our example strict semantics is preferable since we only want to order an item
once when it becomes low in stock.

∆supplies
∆min_stock

∆delivery_time∆quantity

∆thereshold

∆cnd_monitor_items

∆consume_freq

*

Figure 1.1: Dependency network of the rule condition

By looking at the definition of cnd monitor items we can define a depen-
dency network (fig. 1.1) that specifies what changes can affect the differential
∆cnd monitor items. Each edge in the dependency network defines the influ-
ence from one function to another. With each edge we will later associate the
partial differentials that calculate the actual influence from a particular node.
For instance, ∆quantity is an influent of ∆cnd monitor items with a partial
differential ∆cnd monitor items

∆quantity (the edge marked * in fig. 1.1). The dependency
network is constructed from the definition of the condition function and its
sub-functions.

In our system AMOSQL functions are compiled into a domain calculus lan-
guage called ObjectLog [LR92], which is a variant of Datalog [Ull89] where facts
and Horn Clauses are augmented with type signatures. In AMOS stored func-
tions are compiled into facts (base relations) and derived functions are com-
piled into Horn Clauses (derived relations). In our example the system can
deduce the dependency network by examining the definitions of the functions
cnd monitor items and threshold:

cnd monitor itemsitem(I) ←
quantityitem,integer(I,G1) ∧

9

thresholditem,integer(I,G2) ∧
G1 < G2

thresholditem,integer(I,T) ←
consume freqitem,integer(I,G1) ∧
delivery timeitem,supplier,integer(I,G2,G3) ∧
suppliesitem,supplier(I,G2) ∧
G4 = G1 * G3 ∧
min stockitem,integer(I,G5) ∧
T = G4 + G5

1.5 Partial Differencing

We first define a difference calculus as the theory for incremental computation
of changes in set expressions using an extension of set algebra. The calculus is
then mapped to relational algebra by defining partial differentials for the basic
relational operators. The calculus is our basis for incremental evaluation of rule
conditions. It formalizes update event detection and incremental change moni-
toring. The calculus is based on the usual set operators union (∪), intersection
(∩), difference (−), and complement (∼). Three new operators are introduced,
delta-plus (∆+), delta-minus (∆−), and delta-union (∪∆). ∆+ returns all tu-
ples added to a set over a specified period of time, and ∆− all tuples removed
from the set. A delta-set (∆-set) is defined as a disjoint pair < ∆+S, ∆−S >
for some set S and ∪∆ is defined as the union of two ∆-sets. The calculus is
general and the section ends with partial differencing formulae of the relational
algebra operators.

Separate partial differentials are generated for monitoring insertions and
deletions for each influent of a derived relation. Positive partial differentials
(insertions) are calculated in the new state of the database, while the negative
partial differentials (deletions) are calculated in the old state where the deleted
tuples were present in the database. The database updates are made in-place,
i.e. the current database state always reflects the new state.

1.5.1 Breadth-first propagation

In some cases the old state, Sold, of some ∆-set is needed. This is particularly
important when dealing with deletions (see [SR96, Sko97] for details).

The old state of a relation can be calculated from the new state by performing
a logical rollback that inverts all the updates. Given the value of Snew we can
calculate Sold by inverting all operations done to S, i.e. by using

Sold = (Snew ∪∆−S)−∆+S

The calculus is based on accumulating all the relevant updates to base re-
lations during a transaction. These accumulated changes are then used to cal-
culate the partial differentials of derived relations. To make the logical rollback

10

possible the changes must be propagated in a breadth-first, bottom-up man-
ner through a propagation network where the ∆-sets can be seen as temporary
‘wave-front’ materializations (fig. 1.2). This is required for the logical rollback
since calculating the old state, Sold, requires every instance of the propagated
changes that influence S, i.e. the complete new ∆+S and ∆−S are needed in
order to compute the complete Sold. Next we define how to accumulate these
changes and how to generate partial differentials.

Changes to rule conditions

Changes to stored relations

∆∆

∆

∆

∆

data flow

control flow

Figure 1.2: Breadth-first, bottom-up propagation

In the implementation ∆-sets are represented as temporary materializations
done in the propagation algorithm and are discarded as the propagation pro-
ceeds upwards. Changes, i.e. ∆-sets, which are not referenced by any partial
differentials further up in the network are discarded. This assumes that there
are no loops in the network, i.e. non-recursive functions. The algorithm propa-
gates changes breadth-first by first executing all affected partial differentials of
an edge (i.e. stored functions or base relations) and then by accumulating the
changes in the nodes above. Here is an outline of the quite simple algorithm
(see [Sko97] for more details):

for each level (starting with the lowest level)
for each changed node (a non-empty ∆-set)

for each edge to an above node
execute the partial differential(s)
and accumulate the result in the
∆-set of the node above using ∪∆

11

The ∆-sets of each node are cleared after the node has been processed, i.e.
after the partial differentials that reference the ∆-sets have been executed.

1.5.2 Differencing Base Relations

All changes to base relations, i.e. stored functions, are logged as physical events
in an undo/redo log. If there is a change to a base relation, the physical events
are accumulated in a ∆-set that reflects all logical events of the updated relation.
Only those relations that are influents of some rule condition need ∆-sets. Before
the physical update events are accumulated, a simple check is made if the base
relation that was updated is influencing some activated rule condition. The
∆-sets can be discarded when the changes of the affected relations have been
calculated, which saves space compared to other propagation algorithms where
all the change data during the complete propagation need to be retained. Since
rules are only triggered by net changes the physical events have to be added
with the delta union operator, ∪∆, that cancels counter-acting insertions and
deletions in the ∆-set. The ∆-set for a base relation B is defined as:

∆B = < ∆+B, ∆−B >

where ∆+B is the set of added tuples to B and ∆−B is the set of removed
tuples. They are defined as:

∆+B = B −Bold

∆−B = Bold −B

Therefore it holds that

Bold = (B ∪∆−B)−∆+B

We define ∪∆ formally as:

∆B1 ∪∆ ∆B2 = < (∆+B1 ∪∆+B2)− (∆−B1 ∪∆−B2),
(∆−B1 ∪∆−B2)− (∆+B1 ∪∆+B2) >

The ∪∆ operator ensures that we only consider the net effect of updates to a
function. Updates to stored functions are made by first removing the old value
tuples and then adding the new ones. For example, let us update the minimum
stock of some item twice assuming that min stock was originally 100:

set min_stock(:item1) = 150;
set min_stock(:item1) = 100;

This produces the physical update events:

12

-<min_stock,:item1,100>,
+<min_stock,:item1,150>,
-<min_stock,:item1,150>,
+<min_stock,:item1,100>.

The ∆-set for min stock changes accordingly with:
∆ min stock = <{},{<:item1,100>}>
∆ min stock = <{<:item1,150>},{<:item1,100>}>
∆ min stock = <{},{<:item1,100>}>
∆ min stock = <{},{}>
i.e. there is no net effect of the updates.

1.5.3 Partial Differencing of Views

As for base relations, the ∆-set of a relational view is defined as a pair:

∆P =< ∆+P, ∆−P >

We need to define how to calculate the ∆-set of an affected view in terms of the
∆-sets of its influents. To motivate our calculus we next exemplify change mon-
itoring of views for positive changes (adding) and negative changes (removing),
respectively. We then show how to combine partial differentials into the final
calculus.

Positive Partial Differentials
For a view P defined as a Horn Clause with a conjunctive body, let Ip be

the set of all its influents. The positive partial differentials ∆P
∆+Xi

, Xi ∈ Ip are
constructed by substituting Xi in P with its positive differential ∆+Xi.

For example, if

p(X, Z)← q(X, Y) ∧ r(Y, Z)

then

∆p(X, Z)
∆+q

← ∆+q(X, Y) ∧ r(Y, Z)

and

∆p(X, Z)
∆+r

← q(X, Y) ∧∆+r(Y, Z)

If the old database state consists of the stored relations (facts)
q(1, 1)
r(1, 2)
r(2, 3)
then we can derive
p(1, 2).

13

A transaction performs the updates
assert q(1, 2)
assert r(1, 4)

The new state of the database now becomes
q(1, 1)
q(1, 2)
r(1, 2)
r(1, 4)
r(2, 3)
and we can derive
p(1, 2)
p(1, 3)
p(1, 4)
The updates give the ∆-sets,
∆q = <{<1,2>},{}>
∆r = <{<1,4>},{}>
Then
∆p(X,Z)

∆+q = <{<1,3>},{}>
and
∆p(X,Z)

∆+r = <{<1,4>},{}>
and joining with ∪∆ finally gives
∆p = <{<1,3>,<1,4>},{}>
The AMOSQL compiler expands as many derived relations as possible to

have more degrees of freedom for optimizations. The condition function of our
running example will be expanded to:

cnd monitor itemsitem(I) ←
quantityitem,integer(I,G1) ∧
consume freqitem,integer(I,G2) ∧
delivery timeitem,supplier,integer(I,G3,G4) ∧
suppliesitem,supplier(I,G3) ∧
G5 = G2 * G4 ∧
min stockitem,integer(I,G6) ∧
G7 = G5 + G6 ∧
G1 < G7

The positive partial differential based on the influent quantity is defined
as:

∆cnd monitor itemsitem(I)/∆+quantity ←
∆+quantityitem,integer(I,G1) ∧
consume freqitem,integer(I,G2) ∧
delivery timeitem,supplier,integer(I,G3,G4) ∧
suppliesitem,supplier(I,G3) ∧
G5 = G2 * G4 ∧
min stockitem,integer(I,G6) ∧

14

G7 = G5 + G6 ∧
G1 < G7

The other differentials ∆cnd monitor items/∆+consume freq,
∆cnd monitor items/∆+delivery time,
∆cnd monitor items/∆+supplies, and
∆cnd monitor items/∆+min stock are defined likewise. Using these partial
differentials we can build a propagation network for cnd monitor items by as-
sociating the partial differentials with the arcs of flattened version of the depen-
dency network in Figure 1.1.

The propagation network for cnd monitor items is flat since the AMOS
query compiler expands functions as much as possible. In the case of late bind-
ing3 [FR95] this is not possible and the result is a more bushy network. Bushy
networks are sometimes preferable since they can promote node sharing between
nodes shared by different rule conditions.

Negative Partial Differentials
Often the rule condition depends only on positive changes, as for the monitor items

rule. However, for negation and aggregation operators, negative changes must
be propagated as well. For strict rule semantics, propagation of negative changes
is also necessary for rules whose actions negatively affect other rules’ conditions.
See [SR96] for details.

Partial Differentials of Intersection, Union, and Set-complement
Let ∆+P be the set of additions (positive changes) to a view P and ∆−P

be the set of deletions (negative changes) from P . As before, the ∆-set of P ,
∆P , is a pair of the positive and the negative changes of P :

∆P =< ∆+P, ∆−P >

As for base relations, we formally define the delta-union, ∪∆, over differentials
as:

∆P1 ∪∆ ∆P2 = < (∆+P1 ∪∆+P2)− (∆−P1 ∪∆−P2),
(∆−P1 ∪∆−P2)− (∆+P1 ∪∆+P2) >

Next we define the partial differential, ∆P
∆X , that incrementally monitors changes

to P from changes of each influent X . Partial differencing of a relation is defined
as generating partial differentials for all the influents of the relation. The net
changes of the partial differentials are accumulated (using ∪∆) into ∆P .

Let Ip be the set of all relations that P depends on. The ∆-set of P , ∆P , is
then defined by:

∆P = ∪∆
∆P

∆X
= ∪∆ <

∆P

∆+X
,

∆P

∆−X
>, ∀X ∈ Ip

3Late binding means that some type information can not be determined at compile-
time(early binding) and must instead be determined at run-time.

15

For example, if P depends on the relations Q and R then:

∆P =
∆P

∆Q
∪∆

∆P

∆R
=<

∆P

∆+Q
,

∆P

∆−Q
> ∪∆ <

∆P

∆+R
,

∆P

∆−R
>

To detect changes of derived relations we define intersection (conjunction), union
(disjunction), and complement (negation) in terms of their differentials as:

∆(Q ∩R) = < (∆+Q ∩R) ∪ (Q ∩∆+R), {} >

∪∆

< {}, (∆−Q ∩Rold) ∪ (Qold ∩∆−R >

∆(Q ∪R) = < (∆+Q−Rold) ∪ (∆+R−Qold), {} >

∪∆

< {}, (∆−Q−R) ∪ (∆−R −Q) >

∆(∼ Q) = < ∆−Q, ∆+Q >

Note that for unions any overlaps between the added (removed) tuples and the
old state (new state) of the other part of the union are removed. From the
expressions above we can easily generate the simpler expressions in the case of,
e.g. insertions only. For example, when only considering insertions, changes to
intersections are defined as:

∆+(Q ∩R) = ∆+Q ∩R) ∪ (Q ∩∆+R)

Partial Differencing of the Relational Operators
The calculus of partial differencing can easily be applied to the relational

algebra to incrementally evaluate its operators. This is illustrated in table 1.
This was generated by separating the expressions above for insertions and dele-
tions and by using the definitions of the relational operators in terms of set
operations. Note the table assumes set-oriented semantics and that Q− R can
be rewritten as Q ∩ (∼ R). See [Sko97] for more details.

P ∆P
∆+Q

∆P
∆+R

∆P
∆−Q

∆P
∆−R

σcondQ σcond∆+Q σcond∆−Q
πattrQ πattr∆+Q πattr∆−Q
Q ∪R ∆+Q−Rold ∆+R−Qold ∆−Q−R ∆−R−Q
Q−R ∆+Q−R Q ∩∆−R ∆−Q−Rold Qold ∩∆+R
Q×R ∆+Q×R Q×∆+R ∆−Q×Rold Qold ×∆−R
Q �� R ∆+Q �� R Q �� ∆+R ∆−Q �� Rold Qold �� ∆−R
Q ∩R ∆+Q ∩R Q ∩∆+R ∆−Q ∩Rold Qold ∩∆−R

Table 1. Partial differencing of the Relational Operators

16

1.6 Summary

This chapter presented incremental evaluation techniques for efficient moni-
toring of complex rule conditions. An overview of incremental evaluation tech-
niques was given. A difference calculus was presented for incremental evaluation
of queries, based on database updates. The calculus defines partial differentials
of rule conditions as separate queries that each considers changes to a single
relation that influences a monitored rule condition. The advantage of incre-
mental evaluation in general is the efficiency that comes from the assumption
that most transactions only perform small changes to rule conditions and it is
therefore cheaper to incrementally change a materialized rule condition than to
recompute it in every transaction. Partial differencing has the additional ad-
vantages that only a few (or just one) partial differentials are normally executed
in each transaction. The partial differentials are much simpler and more effi-
cient than the combined full differentials, in particular when combining partial
differentials for both positive (insertions) and negative (deletions) changes. The
calculus also defines how to calculate the old database state without material-
izing. A breadth-first, bottom-up propagation algorithm is used where changes
can be discarded as the propagation proceeds upwards in the propagation net-
work. This propagation algorithm is fast, space efficient, and supports logical
rollbacks.

17

Bibliography

[BFKM85] L. Brownston, R. Farrell, E. Kant, and N. Martin. Programming
Expert Systems in OPS5. Adison-Wesley, 1985.

[BLT86] J.A. Blakely, P-Å. Larson, and F.W. Tompa. Efficiently updating
materialized views. In SIGMOD Conf., pages 61–71, 1986.

[CW91] S. Ceri and J. Widom. Deriving production rules for incremental
view maintenance. In R. Camps G.M. Lohman, A. Sernadas, editor,
17th Intl. Conf on Very Large Data Bases, pages 577–589. Morgan
Kaufmann, 1991.

[DS93] G. Dong and J. Su. First-order incremental evaluation of datalog
queries. In 4th Int’l Workshop on Database Programming Languages,
pages 295–308, 1993.

[FAC+89] D. Fishman, J. Annevelink, E. Chow, T. Connors, J.W. Davis,
W. Hasan, C.G. Hoch, W. Kent, S. Leichner, P. Lyngbaek, B. Mah-
bod, M.A. Neimat, T. Risch, M.C. Chan, and W.K. Wilkinson.
Overview of the iris dbms. In W.Kim and F.H. Lochovsky, edi-
tors, Object-Oriented Concepts, Databases, and Applications, pages
219–250. ACM Press, 1989.

[For82] C.L. Forgy. Rete: A fast algorithm for the many pattern/many
object pattern match problem. Artificial Intelligence, 19(1):17–37,
1982.

[FR95] S. Flodin and T. Risch. Processing object-oriented queries with
invertible late bound functions. In 21st Int. Conf. on Very Large
Databases (VLDB’95), pages 335–344, 1995.

[FRS93a] F. Fabret, M. Regnier, and E. Simon. An Adaptive Algorithm
for Incremental Evaluation of Production Rules in Databases. In
R. Agrawal, S. Baker, and D. Bell, editors, 19th Intl. Conf. on Very
Large Data Bases, pages 455–466. Morgan Kaufmann, 1993.

[FRS93b] G. Fahl, T. Risch, and M. Sköld. Amos - an architecture for ac-
tive mediators. In Intl. Workshop on Next Generation Information
Technologies and Systems (NGITS’93), pages 47–53, 1993.

18

[GHJ96] S. Ghandeharizadeh, R. Hull, and D. Jacobs. Heraclitus: Elevating
deltas to be first-class citizens in a database programming language.
ACM Transactions on Database Systems, 21(3):370–426, 9 1996.

[GM95] A. Gupta and I.S. Mumick. Maintenance of materialized views:
Problems, techniques and applications. IEEE Quarterly Bulletin on
Data Engineering, 18(2), 1995.

[Han92] E.N. Hanson. Rule Condition Testing and Action Execution in Ariel.
In Proc. SIGMOD, pages 49–58. ACM, 1992.

[HD91] J. D. Harrison and S.W. Dietrich. Condition monitoring in an active
deductive database. Technical Report TR-91-022, Arizona State
University, 12 1991.

[KM92] A.G.D. Katiyar and I.S. Mumick. Maintaining views incrementally.
Technical Report TR-91-022, AT&T Bell Laboratories, 1992.

[KP81] S. Koenig and R. Paige. A transformational framework for the au-
tomatic control of derived data. In Proc. 7th Intl. Conf. on Very
Large Data Bases, pages 306–318. IEEE, 1981.

[LR92] W. Litwin and T. Risch. Main memory oriented optimization of oo
queries using types datalog with foreign predicates. IEEE Transac-
tions on Knowledge and Data Engineering, 4(6), 12 1992.

[Lyn91] P. Lyngbaek. Osql: A language for object databases. Technical
Report HPL-DTD-91-4, Hewlett-Packard Laboratories, 1 1991.

[Mac96] S-A. Machani. Events in an object relational database system. Tech-
nical Report LiTH-IDA-Ex-9634, University of Linköping, 1996.

[Mir87] D.P. Miranker. TREAT: A Better Match Algorithm for AI Produc-
tion Systems. In Proc. AAAI, pages 42–47, 1987.

[PK92] R. Paige and S. Koenig. Finite differencing of computable expres-
sions. ACM Transactions on Programming Languages and Systems,
4(2):402–454, 1992.

[QW91] X. Qian and G. Wiederhold. Incremental recomputation of active
relational expressions. IEEE Transactions on Knowledge and Data
Engineering, 3(3):337–341, 1991.

[RCBB89] A. Rosenthal, S. Chakravarthy, B. Blaustein, and J. Blakeley.
Situation monitoring for active databases. In M.G.Apers and
G.Wiederhold, editors, Proc. 15th Intl. Conf. on Very Large Data
Bases, pages 455–464, 1989.

[Ris89] T. Risch. Monitoring database objects. In P.M.G. Apers and
G. Wiederhold, editors, Proc. 15th Intl. Conf. on Very Large
Databases, pages 445–453, 8 1989.

19

[RS92] T. Risch and M. Sköld. Active rules based on object oriented queries.
IEEE Quarterly Bulletin on Data Engineering, Special Issue on Ac-
tive Databases, 1992.

[SAC+79] P. Selinger, M.M. Astrahan, R.A. Chamberlin, R.A. Lorie, and T.G.
Price. Access path selection in a relational database management
system. In SIGMOD Conf., pages 23–54. ACM, 1979.

[Shi81] D.W. Shipman. The functional data model and the data language
daplex. ACM Transactions on Database Systems, 6(1), 3 1981.

[SJGP90] M. Stonebraker, A. Jhingran, J. Goh, and S. Potamianos. On rules,
procedures, caching and views in database systems. In Proc. ACM
SIGMOD, pages 281–290, 1990.

[Sko97] M. Skold. Active Database Management Systems for Monitoring
and Control. Number Dissertation No. 494. Linköping University, 9
1997.

[SR96] M. Sköld and T. Risch. Using partial differencing for efficient mon-
itoring of deferred complex rule conditions. In Stanley Y.W.Su,
editor, Proc. 12th Int. Conf. on Data Engineering, pages 392–401.
IEEE Computer Society Press, 1996.

[Ull89] J.D Ullman. Principles of Database and Knowledge-Base Systems,
Volume I & II. Computer Science Press, 1989.

[WF90] J. Widom and S.J. Finkelstein. Set-Oriented Production Rules in
Relational Database Systems. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 259–270,
1990.

[WH92] Y-W Wang and E.N. Hanson. A Performance Comparison of the
Rete and TREAT Algorithms for Testing Database Rule Conditions.
In Proc. Data Engineering, pages 88–97. IEEE, 1992.

20

