
Rule Contexts in Active Databases
- A Mechanism for Dynamic Rule Grouping

Martin Sköld, Esa Falkenroth, Tore Risch
Department of Computer and Information Science, Linköping University

S-581 83 Linköping, Sweden
e-mail: {marsk,esafa,torri}@ida.liu.se

Abstract. Engineering applications that use Active DBMSs (ADBMSs) often
need to group activities into modes that are shifted during the execution of dif-
ferent tasks. This paper presents a mechanism for grouping rules intocontexts
that can be activated and deactivated dynamically. The ADBMS monitors only
those events that affect rules of activated contexts.
By dynamic rule grouping the rules to be monitored can be changed during the
transactions. This can be contrasted by static rule grouping where the rules are
associated with specific objects during the schema definition.
A rule is always activated into a previously defined context. The same rule can
be activated with different parameters and into several different contexts.
Rules in a context are not enabled for triggering until the context is activated.
However, rules can be directly activated by activating them into a previously
activated context. When rule contexts are deactivated all the rules in that con-
text are disabled from triggering.
User defined contexts can be checked at any time in a transaction. Rule con-
texts can be used as a representation of coupling modes, where the ADBMS
has built-in contexts for immediate, deferred, and detached rule processing.
These built-in coupling modes are always active and are automatically checked
by the ADBMS.
Contexts and rules are first-class objects in the ADBMS. Database procedures
can be defined that dynamically activate and deactivate contexts and rules to
support dynamically changing behaviours of complex applications.
The context mechanism has been implemented in the AMOS ADBMS. The
paper concludes with an example of a manufacturing control application that
highlights the need for rule contexts.

1 Introduction

A system for building manufacturing control applications was implemented using an
ADBMS [10]. In the system active rules control the manufacturing tasks. Details about
the system and examples of active rules are presented in section 4. Experiences from
this system integration are:

• These type of engineering applications need to group activities into modes that are
shifting during the execution of different tasks.

• Since the ADBMS did not initially have mechanisms for handling mode changes
the application had to implement this functionality by introducing state variables in
the rule conditions.

• The state variables caused the rules to become complex and unintuitive. A rule
would often need to refer to several different state variables.

• The state variables represent control knowledge. It is better to separate rules repre-
senting domain knowledge from rules for control knowledge, e.g. by defining
meta-rules [1][2].

• Implementing mode changes by altering state variables is inefficient since the total
number of simultaneously monitored rules will be unnecessary large. By having the
ADBMS support mode changes internally the overhead for rule checking can be
kept low.

This paper presents an ADBMS mechanism for dynamically grouping rules intocon-
texts that are activated and deactivated dynamically. The contexts are associated with
different modes in the applications. When the application shifts between modes, the
ADBMS is ordered to shift attention, orfocus, to the associated rule context. Shifting
between contexts means that all rules in the old context are ignored and the rules in the
new context are monitored instead. Applications sometimes need to work with modes
on different levels and one mode can consist of many sub-modes in a hierarchical man-
ner. This means that the ADBMS must be able to handle several rule contexts simulta-
neously and to support modelling of contexts in the schema. This is accomplished by
defining contexts (and rules) as first class objects in the ADBMS. This approach also
supports the definition ofmeta-rules that are defined over rules and contexts.

Applications must not only have the possibility to create and delete contexts and
activate and deactivate them, but must also be able to control when the rules are to be
checked. For example, the application might initiate a series of operations and then
check if any rules were triggered. This usually falls outside of the general coupling
modes defined in ADBMSs. Our contexts therefore haverule processing points, which
allow applications to define their own coupling modes where the rules can be checked
at a user specified time in a transaction.

The contexts are also used internally in the ADBMS to implement system coupling
modes. System coupling modes are associated with predefined contexts that are auto-
matically checked by the system.

The paper presents rules and rule contexts as implemented in the AMOS (Active
Mediating Object System)[5][13] ADBMS. The paper concludes with an example of a
manufacturing control application that highlights the need for rule contexts.

2 Related Work

The idea of grouping rules dynamically into different contexts was initially developed
in expert systems[1][17]. Other names for these groups of rules includeworlds and
viewpoints. In expert systems these rule contexts are usually used for organizing differ-
enthypothesis during a deduction process. In an ADBMS the issue is more of organiz-
ing differentactivities.

The contexts were also supported in the rule based expert system Mycin and its

successor Oncosin [1]. In Mycin contexts had to be specified as special context varia-
bles in rule conditions; in Oncosin a special CONTEXT clause on each rule referred to
the context variables. By contrast our contexts completely separate the context specifi-
cations (i.e. the control information) from the rules (i.e. the knowledge) and therefore
the same rule can occur in many contexts with different control strategies.

The rules in an ADBMS are often defined as first-class objects in the database sche-
mas [3]. In Object Oriented (OO) systems the rules can often be grouped as belonging
to a class and rules can be associated with other classes similarly as class methods.
KEE [8] used this model for grouping rules intoworlds. This classification is useful
when associating rules with specific objects statically, e.g. when associating some con-
straint on the possible values of a class attribute or reacting to a user defined event that
is associated with an object. These kinds of rules are usually always active and are trig-
gered when a method is invoked of an instance of the class. However, in many applica-
tions there is a need to dynamically group rules that are associated with many different
classes of objects.

Both POSTGRES[15] and Starburst[18] allow rules to be members ofrule sets,
which can be ordered hierarchically and where complete rule sets can be activated and
deactivated. Rule sets are checked at certainrule processing points. The contexts in
AMOS are more dynamic since the same rule can be activated in different contexts for
different parameters, i.e. for different object instances. The contexts are objects and
thus can be stored in any data structure and can be used for relating different data to
different contexts. In AMOS contexts are also used for defining built-in coupling
modes for rule execution. This means that these contexts have rule processing points
that are automatically executed by the system. Since the same rule can be activated in
different contexts the same rule can also be given many coupling modes.

In [16] a model is presented for defining applications in terms ofbrokers that repre-
sent reactive system components androles that specify the responsibilities of brokers
in various situational and organizational contexts. A proposal was made to implement
rules using rules and special role dependant state variables. As was mentioned earlier,
we believe this kind of modelling is better supported by rule contexts in the ADBMS.

We define rule contexts as first-class objects that enable parameterizing functions
with contexts, organizing them hierarchically in data structures, and defining rules that
manage (create/delete, activate/deactivate) other contexts than their own. This makes it
possible to definemeta-rules as in [1][2] where the meta data consists of other rules
and contexts.

3 Rules and Contexts in the AMOS Active DBMS

The active rules have been introduced into AMOS[5][13], an Object Relational
DBMS. The data model of AMOS is based on the functional data model of Daplex[14]
and Iris[6]. AMOSQL, the query language of AMOS, is a derivative of OSQL[11].
The data model of AMOS is based on objects, types, functions, and rules. Everything
in the data model is an object, including types, functions, and rules[3]. All objects are
classified as belonging to one or several types, i.e. classes. Functions can be stored,
derived, or foreign. Stored functions correspond to object attributes in an Object Ori-

ented system and to base tables in a relational system, derived functions correspond to
methods and relational views, and foreign functions are functions written in some pro-
cedural language1. Database procedures are defined as functions that have side-effects.
AMOSQL extends OSQL[11] with active rules, a richer type system, and multidata-
base functionality.

3.1 Contexts

When rules are activated in AMOS, they are always associated with rule contexts.
Contexts are first-class objects and are created by the statement:

create context context-name

where thecontext-name is a global name. Contexts are deleted by:

delete context context-name

Contexts are initiallyinactive which means that before a context isactivated the events
affecting its rules are not monitored (unless the events are monitored by another
already active context). Contexts are activated by:

activate context context-name

which enables all the activated rules in the context to be monitored. Contexts are
deactivated by:

deactivate context context-name

which disables all the activated rules in the context from being monitored. Two
built-in contexts, nameddeferred anddetached, are predefined and always
active for deferred and detached rules, respectively. These are checked automati-
cally by the system. Deferred rules are checked immediately before transaction-
commit and detached immediately after.

3.2 Rules

AMOSQL supports Condition Action (CA) rules. The Condition is defined as an
AMOSQL query and the Action as an AMOSQL procedural expression.
The syntax for rules is as follows:

create rule rule-name parameter-specificationas
when for-each-clause | predicate-expression
do procedure-expression

where
for-each-clause::=

for each variable-declaration-commalistwhere predicate-expression

1. In AMOS foreign functions can be written in Lisp or C.

The predicate-expression can contain any boolean expression, including conjunction,
disjunction and negation. Rules are deleted by:

delete rule rule-name

Rules are activated and deactivated separately for different parameters. Rules are acti-
vated in different contexts, where the default context is thedeferred context:

activate rule rule-nameparameter-list [strict] [priority 0|1|2|3|4|5] [into con-
text-name]

deactivate rule rule-nameparameter-list [from context-name]

The semantics of a rule in an active context is as follows: If an event in the data-
base changes the truth value for some instance of the condition totrue, the rule is
marked astriggered for that instance. If something happens later in the transac-
tion which causes the condition to become false again, the rule is no longer trig-
gered. This ensures that we only react to net changes, i.e.logical events. A non-
empty result of the query of the condition is regarded astrue and an empty result
is regarded asfalse. Since events are not monitored in inactive contexts, rules in
them will not trigger until the context is activated and some event happens that
causes the condition to become true.Strict rule processing means that the system
guarantees that a rule is triggered only once for each change that causes its con-
dition to become true. Rule priorities can be used for defining conflict resolution
between rules that are triggered simultaneously in the same context.

3.3 Rule Contexts and Rule Processing Points

Each context in AMOS has a separaterule processing point where the conditions
of the rules in the context are checked and where the corresponding actions are
executed if the condition is true. (For strict semantics the action is executed only
if the condition was false in the previous processing point of the context).

A processing point is eitherexplicit or implicit. Explicit processing points are
issued by explicit calls from applications to acheck system procedure. Implicit
processing points are issued by the ADBMS at specific database states, e.g. just before
(deferred rule processing) and after (detached rule processing) each commit point.

Rule contexts can be used as a representation of coupling modes [4]. The coupling
modes are defined as named contexts with implicit processing points. All rules that are
activated in the same context also have the same coupling mode, i.e. the same rule
processing point. Traditionally coupling modes have been associated directly with
individual rules. By associating the coupling modes with rule contexts a more flexible
model can be achieved. Since rules can be activated into several contexts they can also
be given several coupling modes. Coupling modes forimmediate, deferred, and
detached rule processing can be defined as built-in contexts that are automatically
checked by the transaction mechanism of the ADBMS (fig. 1). In [4] a separation was
made between E-C and C-A coupling modes. When we refer to immediate coupling
mode here, we really mean immediate-immediate, and by deferred we mean deferred-
deferred. Contexts for other E-C and C-A combinations could also be defined. Immedi-
ate rule checking is currently not supported in AMOS, but its processing points would

have to be just after (or before) triggering database operations. User defined contexts
with explicit processing points can be checked at any time within a transaction. The
detached coupling mode is important in a multidatabase architecture like AMOS. In
such an architecture one agent or broker may need to monitor the behaviour of another
agent[12]. This monitoring must be made on commited data. By using a detached cou-
pling mode the rules that perform the monitoring will never trigger on uncommitted
changes.

Decoupled andcausally dependent decoupled coupling modes [4] can be implemented
using general transaction mechanisms for creating sub-transactions and synchronizing
transactions.

4 A Manufacturing Control System

The need for a context mechanism became apparent when an ADBMS was used
in the implementation of a system for building manufacturing control applica-
tions [10]. ARAMIS (A Robot And Manufacturing Instruction System) [9] is a
high-level language and a set of tools for designing intelligent behaviour of con-
trol systems. The ARAMIS language has similarities with workflow languages
[7], but is oriented towards specifying the high-level activities of control appli-
cations. The low-level control programs that interact with the physical hardware
are isolated from the application programmer by the World Model (WM) meta-
phor. All the objects in the model of the manufacturing task can be observed and
manipulated as objects in the WM.The original ARAMIS system [9] was fully
implemented (controlling a robot with various sensors), but with a primitive ADBMS.
In [10] a three-level architecture combining the ARAMIS language and an
ADBMS is presented. In CAMOS (Control Applications Mediating Object Sys-
tem), see fig. 2, a manufacturing task is expressed in a high-level task language
that is partly compiled into an AMOS database that stores the WM and monitors

deferred detached

immediately triggering
check(:context1); commit;DBMS event

immediate user defined context

transaction
committed

Fig. 1. Contexts as a representation of coupling modes

changes to the objects in the WM.

The WM is synchronized with aphysical world or a simulator by cooperation
between acontrol system and an ADBMS through a servo mechanism. When the
task level updates the WM, the control level affects the physical world to corre-
spond to the WM. Likewise, when the control level sense changes in the physical
world, it updates the WM. In the CAMOS architecture the high-level query lan-
guage and active rules of AMOS are used to support much of the functionality in
the WM, e.g. to monitor changes to the WM. Parts of this architecture have been
implemented to verify the ideas. Instead of using actual hardware, a simulator of
a production cell was used1. In the initial implementation state variables were
used to model mode changes. Below follows an example of how rule contexts in
AMOS can be used instead.

1. Based on a simulator developed by Artur Brauer at University of Karlsruhe

Task Level

Control Level

World Model Level
WM-Objects, Queries, Rules, and
Contexts in an Active DBMS
(AMOS)

Fig. 2. The three-level architecture of CAMOS

Physical World/ Simulator

(The ARAMIS language)
for manufacturing tasks
 Specification Language

(Real Time Control System)
in some concurrent real-time language
Real Time Control Algorithms

DBMS operations
(context and rule operations)

calls to external procedures

acknowledgements
results,
callbacks

external events
DBMS updates

controlling affectuators reading sensors(affectuating) (sensing)

4.1 A Production Cell Simulation

A production cell consisting of a two-armed robot, an elevating rotary table, a
press, a crane, and two conveyor-belts produces body parts for cars (fig. 3).
Unprocessed parts arrive from the left on the lower conveyor-belt and are trans-
ported to the elevating rotary table that puts them into gripping position for the
first arm (:arm1) of the robot. The robot moves a part to the press that presses it
into a finished body part. The robot then moves the part, using the second arm
(:arm2), to the top conveyor-belt that moves to the left. A crane finally picks up
the parts and place them on a pallet (lower left of fig. 3).

This is an application that requires a database for storage data relating to the differ-
ent parts in stock and also active database management for the actual control of the
production task. Another requirement is that the setup should be flexible and the pro-
duction cell should easily be reconfigured for production of different parts.

Take a scenario where the production cell can alternate between the production
of two different parts. This can be modelled by two different contexts (fig. 4).
Each context is used to relate to data needed for each part. Rules that are specific
for each different part are activated into the respective contexts. Sub-contexts
can also be defined for different activities within the cell. This is illustrated here
by two contexts used in both production tasks, one for rules relating to the ele-

Fig. 3. A top-view of a simulated production cell for manufacturing car
body parts

vating rotary table and one for the press. There will of course be more contexts
and rules, but these are enough to illustrate the idea.

An example of a task program for producingpart1 can be seen in fig. 4. It is a cyclic
program that keeps producing parts until it is stopped explicitly.

Below follows part of an example schema in AMOSQL that illustrates the exam-
ple above. The two main contexts are first defined followed by a context for the
elevating rotary table. A rule that defines when the robot can grip a part on the
table is activated into the context for the first arm of the robot (:arm1). A con-
text for the press is then created along with a rule that specifies when it is safe to
operate the press. The first rule is also activated into this context, but for the sec-
ond arm of the robot (:arm2) instead. It specifies when the robot can grip an
object in the press. Here follows extracts of the context related parts of the
schema for this application:

body_part1_context

press_context

body_part2_context

e_r_table_context

press_context

Fig. 4. Example contexts for producing two different parts and two general sub-
contexts

e_r_table_context

Fig. 5. An example of a task program for producingpart1

initiate feed pick1

presspick2store

body_part1_context
e_r_table_context

press_context

create context body_part1_context;
/* Definitions of rules related to part1 */
...
create context body_part2_context;
/* Definitions of rules related to part2 */
...
create context e_r_table_context;
create rule grip_rule(robot_arm a) as

when for each part prt
where above(position(a), prt)
do robot_grip(a, prt);

activate rule grip_rule(:arm1) into e_r_table_context;

create context press_context;
create rule press_rule(robot r, press p) as

when for each robot_arm a
where a = arm(r) and

outside(position(a), p) and
part_in_press_position(p)

do close_press(p);
activate rule press_rule(:robot, :press) into
press_context;
activate rule grip_rule(:arm2) into press_context;

During the execution the task program for producingpart1 the order of database
operations initiated from the task level might be:

activate context body_part1_context;
...

check(:body_part1_context);
...
activate context e_r_table_context;
...
check(:e_r_table_context);
...
deactivate context e_r_table_context;
....
activate context press_context;
...
check(:press_context);
...
deactivate context press_context;

5 Conclusions and Future Work

The paper presented rule contexts as a mechanism for dynamically grouping
rules. Rules are activated into contexts and are deactivated from contexts. When
a context is activated it enables all its rules for monitoring. In deactivated con-
texts all the rules are disabled from being monitored. Events are only monitored
if they are referenced from some rule in an active context.

Contexts are used to represent coupling modes where all rules in the same context
also share the same coupling mode. Predefined contexts are defined for the usual sys-
tem coupling modes.

Contexts are first-class objects, which makes it possible to store them in any data
structure and define meta-rules that activate and deactivate them.

Future work includes investigating the need for several contexts belonging to the
same coupling mode. This will cause a need for ordering the execution order of differ-
ent contexts. Using priorities is one way of doing this, but since the conflict resolution
between different rules inside the same context is also done with priorities this might
lead to an unnecessary complicated model.

The issue of event consumption is also important. If checking of one context con-
sumes events then rules in consecutively checked contexts might not trigger the way
they were intended.

Defining meta-rules that manage other contexts is another subject for future
research.

6 References

[1] Buchanan B. G., Shortliffe E. H.: Rule-based Expert Systems,The Mycin Experiments of
the Stanford Heuristic Programming Project, Addison-Wesley, 1984

[2] Davis R., Meta-rules: Reasoning about Control,AI, vol. 15, 1980, pp. 179-222

[3] Dayal U., Buchman A.P., McCarthy D.R.: Rules are objects too: A Knowledge Model for
an Active, Object-Oriented Database System,Proc. 2nd Intl. Workshop on Object-Ori-
ented Database Systems, Lecture Notes in Computer Science 334, Springer 1988

[4] Dayal U., McCarthy D.: The Architecture of an Active Database Management System,
ACM SIGMOD conf., 1989, pp. 215-224

[5] Fahl G., Risch T., Sköld M.: AMOS - An Architecture for Active Mediators,Intl. Work-
shop on Next Generation Information Technologies and Systems (NGITS ’93) Haifa,
Israel, June 1993, pp. 47-53

[6] Fishman D. et. al: Overview of the Iris DBMS,Object-Oriented Concepts, Databases,
and Applications, ACM press, Addison-Wesley Publ. Comp., 1989

[7] Georgakopoulos D., Hornick M., Sheth A.: An Overview of Workflow Management:
From Process Modelling to Workflow Automation Infrastructure,Distributed and Parallel
Databases, 3, 2, April 1995, pp. 119-153

[8] Hedberg S., Steizner M.: Knowledge Engineering Environment (KEE) System: Summary
of Release 3.1, Intellicorp Inc. July 1987

[9] Loborg P., Holmbom P., Sköld M., Törne A.: A Model for the Execution of Task-Level
Specifications for Intelligent and Flexible Manufacturing Systems,Integrated Computer-
Aided Engineering 1(3) pp. 185-194, John Wiley & Sons, Inc., 1994

[10] Loborg P., Risch T., Sköld M., Törne A., Active Object Oriented Databases in Control
Applications,19th Euromicro Conference of Microprocessing and Microprogramming,
vol. 38, 1-5, pp. 255-264, Barcelona, Spain 1993

[11] Lyngbaek P., OSQL: A Language for Object Databases, tech. rep. HPL-DTD-91-4,
Hewlett-Packard Company, Jan. 1991

[12] Risch T.: Monitoring Database Objects,Proc. VLDB conf.Amsterdam 1989

[13] Risch T., Sköld M.: Active Rules based on Object Oriented Queries,IEEE Data Enginee-
ring bulletin, Vol. 15, No. 1-4, Dec. 1992, pp. 27-30

[14] Shipman D. W.: The Functional Data Model and the Data Language DAPLEX,ACM
Transactions on Database Systems, 6(1), March 1981

[15] Stonebraker M., Hearst M., Potamianos S.: A Commentary on the POSTGRES Rules Sys-
tem,SIGMOD RECORD, vol. 18, no. 13, Sept. 1989

[16] Tombros D., Geppert A., Dittrich K. R.: SEAMAN: Implementing Process-Centered Soft-
ware Development Environments on Top of an Active Database Management System,
Technical Report 95.03, Comp. Science Dept., University of Zürich, Jan. 1995

[17] Walters J.R, Nielsen N.R., Crafting Knowledge-based Systems - Expert Systems Made
Easy/ Realistic,John Wiley & Sons, 1988, pp. 253-284

[18] Widom J.: The Starburst Rule System: Language Design, Implementation, and Applica-
tions, IEEE Data Engineering, vol. 15, no. 1 - 4, Dec. 1992

