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Abstract. Exceptionally large amounts of both distributed data and computational resources are becoming 
available through the Grid. This will enable efficient exchange and processing of very large amounts of data 
combined with CPU intensive computations, as required by many scientific applications. We propose a 
customizable Grid-based query processor built on top of an established Grid infrastructure, NorduGrid. It allows 
users to submit queries wrapping user-defined long running operations that filter and transform distributed 
customized data. Limitations imposed by the used Grid infrastructure influence the architecture. For example, 
resource requirements have to be specified before Grid jobs are started and delays may occur based on the 
availability of required resources for a job. We are developing a fully functional prototype to investigate the 
viability of the approach and its applicability. Our first application area is Particle Physics where scientists 
analyze huge amount of data produced by a collider or simulators to identify particles. 

1 Introduction 

The Grid initiative provides an infrastructure for transparent distributed computations among widely distributed 
computer clusters. Exceptionally large amounts of both distributed data and computational resources are becoming 
available through Grid infrastructures.  Many scientific applications within, e.g. bioinformatics, neuroscience, and 
space physics require large, scalable, high-performing, CPU demanding, and memory-intensive computations over 
large amounts of distributed data. They also require representation of not only the traditional tabular data managed 
by relational database management systems but also representation, modeling, and querying of numerical data, e.g. 
for vector and matrix algebra. 

We are developing a new kind of data manager and query processor, Parallel Object Query System for 
Expensive Computations (POQSEC) that utilizes the operational Grid infrastructure NorduGrid [41] and leverages 
the Globus I/O library [17] from the Globus Toolkit [14] for processing declarative queries that access data from 
storage elements and wrapped external systems on the Grid. POQSEC has support for customizable data 
representations, allows user-defined long-running distributed computations in queries, and can access conventional 
relational databases. It processes application specific code on both local data and data distributed through the Grid.  

The aim of this system is to achieve high query performance by utilizing large main memories, disk, CPU power 
and other resources on many distributed nodes accessed through the NorduGrid, which is a distributed peer oriented 
Grid middleware system that does not rely on a central broker. Computer clusters accessed through NorduGrid 
have certain restriction with respect to resource allocation, communication, and process management that the 
POQSEC architecture must cope with and this influences its architecture.  

The POQSEC data manager and query processor scales up by utilizing the Grid to transparently and dynamically 
incorporate new nodes and clusters for the combined processing of data and computations as the database and 
application demands grow. Conventional databases and file-based Grid storage elements are used as back-ends for 
data repositories. Extensible and object-oriented query processing and rewrite techniques are used to efficiently 
combine distributed data and computations in this environment. 

Each node in POQSEC has DBMS facilities like storage management, customizable query processing, along 
with the possibility to call CPU demanding and long running user computations from queries. POQSEC uses an 
extensible and distributed query engine allowing user-defined data representations and query optimization 
algorithms that consider calling user-defined CPU intensive query functions. Query transformation rules 
transparently distribute customized data and their representations to nodes in the clusters. A given user query is 
rewritten into many distributed execution subplans given knowledge about available resources and observed 



 
 

 
 

execution costs. POQSEC nodes are automatically started or closed when needed based on resource demands for 
the current query workload.  

The POQSEC prototype is being developed using as test case data and queries from Particle Physics where large 
amounts of data describing particles of events are produced by proton-proton collisions. The data is currently 
produced by simulations at NorduGrid [11] and will be produced by detectors of the Large Hadron Collider (LHC) 
[26] from 2006. The amount of data produced is huge (10 million events = 20-30 TB) and produced at a very high 
rate (10 million events over 2-3 weeks) [1]. The data therefore needs to be stored as distributed files in storage 
elements accessible though the Grid. Many scientists are querying these huge distributed data sets to identify 
interesting particles. The queries involve regular data comparisons and aggregation operators along with user 
defined filter operations in terms of C++ based libraries such as the ROOT library [7]. A single such analysis of a 
single dataset of size 1 million events often takes more than 1 hour to execute on a single machine. Thus, the 
processing needs to scale up to cover all distributed data produced by LHC [3]. Many scientists will simultaneously 
submit large amounts of queries and the system, therefore, must be able to manage queries off-line. Better 
performance can be achieved by identifying when results from running and old queries can be reused. 

The remainder of this paper is organized as follows. Related works are discussed in Section 2. Section 3 
describes the application from Particle Physics. Section 4 introduces the NorduGrid middleware and its restrictions. 
The architecture of our system is presented in Section 5. Section 6 gives the query execution strategy used in the 
system for the application specific queries. Section 7 concludes. 

2 Related work 

Relational DBMSs allow the representation of very large and reliable disk-based databases with good 
performance for business application that store large amounts of structured tabular data. They are furthermore 
optimized for many short transactions over a few relatively small data items, while the new applications require 
also the incorporation of long running, expensive, and distributed computations using and producing many large 
objects and files. 

Object-relational DBMSs [40] allow the definition of abstract data types in relational databases having user 
defined functions that are executed in the database server. Object-relational extensions are now part of the SQL-99 
standard. However, computationally intensive applications still do not use DBMS technology since they require 
customized main-memory data structures for realistic performance. They also rely on program libraries written in 
conventional programming languages and operating on conventional files. Thus a query system utilizing scientific 
data needs also to be able to incorporate existing scientific libraries and data files into queries. Regular query 
processors assume cheap primitive operations while the scenarios considered here require optimization of queries 
with very expensive user-define functions. 

In distributed databases [33] data distribution is transparent only for queries while data itself is manually 
distributed using placement conditions. Parallel databases are similar, but aim at letting the DBMS transparently 
and automatically distribute data. Parallel databases normally run on clusters of co-located computers with very fast 
intercommunication links. Query processing techniques for distributed and parallel databases are used by POQSEC 
for transparent access to distributed clusters.  

Another modern development in the database area is to use large main memories to represent the database [20]. 
DBMS vendors are developing lightweight main memory relational databases [23] [32] [38] often interoperating 
with their DBMSs. For high performance, we are utilizing an embeddable main-memory DBMS [35] which 
includes an extensible and object-oriented query optimizer, i.e. it is an object-relational main-memory DBMS.  

Mediators (multi-databases, federated databases) (e.g. [4] [19] [21] [27] [34] [43] [44]) are a modern database 
approach aiming at transparently integrating (combining) data from many different external data sources. In 
POQSEC we extend our previous work on integration of heterogeneous data sources [15] [22] [28] for access to 
Grid-managed external data repositories, relational databases, and to wrap CPU demanding computations.  

POQSEC runs on top of existing Grid infrastructures, in particular the Swegrid computational infrastructure [37] 
and the NorduGrid resource management system [31] [41]. This puts certain restrictions on availability of 
computational resources and possibility to obtain them compared to systems such as distributed query processors 
Polar* [42] and LeSelect [5] that assume full control over all resources including computational resources, network 
management, etc. 

One example of utilizing operational Grid infrastructures for transparent execution of jobs is the computational 
management agent Condor-G [8] [16]. It has its own resource broker to find computational Grid resources. It 
submits the jobs to a local gate keeper of the resource, e.g. the Globus Gatekeeper [14], using the Grid Resource 
Allocation and Management protocol (GRAM) [9]. In contrast, POQSEC reuses the resource broker from the 
NorduGrid middleware [41]. It receives declarative queries unlike Condor-G, which receives traditional batch jobs. 
Based on the queries POQSEC then generates and submits jobs to NorduGrid for execution. 



 
 

 
 

Rather than manually organizing long-running activities as in workflow systems (e.g. [10]), the long running 
computations are specified in POQSEC as declarative queries from which the query optimizer automatically 
generates execution plans consisting of several dependent tasks executed on the Grid and managed by POQSEC. 

3 Application  

In order to evaluate POQSEC we have chosen an application from Particle Physics. The aim of the application is 
to analyze data produced by the ATLAS Data Challenges [1] for containing charged Higgs bosons [6]. The analysis 
is long running because of the huge amount of input data. 

The input data are called events, which describe collision events between elementary particles. Each event 
comprises sets of particles of various types such as electrons, muons, and sets of other particles called jets and sets 
of event parameters such as missing momentum in x and y directions (PxMiss and PyMiss). Each particle is 
described by its own set of parameters, e.g., the ID-number of the type of a particle (Kf), momentum in x, y, and z 
directions (Px, Py, Pz), and amount of energy (Ee). For example, an event might have one electron, two muons, 
four jets, and values of PxMiss and PyMiss for the event are -198.237 and 181.605, correspondingly. Examples of 
values for some particles of the event are presented in Table 1. 

Table 1. Values of the particles from the example event 

Particle name Kf Px Py Pz Ee 
Electron -11 -96.3295 55.0114 -336.974 354.764 
Muon -13 -24.6514 -18.9128 -91.4735 96.6065 
Muon 13 -6.23232 -10.2039 -38.1292 39.9601 
Jet 2 197.085 8.94369 -165.14 257.281 
Jet 2 141.008 -86.3656 -205.205 263.536 
Jet 5 -35.3334 -45.2087 29.3406 64.4449 
Jet 5 31.1251 -84.9691 -342.232 353.993 
 
These event data are generated by the ATLAS software and stored in files managed by the ROOT library [36]. 

The size of generated files is from one to several GBytes [2]. 
The analysis of each event can be divided into several steps. Each step is a condition containing logical, 

arithmetic, and vector operations over event data. Events satisfying all conditions constitute the final analysis result. 
Partial results are also produced based on events that satisfy partial conditions. 

An example of one of the steps is a Z-veto cut. An event satisfies this step if it does not have a pair of opposite 
charged leptons, where each lepton is either a muon or electron, or if it has a pair of opposite charged leptons the 
invariant mass of the pair is not close to the mass of a Z particle.  

This step can easily be expressed as a declarative query, for example, in the declarative language AmosQL [13] 
that is used in POQSEC. AmosQL has a functional object-relational data model and SQL-like syntax. We 
developed an object-oriented schema to present the application data in the system. Fig. 1 illustrates the main part of 
the schema in Enhanced Entity-Relationship notation [12]. Events are represented by type Event, which has three 
attributes, values PxMiss, and PyMiss, along with a relationship to particles that the event comprises. The particles 
are represented by three basic types Electron, Muon, and Jet, and two general types Lepton and AbstractParticle. 
The types Electron, Muon, and Jet correspond to electrons, muons, and jets, respectively. Electrons and muons 
often participate in analysis queries as one kind of particles, leptons, thus the types Electron and Muon are 
generalized by type Lepton. The types Electron, Muon, and Jet have the same attributes, Kf, Px, Py, Pz, and Ee, 
therefore, a general type AbstractParticle is introduced.  

The Z-veto cut step is expressed as the following AmosQL query: 
SELECT ev  
FROM Event ev  
WHERE NOTANY(oppositeLeptons(ev)) OR  
      abs(invMass(oppositeLeptons(ev)) - zMass) >= minZMass); 

The function invMass calculates the invariant mass of a pair of two given leptons, zMass is the mass of a Z 
particle, minZMass is range of closeness, and oppositeLeptons is a derived function defined as a query: 
CREATE FUNCTION oppositeLeptons (Event ev) -> <Lepton, Lepton> AS 
SELECT l1, l2  
FROM Lepton l1, Lepton l2  
WHERE l1 = leptons(ev) AND  
      l2 = leptons(ev) AND  



 
 

 
 

      Ee(l1) = -Ee(l2); 

The function leptons returns a set of lepton pairs belonging to a given event, and Ee is a function which 
returns the value of the energy of a given lepton. 

All steps of the analysis were expressed declaratively in AmosQL. 

 
Fig. 1. Basic schema of the application data 

4 The NorduGrid infrastructure 

The first prototype of POQSEC is running on the Swedish computational Grid SweGrid [37] on top of the 
NorduGrid resource management system [31] [41]. The NorduGrid (NG) middleware (also called the Advanced 
Resource Connector, ARC) provides a uniform job submission mechanism so that a user can submit jobs to any or 
particular cluster(s) of the Grid. The Nordugrid middleware can be divided in three parts: the NG client which 
contains the user interface and the resource broker, the Grid manager, and the information system. The task of the 
user interface is to process job submissions, job status requests, and data transfer requests by a user. The user 
specifies jobs and their requirements, such as maximum CPU time, requirements for a cluster where the job is 
executed, requests to move output data from and to specific storage elements, number of sub-jobs for parallel tasks, 
requests for cluster nodes with IP connectivity, etc. The jobs are specified using the Extended Resource 
Specification Language (xRSL) [39]. The user interface includes resource broker functionality. It finds a suitable 
cluster for executing a submitted job using the information system that provides monitoring and discovery service 
[25]. On each cluster accessible through the NorduGrid a Grid manager [24] is installed. The task of the Grid 
manager is to submit a job received from a user interface to the local batch system of the cluster and to download 
input data and upload output data. The NorduGrid guarantees that the cluster fulfills the job requirements and that 
all input are available on the cluster when the job is started by the local batch system. 

There are certain limitations on the usage of computational resources available throughout the NorduGrid, for 
example: 
− The NorduGrid can notify about a job status only by email. However the job status can be obtained by querying 

the NG client [30]. 
− A job submitted to NorduGrid has a limit on maximum execution time, which must be set by the user for 

submission.  
− Data produced by a job will be kept on the cluster only for limited amount of time, usually 24 hours.  
− A job submitted for parallel execution to NorduGrid has to use the Message Passing Interface (MPI) [29] to be 

started in parallel. 
− When a job is submitted for parallel execution to NorduGrid the number of needed cluster nodes must be 

specified in the job script. 
− The input and output data are handled only at the beginning and at the end of a job.  

Other limitations arise from the fact that the NorduGrid middleware does not control clusters directly. Therefore, 
it cannot guarantee the time when the execution of a submitted job starts.  



 
 

 
 

5 System Architecture 

Fig. 2 illustrates the architecture of the POQSEC system running on top of the NorduGrid middleware (NG). The 
architecture contains four main POQSEC components: query coordinators, start-up drivers, executors, and 
supervisors.  

 
Fig. 2. POQSEC Architecture 

NorduGrid components that play important roles in the architecture are the NG client and the NG Grid manager, 
which manage jobs submitted to NorduGrid. The query coordinator is a POQSEC node that runs on the same 
server as the NG client. It processes user queries and generates jobs submitted to the NG client. The queries by 
nature contain database operations such as data selection, projection, and join in addition to application specific 
operations. The application specific operators are executed as user defined functions calling application libraries 
such as ROOT [7]. 

The computing elements (CEs) and storage elements (SEs) are external resources available through the 
NorduGrid infrastructure. SEs are nodes managing permanent data repositories. CEs are computational clusters and 
each of them has working nodes (CE nodes), providing local computation, and storage (CE storage). The CE 
storage provides temporary data storage shared between working nodes. 

A user is an application, running on a client or server machine that interacts with a POQSEC query coordinator. 
It submits queries to the query coordinator for data processing.  The queries often contain computations over large 
data sets and may therefore be running for long time periods. 

Each query coordinator has its own database manager and access to a local storage, which is used as temporal 
file storage. A query coordinator processes queries submitted by users. Some of the queries that do not require 
computational resources for execution can be executed directly by the query coordinator. Queries expected to be 
long running are decomposed into subqueries and sent to the NorduGrid for parallel execution. Long running 
queries require generating xRSL job scripts describing the requirements for computational resources, the 
procedures for starting POQSEC modules on CE nodes, and the input and output data for each subquery to be 



 
 

 
 

submitted to the NorduGrid client. The query coordinator keeps track of all submitted subqueries by 
communicating with supervisors that monitor and control execution of (sub)queries and run on CE nodes. The 
query coordinator notifies users about the query status on request. It also sends the query result on a user request 
when the query execution is finished. 

The query coordinator must also deal with job failures. It tracks status of jobs submitted to NorduGrid by polling 
NG client and when the status is "failed" it resubmits the job. 

The NG client software manages the submitted jobs by first extracting from the xRSL scripts requirements for 
computational resources, such as estimated CPU time, number of required cluster nodes, possibility to connect 
cluster nodes from an outside cluster, required memory and disk space, version of installed middleware, etc. [39]. 
The NG client then submits the scripts for execution on clusters fulfilling the requirements. NorduGrid takes care to 
transfer input data before execution starts, thus guaranteeing that all input data is available when the execution 
starts, and to transfer result data to a destination specified in the script when execution is finished.  

POQSEQ modules are started on CE nodes of the selected cluster when the required number of nodes is 
available. Each POQSEC module starts by executing a start-up driver, which is an MPI program, to initialize the 
execution. MPI functionality of the start-up driver provides an easy way to choose one node to run a supervisor and 
to notify start-up drivers of the other nodes about the hostname of the node where the supervisor is running. After 
the supervisor is started the start-up drivers start executors on all the nodes and pass them the hostname of the 
supervisor. Executors start by registering themselves in the supervisor and then retrieving from the supervisor the 
information about those other executors they need to communicate with. The executors optimize and execute the 
queries over the data that is available on the CE storage. Data is sent between executors if it is required for the 
execution. Produced result is saved in local CE storage for transfer to a SE, another CE, or local storage of the node 
where the query coordinator is located.  

The main task of a supervisor is to monitor and control executions. It communicates with executors to obtain the 
status and with query coordinators to notify them about the current status. 

The architecture assumes the possibility to connect CE nodes with nodes outside CE using IP communication. 
All communication among POQSEC modules is secure and Globus I/O library [17] is used for this. 

6 Query execution strategy 

The query coordinator decomposes each user query in two levels: 
1. Cluster subqueries are generated to be executed on clusters as separate NorduGrid jobs. 
2. Each cluster subquery is further decomposed into local subqueries for parallel execution on the cluster to 

which it is submitted.  
The query optimization has to be done by the query coordinator since required computational resources must be 

specified in the NorduGrid job scripts when they are submitted.  
The first query execution strategy of the system is being developed and evaluated for the application in Section 

3.1. 
We assume that the data is stored in files of size about 1-2 GB on SEs [2] and accessible through NorduGrid. 

Execution of a query over one file of such size by one executor on one node takes more than 1 hour. Thus it is 
reasonable to parallelize execution of the query over one or several files between several executors that run on CE 
nodes in parallel. Query parallelization is done by partitioning data between executors and executing the same 
query by different executors over different data partitions. Each executor first accesses a chosen input data file to 
extract its own portion of data to be processed. Different strategies for file partitioning are being investigated. 

Often a user is interested in analyzing many files. Then the query coordinator creates several parallel jobs, one 
per group of files of the total size 5-10 GB, and for each job it specifies the number of required CE nodes. The 
query coordinator takes into account that one CE node will be used to merge results produced by other nodes. Each 
created job is submitted to NorduGrid and the execution is started as described earlier in the architecture section. 
The executor collocated with the supervisor is used to merge the result; other executors process analysis queries. 
Each executor optimizes the query and executes a created optimal plan over the data. The executors stream their 
result data to the executor chosen to do the result merge. The merged result is first saved in the local CE storage 
and then uploaded by NorduGrid to the local storage of the node where the query coordinator is running. The query 
coordinator finally merges all the results produced by the jobs and retrieves them to the user. 

7 Summary and continued work 

An architecture has been developed for utilizing the operational NorduGrid infrastructure for managing long 
running and expensive scientific queries. The architecture is being implemented and evaluated for a Particle 



 
 

 
 

Physics analysis application [6]. It is running on top of the NorduGrid infrastructure [41] so special attention is 
needed to adhere to limitations of this architecture, e.g. that the exact starting time or place of a job cannot be 
guaranteed and that the number of nodes to use on a cluster must be explicitly given in the job specification. Globus 
I/O [17] is used for secure communication between distributed POQSEC nodes.  

POQSEC utilizes the AMOS II database management system [35] that provides object-relational DBMS 
functionality, peer to peer communication, declarative query language AmosQL [13], and interfaces to C++ and 
Java. The kernel is being extended in order to implement the architecture. 

The analysis of event data in our implementation is specified declaratively using AmosQL query language. The 
queries are expressed in terms of logic and arithmetic functions over numbers and vectors. This requires 
optimization of scientific queries and aggregation functions over numerical data and operations. 

In order to be able to read data produced by ATLAS software an object-oriented data analysis framework, the 
ROOT library [36], was linked to the system. The ROOT library is also going to be used for computations in the 
application analysis.  

The POQSEC system runs under Linux on Swegrid clusters managed by NorduGrid. Parallel query plans are 
currently created manually by splitting data and queries to investigate trade-offs with the goal to develop automatic 
query partitioning methods next. Based on this analysis, automatic query decomposition strategies for distributed 
execution are being investigated. 

Another problem that will require special attention and investigation is tracking CPU time so that when the job 
execution time is approaching deadline the job should be suspended and intermediate results and states should be 
saved. POQSEC would then resume execution later by restoring the saved state. 

Since availability of resources cannot be precisely predicted in advance, adaptive query optimization technique 
[18] can be used to improve the performance. 
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