
Active Object Oriented Databases in Control
Applications

Peter Loborg, Tore Risch,
Martin Sköld, Anders Törne

Dept. of Computer and Information Science,
Linköping University

S-581 83 Linköping, Sweden
E-mail: petlo, torri, marsk, andto@ida.liu.se

This paper describes a unified architecture for control applications using
an extended object-oriented database system with queries and rules. We
specify the requirements that control applications demand on the database,
and how they are met by our database system architecture. The database
system, AMOS, is a main memory database that provides information shar-
ing, powerful data access via an object oriented query language (AMOSQL),
data independence, and reactive behavior by active rules. The application
considered is a robot and manufacturing instruction system, ARAMIS,
which is a task level programming system. The presentation uses a specific
scenario related to manufacturing control.

Also to appear in
the Proceedings of the 19th Euromicro Conference 1993,

 Barcelona, sept 1993 (North-Holland)

This work is supported by the Swedish National Board for Industrial and Technical Deve-
lopment (NUTEK) and by CENIIT, Linköping University.

0

1. INTRODUCTION

Control applications are a significant and important part of the industri-
al use of information technology. Control may be described as the means to
control or restrict the behaviour of external world processes, so that a “cor-
rect” or “intended” behaviour is achieved. This might be done by software,
specially designed hardware, human intervention or mechanical devices.
We will here discuss design and architectural issues with regard to control
by software.

Typical for the software design problem in control applications are the
requirements originating from timing constraints, some derived from pure
control considerations and others from the external processes themselves.
These requirements put constraints on the software execution times
[7][19]. A lot of research effort has been put into methods and formalisms
for timing analysis to guarantee the timing requirements of the system - so
called hard real time systems.

This paper will not focus on this aspect, but rather on the data manage-
ment problems which arise when the controlled and controlling systems be-
come large, composite, and complex, and when the controlling subsystem
involves human operators.

Traditionally the understanding of control by software focuses on fully
automatic control at algorithmic level or at a level close to the external
process [23]. At this level the data management problems are small. Usual-
ly there is no problem with sharing data between different applications or
use of data, since data is local and normally not used outside the local algo-
rithm or control loop. However, as soon as the controlled system becomes
larger and more complex, typical data management and information
processing problems arise.

The contemporary most popular approach to handling the design of com-
plex software systems is object orientation. A common approach when ap-
plying this to control by software is to use object-oriented (OO) modelling
and programming to structure the software [1][13]. This structure usually
reflects the physical structure of the controlled system. Although this as-
pect of the design is important, the approach ignores the problems with
loosely coupled control processes possibly involving several human opera-
tors, e.g., nuclear power plants or large manufacturing facilities, which
have a high degree of autonomy and parallelism. This extension of the
problem domain makes the management problem of the shared data obvi-
ous. The present paper focuses on this problem.

1

One of the important aspects is the separation of shared data and local
data for control. All the different control processes share the same data
model. However, data independence will be achieved by allowing each proc-
ess to have their own views of shared data. The shared data model is called
a world model (WM). These properties are achieved by representing the
WM in an OO database system having query and logical data view capabil-
ities.

The use of databases in real-time control systems has recently attained
increasing interest. Some of the relevant issues are discussed in
[7][9][14][16][17].

We are developing a robotics and manufacturing instruction and run-
time system, ARAMIS, for manufacturing applications, and a next genera-
tion database architecture, AMOS [4], as a general framework for
engineering databases. AMOS has an OO Query Language AMOSQL,
which is an extension of OSQL [5]. AMOSQL has transactions, active rules,
and extensibility by foreign functions. This paper will discuss a unified ap-
proach for control applications, where the world model is represented in an
OO database with query and rule capabilities, like AMOS, with ARAMIS
as the control application environment.

The next section will give a scenario to be used in the later sections. Sec-
tion 3 and 4 will present the ARAMIS world model and the AMOS architec-
ture. Section 5 will discuss the unified database architecture for control
applications and then we conclude with a general discussion.

2. AN EXAMPLE SCENARIO

In following sections a scenario from a manufacturing application will
be used to exemplify the use of active OO databases in control applications.

The task in the scenario is to assemble a subassembly of, for example,
an airplane. The resources available are a manipulator and a fixture to
perform the assembly itself. Some of the parts needed in the subassembly
arrive via a conveyor belt in the order necessary to perform the assembly.
These parts are originating from part feeders. Finished subassemblies are
placed on a pallet.

The functional requirements on the application is that the assembly
should only start if all needed parts are available to the manipulator dur-
ing the assembly process. If feeder storage is low it should be filled, manu-
ally or by automatic guided vehicles, from central storage. Some
suboperations of the different processes need preconditions to be fulfilled

2

before starting, e.g., the PICK-UP operation of the manipulator has as a
precondition that the part is available in the pick-up position and the con-
veyor belt is secured (locked).

The task can naturally be decomposed into processes - the assembly
process itself involving the manipulator and the fixture, the part transport
process for feeding parts onto the conveyor belt and positioning them for
the pick-up operation and the central storage fetching process which serves
this assembly cell together with many others.

3. THE ARAMIS WORLD MODEL

The ARAMIS system is an instruction and runtime system for control of
manufacturing environments. The system has been designed with a lay-
ered architecture based on different levels of abstraction [21].

3.1 Description

ARAMIS consists of three different programming levels, the task level,
the control level and the physical level. The task level specifies what opera-
tions should be performed in the physical environment and under what
conditions. It uses a graphical rule based hybrid language with primitives
for creating parallel execution threads dynamically and synchronization of
different parallel threads [12]. The concept corresponding to a task is called
a worker, which can contain parallel threads by using the parallelisation
primitives. The task level program (a set of workers) executes by setting
reference values for the objects in a world model (WM). The WM is shared
between the different tasks (workers) executing in the physical environ-
ment. Basically this corresponds to a blackboard model for communication
[8], although we emphasize the database aspects. The model data may be
functions or sensor values or they might be implicitly known by the known
postconditions resulting from executed actions. One of the benefits of the
model is that no difference is made between these forms of knowledge
about world state.

The control level is responsible for keeping the real world in a state rep-
resented by the world model. This level therefore mimics a servo mecha-
nism for the whole system. The programming at this level is typically done
by control engineers in a traditional language.

The physical level is the actual connection to the real world, where ex-
plicit I/O is performed with sensors and actuators.

3

One of the important aspects of the world model is that every variable
has two values, the set value and the get value. Set values have the seman-
tics of reference values for the servo mechanism and the get values have
the semantics of “known” state parameters - actual values.

3.2 The execution model

Each object in the world model (also called an active component) is rep-
resented as a deterministic finite automaton (DFA), augmented with con-
trol algorithms to be executed for each state transition and state [11]. Each
DFA may be in one of two states - transiting between states or being held
in a state by the control level. Concurrent transitions between objects are
orchestrated by the task level.

The execution model implies that state transitions have a time duration.
During the state transition the value of the changing model values are con-
sidered as unknown, unless explicit reference to a sensing model is made.
The graphical language for describing tasks is, as was indicated above,
able to represent conditional sequencing and possible parallelism of the su-
bactions in each task (worker). The tasks (workers) model reactive behav-
iour.

Figure 1. The ARAMIS execution cycle

1.external event

2.possible satisfaction of conditions in the world model

3.triggering the execution of one or several tasks

4.execution of possibly parallel subactions

5.requests for possibly concurrent state transitions in the
WM objects

1

2

3

4

5

4

3.3 The scenario data model

Here a data model of the scenario in section 2 will be given as an exam-
ple. It is possible to create the complete corresponding data base model and
worker specifications from this description (if completed).

The manipulator, the conveyor belt, the fixture, the feeders and the pal-
lets are represented as active components. Furthermore the parts are ac-
tive components because they have state and restrictions on their state
transitions. However, they only have a passive role for the control process
as information carriers in the world model, and are therefore not needed
for the following presentation.

Objecttype Attribute/ Valuetype
Function

Workcell assembles Subassembly
transport_of Transport
manipulator_of Manipulator
feeder_of Feeder
out_pallet_of Pallet

Manipulator state_of {OK, idle, busy}
Transport at_pickup_location Part

state_of {locked, moving}
Feeder state_of {OK, empty, needs-refill}

feeds_part Part
Pallet state_of {OK, empty, full}

The objects will be instantiated for different configurations of workcells.

3.4 Requirements on the database realization

The ARAMIS model presented briefly above have certain requirements
on a database realization:

• Performance is obviously important, since control actions and reactivity
should be as timely as possible. Database functionality always imposes
overhead performance costs, but they should be minimized. Any control
action or reactive action with timing requirements faster than is realiza-
ble in the database must be modelled at the control level, thereby losing
the benefits of database management.

• The response time of the database must be predictable, i.e., it is not
acceptable that the same database operation performs significantly dif-
ferent from time to time. This is not the case if, for example, data access
is dependent on whether sought data are available in a buffer or not, as
in the case of disk-based DBMS.

5

• Object oriented modelling and access via a query and data definition lan-
guage is desirable. This levels the database approach for control applica-
tions with OO programming approaches. The query language gives
declarative data access functionality.

• Extensibility is required to execute actions and to perform sensing.

• Heterogeneous database access is important when control actions are
dependent upon data of traditional character, like in-stock figures or
exchange rates.

• The reactive behaviour requirements in control applications demands
active database behaviour.

• Transactions and other error recovery mechanisms must be supported.

4. THE AMOS ARCHITECTURE

The AMOS (Active Mediators Object System) architecture [4] uses the
mediator approach [22], which introduces an intermediate level of software
between the database and its use in applications and by users. We call our
class of intermediate modules active mediators, since they support ’active’
database facilities.

The AMOS architecture is built around a main memory based platform
for intercommunicating object-oriented databases. Each AMOS server has
DBMS facilities, such as a local database, a data dictionary, a query proces-
sor, transaction processing, remote access to data sources, etc. Main-memo-
ry database processing is necessary for control applications in order to
have fast and predictable response times. In AMOS the disk is used for
background back-up purposes only.

4.1 Object-Oriented Queries

A central component of AMOS is an object-oriented (OO) query language
AMOSQL that generalizes OSQL [5]. AMOSQL supports OO abstractions
and declarative queries, which makes it possible to declaratively specify
different object views for different applications.

The system is extensible through foreign functions written in an exter-
nal programming language (usually Lisp or C), e.g., to access sensor data
[16], or to start actuator action.

To support the initial work on AMOS, a main-memory OO DBMS engine
is used [10]. A query optimizer translates AMOSQL queries and methods
into optimized execution plans in an internal logical language, ObjectLog.

6

4.2 Active rules based on OO queries

AMOS supports ’active rules’ as an extension of OSQL [15]. In an active
rule a procedure is executed when the database reaches a specified state.
The rules are of the type:

 when query(parameters)
do exec procedure(parameters)

The query in the rule condition can be any AMOSQL query and specifies
when the rule should be triggered. The action part can be any AMOSQL
database operation.

This type of rules are more powerful than ordinary database triggers or
‘ECA’ rules [2], since the entire condition for the triggering of a rule is spec-
ified through a declarative query. Rules can be parameterized and over-
loaded on different types in the database. The execution of rules is made
efficient by using incremental computation of rule conditions and by using
efficient optimization techniques of the involved queries.

4.3 Transactions

AMOS supports atomic transactions so that database updates are rolled
back in case an error occurs. The ’rollback routines’ can be programmed to
customized clean-up, e.g., to restore the external world to the new state af-
ter a rollback of the world model database.

4.4 Heterogeneous database access

A distributed AMOS architecture is being developed where several
AMOS servers communicate, and where queries in a multi-database lan-
guage are allowed to refer to other autonomous AMOS servers, relational
databases, sensors, and other data sources [4]. A relational database sys-
tem, SYBASE, is currently being integrated with AMOS. A particular prob-
lem with such an integration is to get OO access to non-OO data sources.
The method allows OO queries to be stated with transparent access to non-
OO data sources. It will be possible to state queries that combine sensor
data with, e.g., conventional databases.

7

5. A UNIFIED ARCHTECTURE FOR CONTROL
APPLICATIONS

5.1 Declarative modelling/access via OSQL

The representation of the WM of ARAMIS in a database provides power-
ful data access through the query language. The object oriented data mod-
elling language of AMOS, AMOSQL, has the benefits of a traditional OO
language by providing a type system with an inheritance mechanism over
subtypes. Furthermore, by accessing the database through object views de-
fined by a query language data independence between the database and
the rest of the system can be achieved since a data access query can be
made looking the same even after the database structure has changed.

Access to sensors can be implemented as external side-effect free func-
tion calls from AMOSQL [16]. This would allow the application programs
and/or the operator to state arbitrary complex queries over the current
state of the world model - superior to ad hoc navigational database access.

5.2 Active rules in control applications

Active rules in the database can be used for two basic functions in the
ARAMIS architecture.

The starting conditions for ARAMIS processes (workers) can be com-
piled to AMOSQL rules. Starting conditions in AMOS are conditions over
the WM, and are thus monitored more efficiently directly in the database.
A starting condition compiled as an AMOSQL rule, that awakes the associ-
ated process when the starting condition becomes true.

The servo mechanism in the ARAMIS architecture can be implemented
as active rules ranging over properties of active components in the WM.
The rules can be defined for specific component instances or for whole com-
ponent classes. The servo mechanism can be implemented by an interplay
between ARAMIS actions, AMOSQL rules and control algorithms.

The rules have conditions that are sensitive to state changes of particu-
lar active components and actions that calls algorithms in the control sys-
tem or awakes the ARAMIS inference machine.

8

The servo mechanism will consist of three phases:

• An ARAMIS process changes the state of the WM and is suspended.

• An AMOSQL rule detects the change and calls a control algorithm.

• The control algorithm executes and changes the physical state of the
controlled system to match the state in the WM. Upon completion the
rule calls the ARAMIS inference machine to awaken the suspended proc-
ess.

Figure 2. A worker initiation condition modelled by an AMOSQL rule

create function assembles(Workcell) -> Subassembly;

create function feeder_of(Workcell) -> Feeder;

create function out_pallet_of(Workcell) -> Pallet;

create function parts_of_subassembly(Subassembly) -> bag of Part;

create function state_of(Feeder) -> Charstring;

create function state_of(Pallet) -> Charstring;

create function feeds_part(Feeder) -> Part;

create function ready_parts(Workcell c) -> Part p as
select p for each Feeder f where p = feeds_part(f) and

f = feeder_of(c) and
state_of(f) != “empty”;

create rule ready_to_go(Workcell c, Worker w) as
when in(parts_of_subassembly(assembles(c)), ready_parts(c)) and

state_of(out_pallet_of(c)) != “full”
do activate_worker(w); /* a procedure that calls ARAMIS */

9

5.3 Heterogeneous database access in control applications

The distributed and heterogeneous database access capabilities provided
by AMOS have the following benefits for ARAMIS:

• Uniform access to heterogeneous data makes it easy to extend the WM
with access to conventional databases. It will be possible to state
AMOSQL queries combining control and conventional data. For exam-
ple, error messages can refer to manufacturing data for robot parts,
which are accessible from a relational database. Similarly, activity
reports can be printed that combine control and relational data.

• Data distribution will make it possible to have geographically distrib-
uted ARAMIS systems, each having their own WM views, but also shar-
ing parts of the WM with other ARAMIS processes.

Figure 3. An operation invocation condition modelled by an AMOSQL rule

create function manipulator_of(Workcell) -> Manipulator;

create function transport_of(Workcell) -> Transport;

create function at_pickup_location(Transport) -> Part;

create function state_of(Transport) -> Charstring;

create function state_of(Manipulator) -> Charstring;

create rule ready_to_pickup(Manipulator m) as
when for each Workcell c, Transport t, Part p where

state_of(m) != “busy” and
m = manipulator_of(c) /* find c given m */ and
t = transport_of(c) and
p = at_pickup_location(t) and
state_of(t) = “locked”

do pickup(m, p); /* activates a control algorithm */

10

• By generalizing active rules to be distributed over several databases, one
may coordinate the behavior of several ARAMIS processes so that WM
updates of one process remotely triggers actions in other processes.

5.4 Error detection and recovery

As the ARAMIS system is divided into a task level and a control level, so
is the error handling. Furthermore, the error handling (at each level) can
be viewed as twofold; handling anticipated errors and unanticipated ones.
Different techniques may be used to handle each case.

At the control level each request for a state change (a state transition) is
viewed as a transaction. However, using pure transactions as a base for
error recovery at this level is not always possible, since there are irreversi-
ble state transitions and transitions where the inverse transition is com-
posed of several transitions through some intermediate states. Classifying
the transitions as ‘continuable’, ‘undoable’, etc., and augmenting them with
extra information can be a possible approach to handle ‘anticipated’ errors
[20]. Therefore, the state transition should be modelled as a collections of
coupled transactions, e.g., SAGAs [6] or activity models [3]. Some of the
transitions do not guarantee that the resulting state is consistent, i.e.,
there might be transitions that may abort and report an error, as well as
those who fails (but leaves everything in a consistent state) and reports the
failure. The reasons leading to the abortion or failure of a transition may be
internal (programming errors) as well as external - in the latter case, either
detected by the algorithm itself, by operator intervention, or by active rules
monitoring the state transition (e.g., prevail condition checks).

At the task level active rules can be used as exception handlers, i.e., to
handle more or less anticipated errors. For unanticipated errors a combina-
tion of manual intervention and planning is required.

5.5 The Scenario

The scenario in section 2 can be implemented as a number of AMOSQL
functions and rules. In figure 2 the condition for activation of an assembly
worker is monitored by the rule ready_to_go. The function parts_of_-

subassembly returns the parts of a particular subassembly. The function
ready_parts returns all the parts that are ready to be feed onto to the
transporter. The condition in the rules checks that all the parts needed for
the subassembly are present in the feeders. In figure 3 the condition for the
PICK-UP operation is monitored by the rule ready_to_pickup. The con-
dition in the rule checks that an object is in the pick-up location on the
transporter, that the transporter is locked and that the manipulator is not
busy.

11

6. DISCUSSION

Our approach has the following advantages vis-a-vis conventional ap-
proaches:

• The world model may be designed at a very high level using OO abstrac-
tions and declarative queries.

• The world model is easy to access using OO queries. Sensor data can eas-
ily be made accessible from within AMOSQL queries.

• Incremental modification of the world model is supported by, e.g., adding
new functions, rules, data sources, actuators, etc. A lot of flexibility is
gained.

• The transaction management of AMOS can be utilized to guarantee
atomic updates of the world model, even when much data is updated
simultaneously and concurrently. This guarantees world model data con-
sistency after more or less complex updates.

• The main-memory implementation of the database guarantees predicta-
ble and fast response times.

REFERENCES

[1] T.E. Bihari, P. Gopinath: Object-Oriented Real-Time Systems: Con-
cepts and Examples, IEEE Computer, 25, 12, 25-32, (1992).

[2] U.Dayal, D.McCarthy: The architecture of an Active Database Man-
agement System, ACM SIGMOD conf., 1989, pp. 215-224.

[3] U.Dayal, M.Hsu, R.Ladin: Organizing Long Running Activities with
Trigger and Transactions, Proc. SIGMOD, May 23-25, Atlanta City,
1990, pp. 204-214.

[4] G. Fahl, T. Risch, M. Sköld: AMOS - An Architecture for Active Medi-
ators, NGITS’93, Haifa, Israel, 1993 (to be published)

[5] D.Fishman, et. al: Overview of the Iris DBMS, Object-Oriented Con-
cepts, Databases, and Applications, ACM press, Addison-Wesley Publ.
Comp., 1989

[6] H.Garcia-Molina, K.Salem: Sagas, Proc. SIGMOD, May 27-29, 1987,
San Fransisco, pp. 249-259.

[7] M.H.Graham: Issues in Real-Time Data Management, J. Real-Time
Systems, 4, 185-202 (1992)

[8] B. Hayes-Roth: A blackboard architecture for control, Artificial Intel-
ligence, 26, 251-321 (1985).

12

[9] J.Huang: Extending Interoperability into the Real-Time Domain,
Research Issues in Data Engineering: Interoperability in Multidata-
base Systems, RIDE-IMS’93 , Vienna, Austria, IEEE Computer Soci-
ety Press, April 1993.

[10] W.Litwin, T.Risch.: Main Memory Oriented Optimization of OO Que-
ries using Typed Datalog with Foreign Predicates, IEEE Transactions
on Knowledge and Data Engineering, 4, 6, December 1992

[11] P.Loborg, M.Sköld, A.Törne, P.Holmbom: A Model for the Execution of
Task Level Specifications for Intelligent and Flexible Manufacturing
Systems, in Proceedings of the Vth Int. Symposium on Artificial Intel-
ligence, ISAI92, Cancun, Mexico, dec 1992.

[12] P.Loborg, A.Törne: A Hybrid Language for the Control of Multima-
chine Environments, in Proceedings of EIA/AIE-91, Hawaii, June
1991.

[13] O.Z.Maimon, E.L.Fisher: An Object-Based Representation Method for
a Manufacturing Cell Controller, Artificial Intelligence in Enginee-
ring, 1988, 3, 1, 2-11.

[14] K.Ramamritham: Real-Time Databases, Distributed and Parallel
Databases, 1, 2, April 1993

[15] T.Risch, M.Sköld: Active Rules based on Object-Oriented Queries,
IEEE Data Engineering (Quarterly), January 1993.

[16] R.Snodgrass: A Relational Approach to Monitoring Complex Systems,
ACM Transactions on Computer Systems, 6,2, May 1988, pp. 157-196.

[17] S.H.Son: Real Time Database Systems: A New Challenge, IEEE Data
Engineering, 13, 4, 51-57 (1990).

[18] J.A.Stankovic, and K.Ramamritham: Hard Real-Time Systems, Tuto-
rial, IEEE, 1988.

[19] J.A.Stankovic: Misconceptions about Real-time Computing, Compu-
ter, 21, 10, 10-19 (1988).

[20] U.Schmidt: A Framework for Automated Error Recovery in FMS,
2:nd Int. Conf. on Automation, Robotics and Computer Vision, Singa-
pore, 1992.

[21] A.Törne: The Instruction and Control of Multi-Machine Environ-
ments, in Applications of Artificial Intelligence in Engineering V, vol2,
proc. of the 5th Int. Conf., Boston, July 90, Springer-Verlag.

[22] G.Wiederhold: Mediators in the Architecture of Future Information
Systems, IEEE Computer, March 1992.

[23] K.J.Åström, B.Wittenmark: Computer Controlled Systems, Prentice
Hall, N.J., 1984.

