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Abstract

New application areas for database technology such as computer-aided
design and analysis systems require a semantically rich data model, high
performance, extensibility, and application oriented queries. We have
built a system for finite element analysis using a functional database
management system to represent multiple matrix representations. The
functional data model is well suited for managing the data complexity
and representation needs of such applications. Our application domain
needs multiple customized numerical data representations, user-defined
(foreign) functions, multiply inherited types, and overloading of multi-
argument functions. Type inheritance and overloading requires the sup-
port for late binding of function calls in queries. Furthermore, queries
may use functions as relationships which means that the system needs to
process inverses of both tabulated and foreign functions, multi-directional
functions. It is shown how to model matrix algebra operators using multi-
directional foreign functions and how to process queries to these functions.

1 Introduction

As the usage of database techniques will increase in scientific and engineering
disciplines the requirements on analysis capabilities will grow. This work pro-
vides analysis capabilities in a database environment to support the needs of
such applications. Scientific and engineering applications are computationally
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intensive applications and the idea is to provide numerical analysis capabilities
within the database environment to support their processing needs.

By providing in the DBMS both application oriented data structures and the
corresponding implementations of relevant operations, it is possible to both store
and process the data in the DBMS. In this way data transportation between
application and database can be minimized. Furthermore, the embedding of
local databases within applications can provide powerful new techniques for
developing advanced applications.

For example, we would like to store numerical matrices in the database, not
only the array data structure. This makes it possible to perform operations
on matrices producing new or modified matrices, in contrast to only accessing
the physical array data structure. By having matrix types in the database it
is possible to extend the query language with operations on matrices to form
an algebra for the matrix domain that can be used in application modeling.
It is furthermore possible to introduce special query optimization methods for
numerical data processing. This includes, e.g., decisions for selecting suitable
data representations, solution methods, and processing locations.

We have built a system [19, 20, 21] for finite-element analysis (FEA) stor-
ing numerical data in the functional DBMS Amos II [22]. The performance
requirements on numerical data access in an FEA model are very high, and
several special methods have been developed for efficient representation of, e.g.,
matrices used in FEA where different methods are useful depending on the con-
text. For instance, a fundamental component in an FEA system is an equation
solving sub-system that can solve linear equation systems such as K × a = f
where a is sought while K and f are known. Special representation methods
and special equation solving methods must be applied dependent on the prop-
erties and representations of the matrices. To get good performance in queries
involving matrix operators, various matrix data representations and function
definitions are stored in the database and the functions are executed in the
database server. Special optimization methods and cost formulae have been
developed for the matrix domain operators.

Views in our functional data model are represented as functions defined in
terms of queries containing functions from the domain, e.g. for matrix algebra.
In our query language, AmosQL [22], such functions are called derived functions
and are expressed by side-effect free queries. This provides a high abstraction
level which is problem oriented and reusable. Query optimization techniques
are used to optimize queries involving derived functions.

In simple object-oriented models the method invocation is based on the
message-passing paradigm where methods are connected to the receiver of the
message. The message-passing style of method invocation restricts the way in
which relations between objects can be expressed [2].

In order to model a computational domain such as the matrix domain it is
desirable to also support functions with more than one argument, corresponding
to multi-methods [2] in object-oriented languages. This provides a natural way
to represent, e.g., matrix operators applied on various kinds of matrix represen-
tations. In Sect. 3 we show how matrix operators are modeled as multi-argument
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DECLARE m1 AS SymmetricMatrix;
DECLARE m2 AS ColumnMatrix;

SELECT x FROM ColumnMatrix x WHERE x IN f() AND m1 * x = m2;

Figure 1: A sample query exemplifying a multi-directional method

overloaded functions in our application.
High level declarative queries with function calls do not specify exactly how a

function is to be invoked in the query. We will show that multi-directional foreign
functions [15] are needed in the database query language for efficient processing
of queries involving inverses of functions. A function in the database query
language is multi-directional if, for an arbitrary function invocation m(x) = y,
it is possible to retrieve those arguments x that are mapped by the function
m to a particular result, y. Multi-directional functions can furthermore have
more than one argument. This ability provides a declarative and flexible query
language where the user does not have to specify explicitly how a function should
be called.

To exemplify a multi-directional function, consider the AmosQL query in
Fig. 1 that retrieves those matrices stored in function f() which, when mul-
tiplied by the matrix bound to the variable m1, equals the matrix bound to
the variable m2. This query is a declarative specification of the retrieval of the
matrix x from the result set of the function hf() where x solves the equation
system m1 * x = m2 (m1 and m2 are assumed given). It is the task of the query
optimizer to find an efficient execution strategy for the declarative specification,
e.g. by using the inverse of the * method (matrix multiplication) that solves
the equation system to get a value for x. The alternative execution strategy
without multi-directional foreign functions is to go through all matrices in f()
and multiply them with m1 to compare the result with m2. The first strategy
clearly scales substantially better when f() contains large sets of matrices.

To extend the search space of a query optimizer it must be able to inspect
the definitions of all referenced views. In our case this means that the optimizer
is revealed the definitions of derived functions to be able to in-line them before
queries can be fully optimized, a process called revelation [7]. With revelation
the query optimizer is allowed break encapsulation while the user still cannot
access encapsulated data.

The combination of inheritance in the type hierarchy and function overriding
results in the requirement of having to select at run-time which resolvent to
apply, i.e. late binding.

A function which is late bound obstructs global optimization since the re-
solvent cannot be selected until run-time. This may cause indexes, function
inverses, and other properties that are important to achieve good performance
to be hidden for the optimizer inside function definitions and remain unused
during execution. Thus, late bound functions may cause severe performance
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degradation if special query processing techniques are not applied. This is why
providing a solution that enables optimization of late bound functions is an
important issue in the context of a database [7].

A special problem is the combination of late bound functions and multi-
directional functions. This problem is addressed in [8] where late bound function
calls are represented by a special object algebra operator, DTR, in the execution
plan. The DTR operator is defined in terms of the possible resolvents, i.e. the
resolvents eligible for execution at run-time. Each resolvent is optimized with
respect to the enclosing query plan. The cost model and selectivity prediction
of the DTR operator is defined in terms of the costs and selectivities of the
possible (inverse) resolvents. The single argument DTR approach in [8] has been
generalized to handle multi-directional functions with arbitrary arity [9].

Below is is shown, by using excerpts from our matrix domain, that using
a functional data model with multi-directional functions results in a system
where complex applications can be modeled easily compared to modeling within
a pure object-oriented data model. We furthermore show how such queries are
translated into an algebraic representation for evaluation.

2 Functional database representations

In this section we first give a short introduction to the data model we use. Then
properties of multi-directional functions are discussed followed by an overview
of the issues related to late binding.

2.1 The functional data model

The functional data model of Amos II [22] and its query language AmosQL
is based on DAPLEX [25] with object-oriented extensions. The data model
includes stored functions and derived functions. Stored functions store prop-
erties of objects and correspond to attributes in the relational model and the
object-oriented model. Derived functions are used to derive through queries new
properties which are not explicitly stored in the database. A derived function
is defined by a query and corresponds to a view in the relational model and to
a function (method) in the object-oriented model. In addition to stored and
derived functions Amos II also has foreign functions which are defined using an
auxiliary programming language such as Java, Lisp, or C and then introduced
into the query language [15]. In Fig. 1 the overloaded operator * over type
ColumnMatrix is implemented by foreign functions. The only way to access
properties of objects is through functions, thus functions provide encapsulation
of the objects in the database.

2.2 Multi-directional functions

Multi-directional functions are functions which may be called with several dif-
ferent configurations of bound or unbound arguments and result, called binding-
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CREATE FUNCTION times(SymmetricMatrix x, ColumnMatrix y) ->
ColumnMatrix r AS
MULTIDIRECTIONAL
"bbf" FOREIGN "MatrixMultiplication"

COST "MultCost",
"bfb" FOREIGN "GaussDecomposition"

COST "GaussCost";

Figure 2: Definition of a multi-directional foreign function

SELECT x FROM ColumnMatrix x WHERE m1 * x = m2;

⇓

<x>∣∣∣
γGaussDecomposition(m1, m2)∣∣∣

<m1,m2>

Figure 3: Multi-directional function execution

patterns. The query compiler must be capable of generating an optimal execu-
tion plan choosing among the possible binding-patterns for each multi-directional
function. Sometimes such an execution plan may not exist and the query pro-
cessor must then report the query as being unexecutable.

To denote which binding-pattern a function is called with, the arguments,
ai, and result, r, are annotated with b or f meaning bound or free as ab

i or af
i if

ai is bound or free, respectively. In the optimal execution plan for the query in
Fig. 1 the function * is called with its second argument unbound and with the
first argument and the result bound. Thus, the call to * in that example will
be denoted as xb × yf → rb.

Recall the three types of functions in the Amos II data model: stored, foreign
and derived functions as decribed in a separate chapter on Amos II . Stored
functions are made multi-directional by having the system automatically derive
access plans for all binding-pattern configurations. Derived functions are made
multi-directional by accessing their definitions and finding efficient execution
plans for binding-patterns when needed. For multi-directional foreign functions
the programmer has to explicitly assign each binding-pattern configuration an
implementation, as illustrated in Fig. 2.

Fig. 3 illustrates a very simple AmosQL query and its translation to object
algebra. Notice that the terms following the FROM clause denote declarations of
typed variables universally quantified over type extents [22]. This is different
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from OQL [6] where they denote collections and SQL where they denote tables.
In Fig. 2 the function times (implementing *) is defined for two arguments

and made multi-directional by defining which implementation to use for a cer-
tain binding-pattern. For times(ab, bf) → rb (implementing xb × yf → rb)
the foreign function definition GaussDecomposition implements times, while
MatrixMultiplication will be used for times(ab, bb) → rf . The functions
GaussDecomposition and MatrixMultiplication are implemented in a con-
ventional programming language such as C++. The implementor also provides
optional cost functions, MultCost and GaussCost, which are applied by the
query optimizer to compute both selectivities and costs.

The query compiler translates the AmosQL query into an internal algebra
expression. Fig. 3 gives an example of a query with a multi-directional func-
tion and the corresponding algebra tree. Here the query interpreter must use
times(ab, bf ) → rb which is a multi-directional foreign function as shown in
Fig. 2. The chosen implementation of times, i.e. GaussDecomposition, de-
pends on the types of m1 and m2. It will be called by the apply algebra operator,
γ, which takes as input a tuple of objects and applies the subscripted function
(here GaussDecomposition) to get the result.

2.3 Function overloading and late binding

In Amos II’s data model types are organized in a hierarchy with inheritance
where subtypes inherit properties from their supertypes. Overloading allows
the function name denote several variants, called resolvents. Resolvents are
uniquely named by annotating the function name with the type of the ar-
guments and result. The naming convention chosen in Amos II (and in this
paper) is: t1.t2.....tn.m -> tr for a function m whose argument types are
t1,t2,...,tn and result type is tr.

When names are overloaded within the transitive closure of a subtype-
supertype relationship that name is said to be overridden.

In our functional model an instance of type t is also an instance of all super-
types of that type, i.e. inclusion polymorphism [4]. Thus, any reference declared
to denote objects of a particular type, t, may denote objects of type t or any
subtype, tsub, of that type. This is called substitutability. As a consequence of
substitutability and overriding, functions may be required to be late bound.

For multi-argument functions the criteria for late binding is similar as for
pure object-oriented methods with the difference that for multi-argument func-
tions, tuple types are considered instead of single types. Multi-argument func-
tions enhance the expressive power of the data model but the type checker
must include algorithms for type resolution of tuple types [2] and for handling
ambiguities [1].

In Amos II the query compiler resolves which function calls require late
binding. Whenever late binding is required a special operator, DTR [8], is inserted
into the calculus expression. The optimizer translates each DTR call into the
special algebra operator γDTR which, among a set of possible resolvents, selects
the subplan to execute according to the types of its arguments. This will be
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illustrated below. If the call does not require late binding it is either substituted
by its body, if a stored or derived function is called, or to a function application
if a foreign function is called.

Special execution sub-plans are generated for the possible resolvents of the
specific binding-patterns that are used in the execution plan. Thus available
indexes will be utilized or other useful optimization will be performed on the
possible resolvents. If any of the possible resolvents are unexecutable the enclos-
ing DTR will also be unexecutable. The cost and selectivity of the DTR operator
is calculated based on the costs and selectivities of the possible resolvents as
their maximum cost and minimum selectivity, respectively. Hence, DTR is used
by a cost-based optimizer [11] to find an efficient execution strategy.

3 Representing matrices using functions

It will be investigated how to represent matrices and their operators using our
semantic functional data model, and how to process queries over these repre-
sentations.

3.1 Matrix algebraic concepts

Some matrix algebraic concepts are introduced where the notation mainly fol-
lows that of Golub and van Loan [10]. The vector space of all m-by-n matrices
is denoted by the m-by-n scalar field Sm×n, where normally S ∈ R, the set
of real numbers. However, due to the computational requirements it might be
necessary to extend the types of matrix representations such that S belongs to
one of Z (the set of integers), Rf (the set of four-byte reals), and Rd (the set
of 8-byte reals). This means that matrices can have integer, float, and double
representations. This must be taken care of in the definition of matrix opera-
tions for allowing matrix expressions mixing matrix types. This distinction is
left out in the subsequent presentation of matrix concepts.

Thus, for a matrix A we have,

A ∈ Sm×n ⇔ A = (aij) =

⎛
⎜⎝

a11 · · · a1n

...
. . .

...
am1 · · · amn

⎞
⎟⎠ , where aij ∈ S . (1)

Here, aij represents the element of A at row i and column j.

Basic matrix algebraic operations of matrices can now be introduced. The
conventional approach introduces matrix algebraic operations as functions that
take matrices as arguments and produce new or altered matrices. Here, a some-
what different approach will be applied. Since the query language AmosQL
allows the definition of multi-directional functions, it is possible to define op-
erations on matrices as relationships that are isomorphic to the corresponding
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mathematical expressions. In Golub and van Loan, [10], operations are repre-
sented by the a → b notation, where the arrow associates to a one-directional
function application. In the present context, this notation is replaced by the
a ↔ b notation that is more associated to bi-directional or multi-directional
relationships. However, it should be noted that this notation does not imply
that the relationship exist, or is defined, for every direction that corresponds to
combinations of matrix types.

Hence, the basic operations on matrices include:

• addition: Sm×n × Sm×n ↔ Sm×n, where A + B = C with the elements
aij + bij = cij

• subtraction: Sm×n × Sm×n ↔ Sm×n, where A − B = C with the
elements aij − bij = cij

• multiplication: Sm×r × Sr×n ↔ Sm×n, where A × B = C with the
elements aij · bij = cij

• transposition: Sm×n ↔ Sn×m, where AT = B with the elements aij =
bji.

We should note that the matrix concept defined above covers general m-
by-n matrices. By making restrictions on this definition it is possible to define
specialised categories of matrices that form subspaces of the vector space Sm×n.
For instance, we can define:

• Sm×n, representing the general rectangular matrix, Arect.

• Sm×m, representing a square matrix, Asquare, with the same number of
rows and columns.

• Sm×m, a square matrix with the additional constraint sij = sji that rep-
resents a symmetric matrix, Asymm.

• Sm×m, a symmetric matrix with the additional constraint sij = 0 for i �= j
that represents a diagonal matrix, Adiag.

• Sm×m, a matrix with the same number of rows and columns with the
additional constraint sij = 0 for i > j and that represents an upper
triangular matrix, Auptri.

• Sm×m, an upper triangular matrix with the additional constraint sij = 1
for i = j that represents an upper unit triangular matrix, Auputri.

• Sm×m, a matrix with the same number of rows and columns with the addi-
tional constraint sij = 0 for i < j and that represents a lower triangular
matrix, Alowtri.

• Sm×m, an lower triangular matrix with the additional constraint sij = 1
for i = j that represents a lower unit triangular matrix, Alowutri.
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• Sm×1, a rectangular matrix with 1 column representing a column matrix,
a or Acol.

• S1×m, a rectangular matrix with 1 row representing a row matrix type,
a or Arow.

With these additional categories of matrices, the previous list of matrix
operations can also be specialised further taking the additional categories into
account. This is exemplified in Eqs. 2-19 for the case of matrix multiplication
of rectangular matrices where index sizes and symmetries have been used to
identify different combinations.

Arect × Brect = Crect , (2)
Arect × Bsquare = Crect , (3)
Asquare × Brect = Crect , (4)
Asymm × Brect = Crect , (5)
Asquare × Bcol = Ccol , (6)
Asymm × Bcol = Ccol , (7)
Alowtri × Bcol = Ccol , (8)
Auptri × Bcol = Ccol , (9)

Alowtri × Buptri = Csquare , (10)
Adiag × Bcol = Ccol , (11)

Adiag × Buptri = Cuptri , (12)
Acol × Brow = Crect , (13)

Arect × Brect = Csquare , (14)
Asquare × Bsquare = Csquare , (15)

Acol × Brow = Csquare , (16)
Arect × Bcol = Ccol , (17)
Arow × Brect = Crow , (18)

Arow × Bsquare = Crow . (19)

Hence, the resulting matrix category of multiplying two (rectangular) ma-
trices is dependent on the sizes of the outer indexes of the argument matrices.
By interpreting the matrix spaces as sub-categories of the rectangular matrix
category we get relationships between argument matrix categories and result
argument category for the matrix multiplication operator. By considering other
matrix characteristics, such as symmetry and singularity, further specialisations
of these relationships can be established.

Furthermore, in applications like FEA, it is common to use specialised and
more compact physical representations [13, 5] of matrices in contrast to full reg-
ular matrix representations. These type of compressed representations include,
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for example, skyline matrix (or profile matrix) representations where consecu-
tive zero-valued elements above the skyline are left out and the matrix is usually
represented by matrix columns in a one-dimensional array. This is an example
of a compact representation where the matrix structure is static, i.e. it is not al-
lowed to change. Additional static representations along the same theme exists.
There are also dynamic matrix representations where the storage structure is
allowed to change. These representation types are usually referred to as sparse
matrix representations and are typically implemented by some linked-list data
structure. The categorisations and their usage in establishing the multiplica-
tion operator as relationships among different categories that are exemplified
above can be further extended to establish relationships between combinations
of other matrix categories and representations as well as for different operators.

To sum up this part, three principles have been presented that can divide
the matrix concept into different categories, namely:

• mathematically-related matrix categories based on the general matrix con-
cept and its characteristics that further restrict this concept into subcat-
egories.

• the data types, integer, float, and double, used for representing and im-
plementing numerical matrices.

• various physical representations schemes for representing and implement-
ing matrices such as regular, skyline, or sparse. A database implementa-
tion that covers regular and skyline representations is presented in [21].

The reason for defining several matrix categories is the potential ability
to take advantage of the knowledge about specific categories in representing
numerical data and applying numerical analysis methods. This concerns the
possibilities of applying efficient storage and processing techniques. So far it is
possible to use:

• a priori information to determine matrix categories appropriate for a spe-
cific problem.

• information about matrix categories related by a specific operator to deter-
mine appropriate operator and the correct result (or argument) category.

• information about matrix characteristics, i.e. properties that are not dis-
tinguished by separate categories, to determine correct operator result
(or argument) to efficiently direct subsequent matrix representations and
operations.

This type of information has been used to establish the matrix type structure
in Fig. 4 together with the set of mathematical operations that will be discussed
below.
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matrix

row matrix

square

symmetric

diagonal

triangular

upper triangular

upper unit triangular

lower triangular

lower unit triangular

column matrix

Figure 4: A matrix type hierarchy for linear matrix algebra

3.2 Queries for solving linear equations

A fundamental component in an FEA system is a linear equation solving sub-
system. To model an equation solving system we define a type hierarchy of
matrix types as illustrated in Fig. 4. Furthermore, the matrix multiplication
operator, ×, is defined as functions on this matrix type hierarchy for several
combinations of arguments. Eqs. 2-19 illustrate how each variant of the multi-
plication function takes various matrix types as arguments.

The functions for multiplication are used to specify linear equation systems
as matrix multiplications as K × a = f , where a is sought while K and f are
known. Special representation methods and special equation solving methods
have been developed that are dependent on the properties of the matrices. In
our system, the function times (= infix operator *) is overloaded on both its
arguments and has different implementations depending on the type (and thus
representations) of the matrices used in its arguments. For example, when K
is a symmetric matrix, i.e. corresponding to the case in Eq. 7, it can be solved
by a method that explores the symmetric properties of the first argument. One
such method, LDLT decomposition [10] outlined in Eq. 20, substitutes the
equation system with several equivalent equation systems that are simpler to
solve. According to Eq. 20 the left-hand equation can be transformed into a set
of simpler equations on the right-hand side.
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DECLARE K AS SymmetricMatrix;
DECLARE f AS ColumnMatrix;

SELECT a FROM ColumnMatrix a WHERE K * a = f;

Figure 5: A simple query illustrating function overloading

Kb × af = f b −→

⎧⎪⎪⎨
⎪⎪⎩

Kb = (UT )f × Df × Uf

Ub × af = xb

Db × xf = yb

(UT )b × yf = f b

. (20)

The linear equation system is solved by starting with the factorization, K =
UT ×D×U, that transforms K into the three matrices UT , D, and U. Then the
upper triangular equation system UT × y = f is solved to get y. The diagonal
equation system D × x = y is then solved to get x, and finally the solution of
the lower triangular equation system U × a = x gets a. If the equation on the
other hand corresponds to Eq. 6, the symmetry of K cannot be exploited and
some other method to solve it must be applied, e.g. Gauss decomposition.

The rationale for having these different overloaded matrix multiplication
functions is efficiency and reusability. Efficiency because mathematical proper-
ties of the more specialised matrix types can be considered when implementing
multiplication operators for them. Furthermore, specialised physical represen-
tations have been developed for many of the matrix types, e.g. to suppress
zeroes or symmetric elements, and the matrix operators are defined in terms of
these representations. The more specialised operators will in general have lower
execution costs than the more general ones. The overloading provides reusabil-
ity because every multiplication operator may be used in different contexts. To
exemplify this consider the example in Fig. 5 over the type hierarchy in Fig. 4
and the multiplication operators from Eqs. 2-19.

In this example a query is stated that solves an equation system by taking
one square and one column matrix as arguments and calculating the solution
by using the multiplication function. Depending on the type of the arguments
the appropriate function from the type hierarchy below SquareMatrix will be
selected at run-time, i.e. late binding. Also note that here the multiplica-
tion function (*) is overloaded and used with the first argument and the result
bound and the second argument unbound. This is only possible when multi-
directional functions are supported by the system. With multi-directional func-
tions the equation system in Fig. 5 can be written as K×a = f which is a more
declarative and reusable form than if separate functions were needed for matrix
multiplication and equation solving, respectively. It is also a more optimizable
form since the optimizer can find ways to execute the statement which would
be hidden if the user explicitly had stated in which direction the * function is
executed.
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The implementor can often define different implementations of the times
(*) operation depending on whether an argument or the result is unknown. For
the case in Eq. 6, where a square matrix is multiplied with a column matrix
resulting in another column matrix, two variants are required. The first variant
does matrix multiplication when both arguments are known and the result is
unknown. When the first argument and the result are known and the second
argument is unknown, the times (*) operation will perform equation solving
using Gauss decomposition. There are also two variants for symmetric matrices,
Eq. 7, the difference is that instead of using Gauss decomposition when the
second argument is unknown, the more efficient LDLT decomposition algorithm
is used.

Late binding relieves the user from having to decide when any of the more
specialised multiplication operators can be used since the system will do this at
run-time. Thus, the general matrix multiplication will at run-time be selected
as the most specialised variant possible, e.g. a variant corresponding to Eq. 7
when the first argument is a symmetric matrix. Note that the types of all argu-
ments participate in type resolution to select which resolvents of the multiplica-
tion operator to use from all the possible multiplication operators in Eqs. 2-19.
Contrast this with a pure object-oriented data model without multi-argument
functions where the system cannot select the correct resolvent when the type of
another argument than the first one has to be considered. This imposes restric-
tions on how object relations can be expressed in a pure object-oriented data
model. In some models, e.g. C++, the types of all arguments are used to select
resolvent if the function is early bound but not when it is late bound. Thus,
the introduction of an overriding function may become problematic.

Our example shows that multi-directional functions are useful to support the
modeling of complex applications. A system that supports both late binding
and multi-directional multi-argument functions offers the programmer a flexible
and powerful modeling tool. It is then the challenge to provide query processing
techniques to support these features. This will be addressed next.

4 Processing queries with multi-directional func-
tions

We will show through an example how queries with multi-directional functions
are processed in Amos II for a subset of the functions corresponding to Eqs. 2-
19. In Fig. 6 the function definitions in AmosQL are given that are needed for
modeling equation solving using the method of LDLT decomposition according
to Eq. 20.

The multi-directional foreign function times is overloaded and defined dif-
ferently depending on the shape and representation of the matrices. It is multi-
directional to transparently handle both matrix multiplication and equation
solving in queries. The primitive matrix operations are implemented as a set of
foreign functions in some programming language (here C). For symmetric ma-
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CREATE FUNCTION factorise(SymmetricMatrix K) ->
<DiagonalMatrix D, UpUTriMatrix U> AS
FOREIGN "Factorise";

CREATE FUNCTION transpose(UpUTriMatrix U) -> LowUTriMatrix L AS
FOREIGN "Transpose";

CREATE FUNCTION times(LowUTriMatrix L, ColumnMatrix y) ->
ColumnMatrix f AS
MULTIDIRECTIONAL "bbf" FOREIGN "LowUTriMult",

"bfb" FOREIGN "LowUTriSolve";

CREATE FUNCTION times(DiagonalMatrix D, ColumnMatrix x) ->
ColumnMatrix y AS
MULTIDIRECTIONAL "bbf" FOREIGN "DiagonalMult",

"bfb" FOREIGN "DiagonalSolve";

CREATE FUNCTION times(UpUTriMatrix U, ColumnMatrix a) ->
ColumnMatrix x AS
MULTIDIRECTIONAL "bbf" FOREIGN "UpUTriMult",

"bfb" FOREIGN "UpUTriSolve";

CREATE FUNCTION times(SymmetricMatrix K, ColumnMatrix a) ->
ColumnMatrix f AS
MULTIDIRECTIONAL "bbf" FOREIGN "SymmetricMult",

"bfb" DERIVED "SymmetricSolve";

CREATE FUNCTION SymmetricSolve(SymmetricMatrix K,ColumnMatrix f) ->
ColumnMatrix AS SELECT a
FROM UpUTriMatrix U,DiagonalMatrix D,

ColumnMatrix x,ColumnMatrix y
WHERE factorise(K) = <U,D> AND

transpose(U) * y = f AND
D * x = y AND
U * a = x;

Figure 6: Multi-directional function definitions
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<a>∣∣∣
γDTR(< DiagonalSolve, SymmetricSolve>, K, f)∣∣∣

<K,f>

Figure 7: The top level query algebra tree for the query in Fig. 5

trices the multiplication is implemented by the foreign function SymmetricMult
while equation solving uses the LDL method above, as specified by the derived
function named (SymmetricSolve).

The query optimizer translates the query into an optimized execution plan
represented as an algebra tree in Fig. 7. During the translation to the alge-
bra the optimizer will apply type resolution methods to avoid late binding in
the execution plan when possible. In cases where late binding is required the
execution plan may call subplans.

In the example query of Fig. 5 there are two possible resolvents of the name
times:

1. DiagonalMatrix.ColumnMatrix.times→ColumnMatrix

2. SymmetricMatrix.ColumnMatrix.times→ColumnMatrix

The example thus requires late binding where resolvent (2) will be chosen
when the first argument is a SymmetricMatrix and (1) will be chosen other-
wise. When resolvent (2) is chosen the system will be solved using the LDLT

decomposition, while a trivial diagonal solution method is used for case (1). The
optimizer translates the query into the algebra tree in Fig. 7, where the algebra
operator γDTR implements late binding. It selects at run time the subplan to
apply on its arguments K and f based on their types. In the example there
are two subplans, DiagonalSolve and SymmetricSolve. DiagonalSolve is im-
plemented as a foreign function in C shown in Fig. 6, while SymmetricSolve
references the subplan performing the LDLT decomposition in Fig. 8.

The subplan in Fig. 8 has K and f as input parameters (tuples) and produces
a as the result tuple. The K parameter is input to the application of the foreign
function Factorise that does the LDLT factorization producing the output tu-
ple <D,U>. The U part is projected as the argument of the functions Transpose
and UpUTriSolve (the projection operator is omitted for clarity), while the pro-
jection of D is argument to DiagonalSolve. The application of LowUTriSolve
has the arguments f and the result of Transpose(U), i.e. UT. Analogous ap-
plications are made for DiagonalSolve and UpUTriSolve to produce the result
tuple <a>.
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γDiagonalSolve D y,( )

γUpUTriSolve U x,( )

<a>

γLowUTriSolve U
T
f,( )

γTranspose U( )

γFactorise K( )

<K>

<U>

<D>

<U>

<UT>

<f>

<y>

<x>

Figure 8: Algebra graph showing the execution order for the transformed matrix
expression
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5 Related work

Object-oriented database management systems (OODBMSs) are often motivated
by advanced applications such as systems for management of scientific and en-
gineering data [27, 3, 11]. In our case, a functional data model is shown to be
even better suited for managing the complexity of the data in such applications.

Modeling matrix computations using the object-oriented paradigm has been
addressed in e.g. [23, 24]. In [14, 18] algebras for primitive matrix operations are
proposed. None of those papers address late binding, multi-methods, or multi-
directional functions. We have shown the benefits of having these features when
modeling complex applications.

OODBMSs have been the subject of extensive research during the last decade,
e.g. [3, 27]. Several object-oriented query languages [6, 17, 16] have been pro-
posed. However, queries with multi-directional functions have not been used in
OODBMSs.

Multi-argument functions require generalized type resolution methods com-
pared to the type resolution of pure object-oriented methods [1, 2]. In the
database context the issue is not mainly fast type resolution when looking
up methods but rather optimizing queries with expanded function definitions
(views) in order to detect hidden search paths and multi-directional function
inverses [8].

In the area of constraint programming [12] the user specifies constraints
and then a constraint solver works out the best way to interpret them. Multi-
directional foreign functions are a form of constraints compiled using a cost-
based query optimizer for scalability over large data sets (large sets of matrices
in the case presented here)

Advanced applications, such as our FEA application, require domain depen-
dent data representations of matrices and an extensible object-relational query
optimizer [26] to efficiently process queries over these representations. For ac-
cessing domain specific physical representations we have extended the technique
of multi-directional foreign functions described in [15].

In [8] the optimization of queries with multi-directional late bound functions
in a pure object-oriented model is addressed and the DTR operator is defined
and proven to be efficient. Here that approach is generalized to multi-argument
foreign functions [9].

6 Summary and future work

Domain-oriented data representations are needed when representing and query-
ing data for numerical applications using a database system, e.g. to store matri-
ces. To avoid unnecessary data transformations and transmissions, it is impor-
tant that the query language can be extended with domain-oriented operators,
e.g. for matrix calculus. For high-level application modeling and querying of,
e.g., matrix operators multi-directional functions are required.

Although multi-argument functions require generalized type checking and
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query processing, the benefits gained as increased naturalness and modeling
power of the data model are important for many applications, including ours.

It was shown how multi-directional and overloaded functions can be uti-
lized by the query optimizer to scale the execution of queries over large sets of
matrices. This is a new area for query optimization techniques.

The system must support optimization of queries with late binding for multi-
directional functions in order for the proposed query optimization methods to be
applicable. In our approach each late bound function in a query is substituted
with a DTR calculus operator which is defined in terms of the resolvents eligible
for execution. Each DTR call is then translated to the algebra operator γDTR that
chooses among eligible subplans according to the types of its arguments. Local
query execution plans are generated at each application of γDTR and optimized
for the specific binding-patterns that will be used at run-time, as illustrated in
our examples.

Further interesting optimization techniques to be investigated include the
identification of common subexpressions among the possible resolvents, query
rewrite techniques for multi-directional functions, and transformations of DTR
expressions.
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