

1

Presented at IDEAS'02 - International Database Engineering and
 Applications Symposium, Edmonton, Canada July 17-19, 2002

Completing CAD Data Queries for Visualization

Milena Gateva Koparanova and Tore Risch
Uppsala Database Laboratory

Department of Information Technology
Uppsala University

Sweden
{firstname.lastname}@it.uu.se

Abstract

A system has been developed permitting database

queries over data extracted from a CAD system where the
query result is returned back to the CAD for visualization
and analysis. This has several challenges. First, CAD
data representations use complex object-oriented schemas
and the query language must be object-oriented too.
Second, the query system resides outside the CAD system
and must therefore use standardized data exchange
formats for interoperability with the CAD. ISO STEP
standard exchange formats are used for the exchange.
Third, a CAD system cannot import an arbitrary object
structure but places restrictions on the imported objects to
be acceptable. Therefore, the query system must
complement the query results in order to produce an
acceptable CAD model, called the model completion of
the query. These problems have been solved using an
extensible object-relational query processor. The system
also supports queries combining CAD data with data from
other data sources.

1. Introduction

CAD systems such as I-DEAS [30] and
Pro/ENGINEER [27] allow engineers to build design
models that may contain very large amounts of data with
complex object-oriented structures. During the
engineering design process there is often need to analyze
these models and select components and sub-models
having certain properties. One way to support this is to
regard the contents of such engineering models as
databases that are queried using a database query
language. A system offering techniques for query
processing of engineering data extracted from CAD
models has been developed, which is called the
Engineering Mediator Query system (EMQ). EMQ allows

data to be extracted from CAD models for subsequent
analysis and querying.

Data in CAD systems are represented using complex
Object-Oriented (OO) data representations. In order to
minimize information loss and maximize query
expressibility, the query system needs also to be OO.
EMQ therefore uses an OO data model and query
language based on an extended subset of SQL-99. The
main enabling technology for querying engineering data is
the kernel of the Amos II mediator database system [28].
EMQ uses the query language AmosQL of Amos II, with
certain extensions.

The engineering queries can contain functions that
match and select objects in the original CAD model.
Different query types are possible, including queries on
the hierarchical product structure and administrative
information, as well as queries on the geometric and
topological data defining the shape of a product. For the
latter class of queries it is important to be able to return
the query results back to a CAD system for visualization
and further analysis. However, the CAD system can only
visualize data that forms a complete geometric
representation of the shape of some part. EMQ therefore
has to extend the query result with certain objects that the
CAD requires in order to make the former an acceptable
CAD model. We call such an extended query result model
completion of the query. An algorithm for the CAD data
query completion has been developed and implemented in
EMQ in order to accomplish the full cycle from CAD
representation through a query system and back to the
query result visualized in the original or other CAD
system.

Such a system needs tools for data exchange with
CAD systems. The ISO-10303 Standard for Product Data
Representation and Exchange [14], known as STEP,
provides standardized formats for data exchange with
CAD and other engineering systems. The STEP standards
use separate meta-data descriptions (schemas) of the

2

exchanged data formally expressed in the EXPRESS
information modeling language [31]. For a given meta-
data description the data can then be exchanged using the
STEP/Part 21 standard format [17] for data exchange files.
In database terminology, EXPRESS is a data model, while
an EXPRESS information model contains meta-data
descriptions of data about some portion of the real world
and corresponds to a schema (possibly with subschemas).

Our system can read an information model in
EXPRESS and translate it to a corresponding OO database
schema. Given this OO schema, the EMQ system can then
access standard data exchange files exported from the
CAD using its standardized STEP exportation facilities. In
our experiments we exchanged CAD data whose meta-
data were described by both the STEP standards AP203,
Configuration Controlled 3D Design of Mechanical Parts
and Assemblies [15], and AP214, Core Data for
Automotive Mechanical Design Processes [16]. The
experiments were made using two of the most widespread
CAD systems, namely, I-DEAS and Pro/ENGINEER. In
particular, we used their modules for development of part
geometry in the initial design of product parts. However,
EMQ is general and can work with any EXPRESS
information model and Part 21 data exchange file.

The EXPRESS data representation requires multiple
inheritance which is supported by the data model and the
query language of Amos II [29] on which EMQ is based.
Queries retrieving all components in a hierarchical
product structure as well as the model completion require
transitive closure operations. The transitive closure facility
of AmosQL allows for repeated application of a function
with the same argument and result type until either no
further application is possible, or a specified number of
repetitions has been reached.

Furthermore, EMQ uses the mediator/wrapper
approach [8, 9, 23, 32, 33] to allow queries and views that
combine STEP/EXPRESS based data with other kinds of
data, such as relational databases [7] and XML-based data
[24]. These facilities rely on the techniques developed for
OO mediation in Amos II [18, 19], a discussion of which
is outside the scope of the present paper.

This paper first discusses related work. Section 3
describes the architecture of EMQ, while Section 4
provides certain examples of how EMQ queries are
expressed and visualized. Section 5 describes the model
completion implementation, and Section 6 concludes.

2. Related work

Early work on CAD databases [1, 4, 3, 10]
concentrated on object storage rather than high-level
queries and [22] discussed various approaches to the
geometric data modeling. In contrast, our contribution is a
query system for high-level user queries to complex
standardized CAD data, where the system provides model

completion of the query result for visualization by means
of a CAD system. The management of engineering data in
Amos II and querying using AmosQL is discussed in [26]
with no consideration of problems involved in the
visualization and completion of the query result.

EQL [20] is an EXPRESS query language intended for
ad hoc queries on data in STEP/Part 21 data files. The
language is not closed, i.e., the query result can not be
queried and it has no geometric model completion. The
aim of the EXPRESS-X language [12] and its predecessor
BRIITY [11] is to translate data (e.g., Part 21 files)
represented in one EXPRESS information model into the
corresponding data in another, thereby reconciling
heterogeneous and conflicting data. Its ability to construct
views of EXPRESS data provides basic query facilities.
EXPRESS-X is primarily intended to be a schema
translation language and is not a general query language
for CAD data. Unlike EMQ, it does not deal with the
problem of the model completion of query results that is
needed in order to make the result of an ad hoc query
acceptable to a CAD system.

We have not intended to develop a new query
language, but rather to extend an existing OO query
language with certain required operations, such as
geometric model completion.

[25] discusses certain approaches for optimizing a
PDM system that resides on top of a relational DBMS.
DIVE [21] is a database integration tool for virtual
engineering applications providing for separate storage
and management of product structure data (in a relational
database) and spatial data (in ORDBMS). The system
provides query facilities on both kinds of data, i.e.,
structural queries through CAD DB and advanced spatial
queries, but it does not send query results to the CAD
system for visualization. While we do not consider such
special representations for spatial data, nor the
implementation of spatial operations, we do address the
querying of geometric and topological data concerning the
shape and size of product parts in standardized object-
oriented engineering schemas and representations.
Whereas a spatial query result is a set of existing spatial
objects, a query on OO representation of geometric and
topological data may result in an object structure non-
complete in a spatial sense. This type of queries therefore
requires a completion algorithm for the query results.

Several systems have been developed for visualizing
the results of database queries [5, 2]. Rather than
connecting the visualization directly to the DBMS, we
utilize a general CAD system for this purpose. This
requires standardized data exchange between EMQ and
the CAD, along with our model completion methods that
modify the results of a query such that they can be
visualized by the CAD system. In addition to
visualization, this technique allows for the use of the
query result in further analysis and in other operations

3

inside a CAD system.

4

3. EMQ Architecture

CAD

EMQ
Query Engine

EXPRESS
Translator

Model
Importer

Model
Exporter

STEP Import/Export

STEP/Part 21
Data File

EXPRESS
Information

Model

STEP/Part 21
Data File

Query Result

Figure 1. The EMQ architecture

 illustrates the EMQ architecture. Since the data

models of EXPRESS and Amos II differ, we need to
translate meta-data from EXPRESS into Amos II. This is
performed by the EXPRESS Translator module. This
module reads any EXPRESS information model and
translates it into a corresponding Amos II database
schema. The translator carries out certain mappings
between the data representations in EXPRESS and Amos
II (for more details see
http://www.csd.uu.se/~milena/Mapping.pdf). Since both
EXPRESS and Amos II have OO data models, the
mapping is straightforward.

Once an EXPRESS schema has been imported into
EMQ, the Model Importer makes it possible for the
system to access any Part 21 data exchange file using that
schema generated by a CAD system. It creates new
database objects and sets relationships between them in
order to fully represent the CAD data in Amos II.

The OO query language AmosQL allows for general
database queries over CAD data, and the result of such a
query is a set of database objects. In order to export this
result back into the CAD, the Model Exporter generates a
new Part 21 exchange file representing the result of the
query. This is sent back to the CAD system for
visualization or further analysis.

Queries that result in geometric and topological data
are of particular interest for visualization. However,
encoding this type of query result as a Part 21 file is not
sufficient for representing it in a CAD system since it

must be enclosed by an object structure rooted in an object
that represents a specific geometric model. We have
therefore developed a generic Model Completion
framework as a part of the model exporter. Additional
objects are created within this framework which, together
with the query result, form a CAD model that is a shape
representation of a fictional product part. The architecture
of the Model Exporter is illustrated in Figure 2.

Root Object
Generator

Root

Transitive Closure
Generator

Geometric Shape
Model Completion

Model Exporter

STEP
Exporter

Query
Result

STEP/Part 21
Data File

Model Completion

Figure 2. The Model Exporter

The Model Completion framework follows the STEP
standard requirements for representing a product shape.
First, Geometric Shape Model Completion (GSMC)
performs the task of creating an enclosing structure for a
given query result with an appropriate root object. GSMC
deals with two kinds of problems, namely, different result
sets need different root objects, and more than one type of
root object is possible for certain result sets. This module
is generic and table driven.

The root object of the enclosing structure must be one
of the Geometric Shape Models (GSMs) defined in the
STEP standard [13]. Two classic types of geometric
modeling of solid objects are included in this standard:
constructive solid geometry and boundary representation.
The latter, for example, is presented by
Manifold_solid_brep and its subtypes. Certain models in
the standard, such as Geometric_set and
Shell_based_surface_model, represent less complete
descriptions of the geometry of a product. They allow for
communication with systems whose capabilities differ
from those of solid modeling systems. They are
particularly useful for communicating the results of a DB
query with a CAD system that accepts certain incomplete
solid models.

The second step in the model completion framework is

5

executed by the Root Object Generator (ROG). The ROG
creates additional root objects whose roles are to place the
GSM structure that has been created within a context, e.g.,
the dimensionality of the coordinate space and units of
measurement. Together they form a CAD model
acceptable to the CAD system. One of the objects plays
the role of a root object for the entire model exported to
the CAD.

The exported data set needs to be closed. For example,
an object representing a surface needs to be exported
together with the objects that represent points on this
surface. The query result, the objects created by GSMC,
the root objects, and all objects representing attributes of
the query result are collected by the Transitive Closure
Generator (TCG). They form the closure of the root
object of the CAD model.

Finally, the data in the object set collected by TCG is
encoded by STEP Exporter into a file in STEP/Part 21
standardized format that is sent to the CAD system. While
the GSMC and the ROG modules depend on the
EXPRESS information model for a particular application
domain, the TCG and the STEP exporter are domain
independent.

4. CAD data example queries

In general, AmosQL queries are expressed as
select <result>
from <type specification>
where <condition>
The <type specification> defines variables bound to

the extent of types. The conditional expression in the
where clause restricts the cartesian product of the type
extents. The select clause specifies a result tuple that is
calculated for every variable binding in the restricted
cartesian product of the type extents.

Figure 3. Space ship

Let us consider a simplified CAD model of a space
ship, shown in Figure 3. We export the data in STEP/Part
21 data format from the CAD system into an EMQ
database where the corresponding AP203 schema is

already loaded. A subset of the schema relevant to the
given example is shown in Figure 4 as an extended entity-
relationship (EER) diagram. The relationships have a
logical direction (i.e., they are functional relationships),
but can still be queried in the inverse direction.

Although the query facilities of EMQ are general, we
focus in the present discussion on queries over CAD data
with geometric and topological results. EMQ can query
and send to the CAD system the geometric representation
of any component of an assembly. For example, the object
structure that represents a component named “tail turbine”
in Figure 5a is extracted by calling a predefined query
function get_component1:

select get_component("s1_tail_turbine");
Given the name of a component, this function returns a

shape_representation object (Figure 10) that is a root of
the object structure defining the component geometry.

Data can be extracted by geometric condition in the
query. For instance, in order to see all planar faces in the
tail turbine component, we specify the following query
that retrieves all faces in the tail turbine having an
associated plane surface geometry2:

select fs from ST_face_surface fs, ST_plane pl
where face_geometry(fs) = pl and
fs =3 entclosure(get_component("s1_tail_turbine"));
The fs and pl variables are bound to the extents of

ST_face_surface and ST_plane types respectively. The
first condition selects those ST_face_surface objects that
are related to geometric surfaces of type ST_plane through
the relationship face_geometry. The second condition
restricts the selection to only those objects of type
ST_face_surface, that occur in the component named
“s1_tail_turbine”. The entclosure function implements a
transitive closure operation. Applied on the root object of
type ST_shape_representation, it returns all objects in the
structure defining the component geometry.

In order to import the result of the example query into
a CAD system, the model exporter module of the EMQ is
called, which is implemented as a system query function:

export_model (Bag of Entity query_result)
The function export_model creates a new complete

CAD model representation for the result of an ad hoc
CAD data query. For example:

export_model(select fs
 from ST_face_surface fs, ST_plane pl
where face_geometry(fs) =pl and
fs= entclosure(get_component ("s1_tail_turbine")));

1 get_component is defined through a rather complex
query. It is omitted here for the sake of brevity.
2 The names of the mapped EXPRESS types have the
prefix ‘ST_’ in order to avoid name collisions with other
Amos II types.
3 In our system ‘=’ is overloaded to denote set
membership when an operand denotes a set.

6

The function first calls the GSMC module in order to
find an appropriate geometric model for the query result
type and construct an object structure that encloses the
result set. The algorithm for GSMC is presented below in
Section 5.

The system has information about the GSMs required
to contain the query result. It automatically determines
which of these models can be containers for the particular
query result by using the relationships between types.
Since more than one GSM is possible for certain result
types, EMQ uses a system table that prioritizes the models
in order to resolve ambiguities. In our example, data of
type Face_surface can be contained in several geometric
shape models and EMQ prioritizes the least limiting
Shell_based_surface_model.

The user can override the automatic selection of the
GSM by explicitly specifying the name of the model as an
optional second argument of export_model:

export_model (Bag of Entity query_result,
Character geom_model)
After creating the GSM structure, the necessary root

objects of the CAD model are added by the root object
generator. The root of the model is passed to the transitive

closure generator that collects all objects composing the
complete CAD model. For the example query this means
that Plane objects will be added to the model together
with Face_surface objects because of the face_geometry
relationship.

The collected object set is then sent to the STEP
Exporter, which creates a Part 21 data exchange file
encoding the model. The CAD system visualization of the
model containing only the plane faces of the tail turbine
component of the ship as selected by our query can be
seen in Figure 5b.

In a similar way we can extract all faces with planar
geometry and more than four edges in some of their
boundaries from the tail turbine component (Figure 5c),
combining in one query structural, geometrical, and
topological criteria:

export_model(select fs
 from ST_face_surface fs, ST_plane pl,
ST_edge_loop l
where fs =
entclosure(get_component("s1_tail_turbine"))
and face_geometry(fs)= pl and
bound(bounds(fs)) = l and count(edge_list(l))>4);

Face_surface

face_geom etry >

Surface

Plane

E lem entary_
surface

Point

Cartesian_
point

position >

Legend:

Entity_nam e
 a ttribute type

S ing le ob ject

Entity re la tionship > Relationship w ith log ica l d irection

Inheritance

P lacem ent

Axis2_
placem ent_3D

location >

Face

Figure 5 (a) Tail Turbine, (b) Plane faces in Tail Turbine, (c) Plane faces with more than 4 edges
in Tail Turbine

Figure 4EER diagram of subset of AP203 for the examples

7

5. Model Completion

In this section we will consider in detail the model

completion framework and, in particular, the algorithm for
geometric model completion.

5.1 Geometric Shape Model Completion

Geometric model completion is needed for geometrical
and/or topological query results. STEP standards require
this type of data to be enclosed by a structure rooted in
some GSM, such as Shell_based_surface_model,
Geometric_set and Manifold_solid_brep explained in Sec.
3 and illustrated in Figure 6. Different parts of the
standard define different valid geometric models; for
example, Face_based_surface_model is included in the
AP214 schema, but is not used in AP203. Since the choice
of the container for the query result is application
dependent, we provide the system with information about
the valid GSMs in a generic way through a system
function called priority table:

valid_geom_models() -> Vector of Type t;

The system administrator shall set the function value
to a vector (ordering) of all types representing GSMs for a
particular standard schema ordered by how general the
models are.

Since different GSMs are appropriate for different
kinds of geometric and topological data, the work of

GSMC depends on the type of the query result. The
system needs knowledge of which GSM is appropriate for
every kind of geometric and topological data. Following
the relationships between types in the database schema,
the system automatically determines which of the GSMs
can be a root for the enclosing structure of the particular
query result. The fact that more than one GSM is possible
for certain result types is resolved through an ordering of
the models by priority in the value of the
valid_geom_models() function. GSMs that are less
restrictive according to STEP standard constraints have a
higher priority.

The example query on page 9 returns a collection of
Face_surface objects. From the diagram in Figure 6 we
see that possible GSMs for a Face_surface object are
Shell_based_surface_model and Manifold_solid_brep.
The system chooses the first one since it has fewer
constraints and precedes the other in the priority table.
The system automatically finds a path through the schema
from the GSM type determined to the query result type,
creates instances of the types along this path, and connects
these instances by setting functional relationships. In this
way a new structure is created that contains the query
result and has a root of GSM type. In our example, the
system finds a path from Shell_based_surface_model
through Open_shell to the result type Face_surface,
creates one instance of each (except the result type), and
connects the Shell_based_surface_model instance to the
Face_surface result objects by setting the sbsm_boundary
and cfs_faces.

R ep rese n ta tio n _ ite m

T o p o lo g ica l_ re p re sen ta tio n _ ite m

S h e ll_ b ase d _
su rfa ce _ m o de l

F a ce_ su rfa ce

F a ce

C o n ne c te d _
fa ce _ se t

O p e n _ sh e llC lo se d _ she ll

G e om e tr ic_se t S o lid _ m o d e l

M a n ifo ld _so lid _ b re p

S u rfa ce

P o in t

C u rve

e lem en ts >

sb sm _ bo u n d a ry >

< fa ce _ g e om e try

c fs_ face s >

ou te r >

G e o m e tr ic_ re p re sen ta tio n _ item

S he ll

G e o m e tr ic_ se t_ se lec t U n io n o f e n tit ie s (se lec t typ e)Le g e n d :

Figure 6. Subset of AP203 and AP214 illustrating model completion

8

There may at times be several paths when searching
for one that connects the GSM and the query result type.
In the example above there are ambiguous paths between
Shell_based_surface_model and Face_surface, and the
system does not know whether to choose the one through
the Closed_shell type or the one through the Open_shell
type. The GSMC therefore contains an ambiguity table as
guidance for how to relate types when there are
ambiguities.

amb_table(Type tstart, Type tend) -> Type t;
The ambiguity table specifies the next edge in the path,

given the start and end types. In the simplified schema in
Figure 6, the ambiguity table contains an element for the
path from Shell_based_surface_model to Face type
through the Open_shell type.

Queries returning objects of certain GSM types
(geometric_set, manifold_solid_brep, etc.) do not require
geometric completion. Thus, when the system
automatically recognizes such types using the model
priority table, it directly calls the ROG and TCG modules.

5.2 Algorithm for GSM completion of CAD
data query

Figure 7 presents the main steps in the algorithm for
the geometric model completion of a given query result.

The algorithm consists of three steps: determine the

GSM type for the particular query result, search the path
between the GSM type and the query result type, and
construct the object structure enclosing the query result.
The root of the constructed structure is then sent to the
ROG module (section 5.4).

The goal of the first step is to find a GSM type
appropriate for the root of the enclosing object structure.
The second step searches for a path between this type and
the query result type. The algorithm used is a graph
algorithm for an instance of the single-pair path problem
[6] with additional modifications. The graph G = (V, E)
has a set of vertices V that correspond to entity types in a
given EXPRESS schema. The set of edges E includes the
functional relationships between types in V. Since the
functional relationships have logical direction, the edges
in G are oriented:

E = {f t→ u}, t, u∈V;
The graph is defined in a generic way in the system as

follows:
- metaqueries to the metatype Type provide the

definition of vertices V;
- the set of edges is modeled by a derived metafunction

contain_types:
Contain_types(Type t)-> bag of <Type u, Function f>;
The function returns a pair <Type, Function> for each

functional relationship defined on the argument type that
connects it to other entity type, including functions whose
result is an array or a union type since they can have an
entity type as an element.

Modifications of the basic single-pair path algorithm
are needed because of type inheritance and ambiguity
when more than one path is possible. Let A and B be
entity types for which a functional relationship is
established in the schema: f A→ B. The functional
relationships are inherited: for each type A’ subtype of A,
the set of the functional relationships on A’ includes fA→ B
although f is defined only once - on type A. This property
is automatically provided by the system through the
inheritance mechanism. The functional relationship f A→ B
is also a relationship to every type B’ that is subtype of B,
since every instance of B’ is an instance of B. The
inheritance of the function result type is not automatically
provided and must be modeled by the algorithm or by the
edge definition.

Another modification of the algorithm is needed
because of the ambiguity. Since the algorithm should
provide exactly one path for the construction in step 3, it
needs tools for resolving ambiguity when more than one
path exists for a given pair of vertices. We assume that
different paths can have different values from the GSMC
point of view. Instead of arbitrarily choosing one of the
possible paths, the algorithm checks the ambiguity table to
recommend a path between the current pair of vertices.
This check is required only when more than one edge
exits the current vertex and, therefore, the table contains

Input: set of database objects that are result of an ad
hoc query.

Output: the root GSM object of the constructed object
structure that encloses the query result.

Algorithm:
1. Analyze the query result to determine whether it

needs a model completion. If model completion is
needed:

1.1. The user has provided a GSM type as an
argument. Either check its validity and continue
with step 2, or raise an error message when the
type is not a valid GSM;

1.2. The GSM is not provided. Run the algorithm in
step 2 for one or more valid GSMs starting with the
model with highest priority. Stop when an
appropriate GSM has been found or when all
models have been checked without success.

2. Search a path in the entity type graph between a
valid GSM type and the query result type (we
assume that the objects in the query result have the
same type).

3. Construct an object structure with a root that is an
instance of a GSM type using the path found in
step 2.

Figure 7 The algorithm for the geometric
shape model completion of the query result

9

elements for only such pairs of vertices. The function
Recommended_path(Type t, Type q) checks the contents
of the ambiguity table for the current pair of vertices and
returns a pair < u, f t→ u > of the preferred vertex u (type)
and the edge (function) to it where the path should
continue.

In the pseudocode for searching the path in Figure 8, we
assume that a global list variable P is defined in order to
store pairs of kind < t, f t→ u > that define the arcs f t→ u in
the path found. A new arc is appended at the end of the
list (Append (P,x)) after previous successful recursive
calls of Search_path function have already constructed the
rest of the path to the end_type. As a result the list P starts
with the arc leading to the end_type as needed by the next
step.

The algorithm for the third step, presented in Figure 9,
constructs an object structure that encloses the query
result. The object structure is built in a bottom-up fashion.
The list P is processed from the beginning using Pop(P)
operation. For each pair < t, f t→ u > in the path P an
instance of type t is created and the functional relationship
f t→ u is set to the object of type u created in the previous
step. The first “lowest” functional relationship is set to the
query result objects. The output is the root of the

constructed object structure, which is of the type specified
in the first step GSM type. The algorithm presented here is
simplified since the setting of the functional relationships
of kind 1:1 and 1:M require special treatment.

In the current implementation, the analysis of the
possible GSMs and the search for the path between types
in the schema do not take into account the STEP standard
facility for constraints that express restrictions on
properties to ensure data validity and logical consistence.
Through the GSM priority table and the ambiguity table
we implement a way to provide the system with
knowledge of how to work correctly, replacing
information in the constraints. Constraints could be used
to ignore certain formally incorrect geometric models.
However, a large number of requirements are formulated
only as informal propositions and the STEP standard does
not provide formal algorithms (if such exist) to check
them. For example, the requirement that the union of the
domains of the faces that are contained in a
Connected_face_set object should be connected is
described only in the form of an informal proposition.
Furthermore, the constraints provide restrictive but not
constructive information for how to build a GSM (based
on the fact that the construction is made always by a CAD
or other engineering system). In addition, the experiments
have shown that CAD systems accept (on different levels)
models in which formal constraints and/or informal
propositions are not satisfied.

It is thus impossible to assess the correctness of a
constructed GSM structure if only STEP constraints are
used, even if EMQ would have supported formal
constraints. We instead currently rely only on the GSM
priority table and the ambiguity table to automatically
construct the model completion, which, as the experiments
have shown, is accepted by the CAD systems.
5.3 Root Object Generator

Input: current type and end type to which a path is
looked for;

Output: boolean value True if a path exists and False
otherwise. Global variable P contains the arcs in
the path found;

Function:
boolean Search_path (t, end_type)
 S ← contain_types(t)
 if S = 0 return False
 for each s ∈ S, s = <u, f t→ u >
 if (u = end_type) or Subtype(end_type, u)
 Append(P, <t, f t→ u >)
 return True
 if S=1
 Extract element u from S
 else u ← Recommended_path(t, end_type)
 S1 ← S - {u}
 if Search_path(u, end_type)
 Append(P, <t, f t→ u >)
 return True
 else for each u ∈ S1
 if Search_path(u, end_type)
 Append(P, <t, f t→ u >)
 return True
 return False

Figure 8 Algorithm for recursive searching for
a path between types in the entity type graph

Figure 9 Construction of the object structure
enclosing the query result

Input: the query result and the path specification
stored in the global variable P.

Output: the GSM root of the builded structure
enclosing the query result.

Function:
GSMtype Create_model(query_result)
 e ←query_result
 while P ≠ 0
 <t,f> ← Pop(P)
 create o of type t
 f(o) ← e
 e ← o
 return e

10

A CAD model of a product shape requires specific
types of the root objects defined in the standard. For
example, both in AP203 and AP214 the main root object
is an instance of type Shape_representation (Figure 10).
As all GSM types are subtypes of the Representation_item
(Figure 6), the GSM structure enclosing the query result
has to be connected to the root object through the
functional relationship items. Other attributes of the root
object, such as the dimensionality of the coordinate space
and measurement units, describe characteristics of the
context in which the shape geometry is defined.

S h a p e _ re p re s e n ta t io n R e p re s e n ta t io n _ ite m

 ite m s >

Figure. 10 Root object structure

This root object is in fact sufficient to construct a

model that the experimental CAD systems import with
warning messages about missing definitional data. In
order to construct a model that is accepted by the CAD
without any warnings, a wider set of root objects has been
implemented as well. They describe a fictional product
part and are beyond the present scope of discussion.

5.4 Transitive Closure Generator

Finally, the model has to be closed, which means that
all assigned attributes of the exported objects must also be
exported. This is a transitive closure operation that,
according to the STEP/Part 21 encoding requirements,
follows every functional relationship defined in the
STEP/EXPRESS schema. The algorithm for the transitive
closure is generic and does not depend on the query result
or the particular EXPRESS schema.

Input parameter for the TOG is the root object created
by the previous module. The TOG collects all objects that
compose a complete model capable of being represented
in the CAD system. This set includes the query result,
GSMC objects, root objects, and all other objects
reachable through functional relationships from these
objects. For example, in our query the objects of type
Face_surface require the objects of type Surface that are
values of the functional relationship face_geometry to be
included in the model. The latter objects in their turn
require objects of type Axis2_placement_3D to be added
as values of the functional relationship position, and
Cartesian_point objects to be included as values of the
location function. The object closure set is then passed to
the STEP/Part-21 file exporter for encoding into an
exchange file.
6. Conclusions and Future Work

The main results of the current work are the following:
An ad hoc OO query facility has been developed for

data in CAD systems.
A query result can be exported to a CAD system using

an ISO standardized format (STEP Part 21).
By means of the exportation facility the result of a

query can be visualized or analyzed through a CAD
system.

A model completion algorithm is implemented for
extending a query result such that it becomes a model
acceptable by a CAD system.

The mediator facilities permit queries combining CAD
data with other types of data.

The model completion algorithm is driven by the
STEP/EXPRESS information model complemented by
two system tables. One prioritizes possible geometric
shape models, and the other resolves ambiguous paths
between types in the information model.

Possible future work includes:
Implementation of remaining EXPRESS features as

functions, procedures, etc., needed for constraint
checking. The constraints in STEP standards would
complement but not replace our model completion system
tables.

Investigation of the ability to specify queries with
functions that make advanced calculations over
engineering data. The foreign function mechanism of
Amos II can be used for this purpose.

Enhancing performance by developing new data
representations and indexing techniques for complex
EXPRESS data structures.

7. References

[1] R. Ahmed and S.B. Navathe: Version Management of

Composite Objects in CAD Databases, SIGMOD’91,
218-227, 1991.

[2] L. Bouganim, T.C-S. Ying, T-T. Dang-Ngoc, J-L.
Darroux, G. Gardarin, and F. Sha: MIROWeb:
Integrating Multiple Data Sources Trough
Semistructured Data Types. In Proc. of the 25th VLDB
Conference, Edinburgh, Scotland, 1999.

[3] A.P. Buchmann and C.P. de Celis: An Architecture and
Data Model for CAD Databases, In Proc. of the 11th
VLDB Conference, 105-114, 1985.

[4] D.S. Batory and W. Kim: Modeling Concepts for VLSI
CAD Objects. ACM Trans. on Database Systems,
10(3):322-346, 1985.

[5] M. Carey, L. Haas, V. Maganty, and J.Williams:
PESTO: An Integrated Query/Browser
for Object Databases. In Proc. of the 22nd VLDB
Conference, pages 203-214, Mumbai, India, 1996.

[6] T. Cormen, C. Leiserson, R. Rivest, Introduction to
Algorithms, The MIT Press, 1990.

[7] G. Fahl and T. Risch: Query Processing over Object
Views of Relational Data, The VLDB Journal, 6 (4):
261-281, 1997.

11

[8] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.
Rajaraman, Y.Sagiv, J. Ullman, V. Vassalos, and J.
Widom. The TSIMMIS Approach to Mediation: Data
Models and Languages. Journal of Intelligent
Information Systems (JIIS), Kluwer, 8(2): 117-132, 1997.

[9] L. Haas, D. Kossmann, E.L. Wimmers, and J. Yang:
Optimizing Queries across Diverse Data Sources. In
Proc. of the 23rd VLDB Conference, pages 276-285,
Athens, Greece, 1997.

[10] M. Hardwick and D. Spooner: The ROSE Data Manager:
Using Object Technology to Support Interactive
Engineering Applications, IEEE Trans. on Knowledge
and Data Engineering, 1(2): 285-289, 1989.

[11] T. Härder, G. Sauter, and J. Thomas: The intrinsic
problems of structural heterogeneity and an approach to
their solution. The VLDB Journal, 8: 25-43, 1999.

[12] International Organization for Standardization:. ISO
10303-14, Industrial automation systems and integration
- Product data representation and exchange- Part 14:
Description methods: The EXPRESS-X Language
Reference Manual. ISO Document TC 184/SC4/WG11
N117, 2000.
 http://www.nist.gov/sc4/step/parts/part014/CD/doc/

[13] International Organization for Standardization: ISO
10303-42:2000, Industrial automation systems and
integration - Product data representation and exchange -
Part 42: Integrated generic resources: Geometric and
topological representation. Second Edition. ISO
Document TC 184/SC4/ WG12 N 540, 1994.
http://www.nist.gov/sc4/step/parts/part042e2/is/n540/

[14] International Organization for Standardization: ISO
10303-1:1994, Industrial automation systems and
integration - Product data representation and exchange -
Part 1: Overview and fundamental principles, 1994.

[15] International Organization for Standardization: ISO
10303-203:1994, Industrial automation systems and
integration — Product data representation and exchange
— Part 203: Application protocol: Configuration
controlled 3D design of mechanical parts and
assemblies, 1994.

[16] International Organization for Standardization: ISO
10303-214:1998, Industrial automation systems and
integration - Product data representation and exchange -
Part 214: Core Data for Automotive Mechanical Design
Processes. ISO Document TC 184/SC4/WG3, 1996.

[17] International Organization for Standardization: ISO/DIS
10303-21:1999, Industrial automation systems and
integration - Product data representation and exchange -
Part 21: Clear text encoding of the exchange structure.
ISO Document TC 184/SC4/WG11 N102, 1994.

[18] V. Josifovski and T. Risch: Functional Query
Optimization over Object-Oriented Views for Data
Integration, Journal of Intelligent Information Systems
(JIIS), 12(2-3), 1999.

[19] V. Josifovski and T. Risch: Integrating Heterogeneous
Overlapping Databases through Object-Oriented
Transformations, In Proc. of the 25th VLDB Conference,
Edinburgh, Scotland, 1999.

[20] D. Koonce, L. Huang, and R. Judd: EQL an EXPRESS
Query Language, Computers and Industrial Engineering,
35(1-2),1998.

[21] H.P. Kriegel, A. Muller, M. Pötke, and T. Seidl: DIVE:
Database Integration for Virtual Engineering, Demo
session on 17th International Conference on Data
Engineering, Heidelberg, Germany, 2001.

[22] A. Kemper and M. Wallrath: An Analysis of Geometric
Modeling in Database Systems, ACM Computing
Surveys, 19(1), 1987.

[23] L.Liu and C. Pu: An Adaptive Object-Oriented
Approach to Integration and Access of Heterogeneous
Information Sources. Distributed and Parallel
Databases, Kluwer, 5(2), 167-205, 1997.

[24] H. Lin, T. Risch, and T. Katchaounov: Adaptive data
mediation over XML data. To be published in special
issue on "Web Information Systems Applications" of
Journal of Applied System Studies (JASS), Cambridge
International Science Publishing, 2002.

[25] E. Muller, P. Dadam, J. Enderle, and M. Feltes: Tuning
an SQL-Based PDM System in a Worldwide
Client/Server Environment. In Proc. of the 17th
International Conference on Data Engineering,
Heidelberg, Germany, 2001.

[26] K. Orsborn: Management of Product Data Using an
Extensible Object-Oriented Query Language,
International Conference on Data and Knowledge
Systems for Manufacturing and Engineering, Phoenix,
Arizona, USA, 1996.

[27] PTC Corporation: Pro/ENGINEER,
http://www.ptc.com/products/proe/index.htm, 2001.

[28] T. Risch and V. Josifovski: Distributed Data Integration
by Object-Oriented Mediator Servers, Concurrency and
Computation: Practice and Experience J., 13(11), John
Wiley & Sons, 2001.

[29] T. Risch, V. Josifovski, and T. Katchaounov: AMOS II
Concepts, Department of Information Science, Uppsala
University, 2000, http://www.dis.uu.se/~udbl/amos/.

[30] SDRC Corporation: Introducing I-DEAS.
http://www.sdrc.com/ideas/index.html, 2001

[31] D. Schenck and P. Wilson: Information Modeling: The
EXPRESS Way. Oxford University Press, 1994.

[32] A. Tomasic, L. Raschid, and P. Valduriez: Scaling
Access to Heterogeneous Data Sources with DISCO.
IEEE Transactions on Knowledge and Date
Engineering, 10(5), 808-823, 1998.

[33] G. Wiederhold: Mediators in the architecture of future
information systems, IEEE Computer, 25(3), 38–49,
1992.

