
ABSTRACT

Typical data management problems arise
in control applications when the controlled
environment becomes complex and large
volumes of data are involved. This paper
addresses this problem by embedding an
active object-relational database in a con-
trol system architecture. The database
stores an abstract model of the controlled
environment. A control application lan-
guage, tightly integrated with the query
processor, is used for high-level specifica-
tion of operations. A set of control algo-
rithms running on a separate real-time
kernel performs the actual closed loop con-
trol of the external environment. The primi-
tive operation of the control application
language is an update of the database that
will trigger the control algorithms. In this
way our architecture combines cyclic con-
trol algorithms and an event driven opera-
tion language with data management
capabilities. The integrated architecture
makes extensive use of the active rule facili-
ties in the database, both in the execution
of the control application language and to
initiate appropriate control algorithms in
the real-time kernel. We discuss practical
experiences of building a unified control
system with tightly integrated queries and
active rules.

INTRODUCTION

A computer based control system must
sense the environment and directly influ-
ence it through actions. Such systems are
subject to time constraints related to the
environment in which they operate.
For instance, failures, like dropped objects,

may occur unless a conveyor belt is
stopped fast enough. Real-time system re-
search has focused on developing mecha-
nisms to support predictable execution of
periodic control tasks with minor data de-
pendencies [Bur90]. These traditional real-
time instruction formalisms are not well
suited for composite control systems that
involve large and more complex data sets
[Gra92] [Lob93] [Lob94]. This paper pre-
sents an implementation of a control sys-
tem architecture, CAMOS, which combines
traditional control algorithms and high
level operations using an embedded object-
relational database as middleware. The
database stores an abstract model of the
controlled environment and information
about the current state of the execution. A
control application language, CAMOS(L),
used for describing high level operations,
is tightly integrated with the database
query language. In this way, CAMOS(L)
provides expressions over combinations of
conventional data, process data, execution
states, sensor values, information from
control algorithms etc. The database pre-
sents a highly heterogeneous environment
with many data sources as a homogeneous
programming environment to the control
application programmer.

A set of control algorithms running on a
separate real-time kernel performs the ac-
tual closed loop control of machinery and
equipment in the external environment.
Active rules in the database are used to in-
terface the model of the environment, as
stored in the database, and the control al-
gorithms. In this way our architecture
combines cyclic control algorithms and an
event driven operation language with data

USING AN EMBEDDED ACTIVE DATABASE IN A

CONTROL SYSTEM ARCHITECTURE

Falkenroth, E.T., Risch, T., Törne A.

Dept. of Computer and Information Science, Linköping University
S-581 83 Linköping, Sweden

E-mail: {esafa, torri, andto}@ida.liu.se

management capabilities. The database
provides the architecture with general so-
lutions to data management, complexity
and interoperability problems. The data-
base query optimizer improves the perfor-
mance of the system. A motivating scenar-
io [Lew94] with a production cell
consisting of robots, machinery, conveyor
belts, and sensory equipment etc. will be
used in the paper to illustrate problems,
concepts, and the new architecture.

The production cell in Fig.1 contains a
press that processes metal parts. The
parts are placed in the press by a two
armed robot. Two conveyor belts and a
crane transport the parts to and from the
production cell. Processed parts are
placed on a pallet. The production cell has
several sensors providing information
about the environment and the machines.
Most sensors return a boolean valued re-
sult, like "press is closed", but some
sensors return real values, like "the ro-
tation angle of the robot base". A
number of actuators control the cell. Typi-
cal low level operations are "start an
electric motor" or "energize an
electromagnet". Some of these opera-
tions are time critical, like the running
and positioning of a conveyor belt. Other
operations describe the desired behaviour
on a higher level, like "first move the
rotary table to pick-up position,
and then, when the previous part
is pressed, fetch the next part
from the rotary table". These high
level operation sequences gives rise to
rather complex temporal dependencies be-
tween the operations, the physical process-
es in the environment and the control
algorithms.

In addition, the controlling software must
restrict the movements of the machines to
safe areas and avoid collisions.

We argue that the database centered con-
trol system architecture can be used to
address problems represented by the pro-
duction cell scenario. This type of ad-
vanced integrated control applications
puts new demands on database technolo-
gy such as: high performance, predictabili-
ty, active rules, and a foreign function
interface. In this paper, we show how the
database can be used to store an abstract
model of the external environment. We
will also present examples of how the con-
trol application language based on the
query language can be used as a high lev-
el operation programming language. We
discuss how the active rule facility in
AMOS [Skö94][Ris93] is used to monitor
the state of the environment as stored in
the database and how the appropriate con-
trol algorithms are initiated in a separate
real-time kernel.

BACKGROUND AND RELATED WORK

Control applications require capabilities
to manage long-running activities
[Gra92]. In the literature there are sever-
al suggestions for new execution models
to allow control of long-duration activities,
which in themselves may consist of an ar-
bitrary number of transactions (nested,
chained, conditional etc.), e.g. SAGAs
[Gar87][Gar90], ConTracts [Reu90], and
solutions with relaxed transaction models
[Chr93] [Geo95].

1. Metal processing plant

Press

Rotary
table

Conveyor belt

Upper conveyor belt

Crane

Pallet

Robot

Press

Workflow management systems (WFMS)
[Rus94][Geo95] are used for specification
of data and control flow between different
activities (transactions). A workflow is typ-
ically a collection of operations organized
to accomplish some typical business pro-
cess such as the processing of loan applica-
tions or purchase orders. WFMS define the
order of task invocation and conditions un-
der which tasks must be invoked, i.e. task
synchronization and data flow. A more
flexible control structure is achieved using
ECA rules to organize long-running activi-
ties [Day90]. Our approach uses a special-
ized control application language that
hides the details about rules, rule activa-
tions and deactivations. The high level op-
erations in the control application
language can be viewed as an efficient
workflow specification of activities in con-
trol applications. The difference compared
to WFMS is that we provide means for dy-
namic scheduling and synchronization
with external environment.

Many papers on hierarchical control sys-
tem architectures refer to a "global data-
base" very briefly. None of the
architectures reviewed by Nat. Inst. of
Standards and Technology [Kra93] use an
embedded query language or active rules
in the execution model. The original ideas
for a database centered control system ar-
chitecture was presented in ‘Active Object
Oriented Databases in Control Applica-
tions’ in the proceedings of the 19th Euro-
micro conference [Lob93]. The approach
has its roots in two different research plat-
forms developed at the Linköping Univer-
sity: the Active Mediator Object System
(AMOS) and A Robot and Manufacturing
Instruction System (ARAMIS).

A ROBOT AND MANUFACTURING INSTRUCTION SYSTEM

The ARAMIS layered hierarchical control
system architecture [Hol92][Lob91]
[Lob94] is based on a graphical language,
which is a hybrid between a production
rule view and traditional imperative pro-
gramming languages. The goal was to in-
troduce abstraction levels and simplify
programming of the different parts of the
software - like high-level operation

descriptions, control software, and device
drivers. The philosophy involves a world
model (WM), which is a state model of the
objects in the environment. This world
model allows programmers to describe
high level interactions by using well-de-
fined and simplified world model objects.
The highest layer in the architecture coor-
dinates activities in the external environ-
ment using the world model as a
blackboard [Hay85] to communicate with
the control level layer. The control layer is
closer to the environment process and acts
as a servo mechanism using the world
model as a reference value. Finally, a
physical layer implements the I/O-inter-
face to actual sensors and actuators. The
ARAMIS system uses a data repository to
represent the world model. In the work
presented here, the simple data repository
has been replaced with a main-memory
based object-relational database, AMOS,
whose query language and active rule fa-
cilities are used extensively by the control
system.

THE ACTIVE MEDIATOR OBJECT SYSTEM (AMOS)

AMOS [Fah93] is a research platform for
experimenting with specialized database
systems. It is a fast main-memory object-
relational database with a data dictio-
nary, a query language, transactions, data-
base procedures, and active rules[Skö94].
The query and modeling language of
AMOS, AMOSQL, is a derivative of OSQL
[Fis89] and is based on the DAPLEX func-
tional data model [Shi81]. The system sup-
ports high level object-oriented
abstractions and declarative queries for
extracting and manipulating data. A for-
eign function interface allows external
programs and drivers to be linked to
AMOS. A cost based optimizer optimizes
the queries [Lit92].

The AMOSQL modeling language has ac-
tive rules facilities that detect updates to
the database or to a data source [Fah93]
[Ris93].

Active rules in AMOS has the format:
when query(parameters)

do procedure(parameters)

A rule condition can be any AMOSQL que-
ry and specifies when the rule should be
triggered. The action part can be a proce-
dure call to a foreign function or any data-
base operation. The rules use set-oriented
deferred condition-action semantics
[Wid90]. Rules are used in control applica-
tions, to monitor conditions over combina-
tions of sensor values and conventional
data, which cause mode changes or inita-
tion of activities in the application.

DATABASE CENTERED CONTROL
SYSTEM ARCHITECTURE

An increasing number of control applica-
tions require database-like functionality.
The management of data becomes a prob-
lem when the control applications grow,
become complex, and operate in environ-
ments with large volumes of data [Gra92].
Even in the simple scenario in the intro-
duction, there are many types of informa-
tion. There is information about
machines, tools and the actual manufac-
turing process (i.e. process data). Further-
more, there is information about
resources (such as inventory data), capaci-
ty, organization, production planning, sta-
tus, produced amounts, and economical
information. Matters are further compli-
cated by the fact that there are many
types of users with different needs: Ma-
chine operators, management, and the
control application itself need to access
and manipulate information. The environ-
ment in which the control application op-
erates can itself be very complex and
heterogeneous with many diverse sub-
systems that need to exchange informa-
tion. Typically, the environment may
contain sensors, actuators, file systems,
communication subsystems, and conven-
tional databases containing e.g. inventory
data.

CAMOS (Control Application Mediator Ob-
ject System) aims at an efficient and gen-
eral approach to modeling and data
management in control applications
where the data modeling language of
AMOS is used to model and organize infor-
mation about the environment.

Basically, a control application system
and a database system can be combined
into a single unified architecture in the fol-
lowing two ways:

• By embedding the database queries and
the active rules into the control applica-
tion. The database will be a tightly inte-
grated system function from the control
application point of view. All database
facilities are made available in the ex-
tended control application language.
Query results can be used directly with-
out sending messages or translation of
the data format if a unified type system
is used and the control application and
the query processor can operate in the
same address space.

• By coupling database and control appli-
cation components as parallel, commu-
nicating subsystems. In this approach
the database is isolated from the control
application but the systems can commu-
nicate and influence each other. Unfor-
tunately, typical high level operations
executing in the control application in-
teract heavily with the world model
stored in the database. How efficient
this type of integration will be depends
on the capacity of the communication
channel and on the amount of informa-
tion that has to be exchanged.

In the CAMOS project, it was decided to em-
bed the object-relational database AMOS
into the control system architecture (alt.
1). We have built a control application lan-
guage around the query processor and the
active rule facility in AMOS. The data-
base operates in the same address space
as the control application. In particular,
we aimed to overcome the impedance mis-
match problem between traditional pro-
gramming languages and database
management systems by providing a uni-
fied type system and tight integration of
the query processor. The timeliness of the
high level operations involving large vol-
umes of data is normally not a critical is-
sue. All time-critical operations execute in
a separate real-time kernel.

The controlling software consists of the
CAMOS operation manager, the embedded
AMOS database, and a real-time kernel
[Hol92]. The AMOS database is used to
store an abstract object model of the exter-
nal environment, called the world model
(WM). In the production cell example it is
a simplified representation of the state of
materials and of the equipment. The world
model gives the programmer opportunity
to ignore those aspects of low level control
algorithms that are not relevant for the
definition of high level operations.

The active behavior of the world model ob-
jects is modeled by a set of deterministic fi-
nite state automata (DFA) stored in the
database. Each node in the DFA

corresponds to a state of an external ob-
ject and each transition corresponds to
the running of a control algorithm in the
separate real-time kernel.

The control application language
CAMOS(L)is used as a high level operation
programming language and is compiled in-
to runtime code, database queries, active
rules, and database update transactions.
The runtime code describes the sequences
of possibly concurrent operations and in-
teroperation dependencies. The queries
are used to retrieve and derive informa-
tion about the environment as stored in
the database.

2. CAMOS Database centered architecture for control

AMOS DATABASE

REAL-TIME
KERNEL

Embedded active object-relational
dbms stores abstract view of the
external environment (WM) Actuators

Sensor
readings

Database
Events and

updates

Initialize
control
algorithms

Query

Callbacks

Queries
Updates

Rule

process

SCHEDULER
RULE

COORDINATOR

OPERATION
INTERPRETER

CAMOS OPERATION MANAGER

WORLD MODEL DFA

ACTIVE
RULES

COMMUNICATION

MANAGER

L
O
W

L
E
V
E
L

C
O
N
T
R
O
L

A
L
G
O
R
I
T
H
M
S

CAMOS(L)

results

Press

Rotary
table

Conveyor belt

Upper conveyor belt

Crane

Pallet

Robot

Press

ENVIRONMENT

CAMOS(L)

MACHINE
OPERATOR
(ad hoc
queries)

CODE
RUNTIME

control

External
filesystems

A
M
O
S

Other AMOSes

The execution of high level operations is
synchronized with the changes in the state
of the world model using the active rule fa-
cility of AMOS.

Database update statements are primi-
tive operations in the language. Basically,
the control application language coordi-
nates database update transactions in the
WM. If any of these updates trigger a
transition rule in a world model object
DFA, the communication manager sends
a message to the real-time kernel that ini-
tiates a control algorithm. The control al-
gorithm will influence the environment
and the state changes in the environment
will be sensed causing further updates to
the database. This feedback works like a
servo mechanism, keeping the environ-
ment consistent with the world model.

We have developed a general description
model for operations and processes in con-
trol applications within the context of
AMOS. The database stores operation de-
scriptions and the state of the currently
executing operations (processes). The oper-
ation descriptions and the processes are
first-class objects in the database. This
means that the process objects control the
execution and are simultanously available
for querying. Therefore, machine operators
can state ad hoc queries about the current
execution state as well as the world model
state.

The runtime components are a scheduler,
a rule coordinator, a communication man-
ager, and an interpreter for CAMOS(L)
runtime code. A compiler for the control
application language translates expres-
sions and conditions in the operation de-
scriptions into database queries and
active rules. The scheduler is a round rob-
in scheduler that handles synchronization
with external events and temporal depen-
dencies between operations. The rule coor-
dinator controls activation and
deactivation of active rule instances ac-
cording to executing operations. The com-
munication manager handles an ordered
queue of messages. Coordination with the
real-time kernel is achieved through a
command and status protocol which

channels status messages when control al-
gorithms are terminated or aborted. If an
algorithm has caused a change of a state
variable stored in the database, the com-
munication manager will send an update
statement to the database. The interpret-
er is used to prepare new suboperations
processes according to CAMOS(L) runtime
code in the database.

OVERVIEW OF THE CONTROL
APPLICATION LANGUAGE

This section contains a brief review of the
basic philosophy of the control application
language, CAMOS(L), being used as high-
level operation programming language.
CAMOS(L) is a successor to the program-
ming language used in ARAMIS [Lob93]
and addresses the need for data manage-
ment in control applications by extending
its rule based activity language with que-
ries and transactions.

The basic concepts of the language are
composite operations, iterative opera-
tions, primitive operations, temporal de-
pendencies, and expressions. The
composite operations and iterative opera-
tions are based on procedural abstraction,
treating a group of possibly concurrently
executing operations as a single unit.
When initiated, iterative operations re-
peatedly perform sets of operations as long
as the iteration condition is satisfied. Com-
posite and iterative operations can be de-
composed into preconditioned groups of
suboperations that are dynamically sched-
uled. This provides alternative behavior of
operations depending on which group pre-
conditions are satisfied. The subopera-
tions can be partially ordered by temporal
dependencies (dependency statements),
stating that some operations must be exe-
cuted in sequence. Operations that do not
have temporal dependencies will execute
in parallel. The temporal dependencies
can be said to introduce constraints on
possible schedules for a composite opera-
tion at runtime. Note that the dependen-
cies are conditional. The scheduling
depends on the conditions for the suboper-
ations.

The execution is synchronized with the ex-
ternal environment using wait conditions.
Wait conditions, iteration conditions, and
expressions can be parameterized and
may contain aggregate expressions. The
primitive operations in the language are
update transactions in the database, e.g.
suboperation 2b in Fig. 3. The purpose of
the composite operation in Fig. 3 is to si-
multaneously fetch a new part from the el-
evating rotary table and to move the
processed part from the press to the upper
conveyor belt. Suboperation 2b is a primi-
tive operation that will alter the world
model. The DEPENDENCIES declaration in-
troduce a dependency between subopera-
tions 2a and 2b.

THE SYSTEM

The CAMOS system relies on several compo-
nents in the AMOS architecture. This sec-
tion will describe how the different
database facilities (data repository, DDL,
DML, transactions, queries, extensibility
and active rules) are used to implement
the unified control system architecture.

The main function of the database is to
store information about the external envi-
ronment, operation descriptions, and the
current execution state. The information
about the environment originates from
the real-time kernel. The information can
be sensed by running control algorithms,
or be implicitly known (believed) at the

3. An example of an operation with query constructs, temporal depencencies,
suboperations and a wait condition.

4. Object-oriented modeling of machinery

CREATE OPERATION getPressedFetchNew(robot r, e_r_table t, press p)
AS WHEN partsat(p) AND position(p)="open" AND

palletCapacity()>=COUNT((SELECT b FOR EACH part b
WHERE

position(b)=currentPallet()))
IF NOTANY(partsat(upperConveyor())) THEN

1: getpressedpart(r,p)
IF SOME((SELECT b FOR EACH part b

WHERE name(position(b))="e_r_table")) THEN
2a:getnewpart(r,t);
2b:SET referenceElevation(t)=0;
DEPENDENCIES:(2a,2b);

IF SOME(partsat(t)) AND SOME(partsat(p)) THEN
DEPENDENCIES:(1,2a);

CREATE TYPE actuator (name CHARSTRING);

CREATE TYPE rotator (actualRotation REAL, referenceRotation REAL)
SUBTYPE OF actuator;

CREATE TYPE elevator(actualElevation REAL, referenceElevation REAL)
SUBTYPE OF actuator;

CREATE TYPE gripper(actualGripperPosition BOOLEAN ,
referenceGripperPosition)SUBTYPE OF actuator;

CREATE TYPE arm (actualExtension REAL, referenceExtension REAL)
SUBTYPE OF actuator;

CREATE TYPE robot (gripper gripper, /* part-of relations */
upperarm arm,
lowerarm arm,
robotBase rotator) SUBTYPE OF actuator;

CREATE gripper INSTANCES :gripper1,:gripper2;
CREATE arm(gripper) INSTANCES:upperarm(:gripper1),

:lowerarm(:gripper2);
CREATE rotator INSTANCES :robotBase;
CREATE robot(robotBase,upperArm,lowerArm)

INSTANCES :robot1(:robotBase,:upperArm,:lowerArm);
ADD TYPE elevator to :robot1;

time control algorithms terminate in the
real-time kernel. The information is trans-
ferred to the world model (WM) in the da-
tabase using a communication manager.

THE OBJECT ORIENTED WORLD MODEL

The WM is defined using the object-rela-
tional data definition language of AMOS.
An object in the WM represents a mean-
ingful entity in the external environment
— like a robot or a metal part. The
AMOSQL extensible type system is used
to collect entities of similar properties into
classes. Usually, the model of the environ-
ment includes objects with complex inter-
nal structures, which are composed of
many subobjects, typically of another type
(class) [Ors93]. The example in Fig. 4 illus-
trates how composite machinery can be
modeled with part-of relations or using
multiple inheritance. We model a two-
armed robot in the production cell scenario
as an object with four subobjects attached.
Using multiple inheritance, the object is
extended with additional functions (actu-
alElevation and referenceElevation) be-
longing to the elevator class.

INTERFACING TO THE REAL TIME KERNEL

A set of state variables are associated with
the real-time kernel control algorithms
for equipment and machinery. A subset of
these variables are exported to the data-
base, thus introducing abstraction and
separation of shared data in the database
and local data in the control algorithms.
The "actualRotation" in Fig. 4 is an

exported state variable. The interface to
the real-time kernel involves checking if a
transition belongs to a legal sequence of
operations on an object, finding the appro-
priate control algorithm, transferring the
data to the real-time kernel with different
formats, and receiving results from termi-
nating control algorithms.

The objects with active behavior in the en-
vironment are modeled as deterministic fi-
nite state automatas (DFA), which
introduce restrictions on the usage of the
object. Each node in a DFA contains a
node constraint and the transitions are as-
sociated with control algorithms in the re-
al-time kernel that will take the modeled
object from one state to another. When a
sequence of database updates satisfies a
node constraint, the algorithm associated
with the transition to this node will be
scheduled for execution. If there is no
transition to the node with a satisfied node
constraint or there is no node with a satis-
fied constraint, then an error handler
must be invoked. When the algorithms ter-
minate, they report the new values of the
exported state variables to the database.
In this way, the DFA describes restric-
tions on legal transitions for active objects,
and therefore restricts the possible se-
quences of algorithms that can be execut-
ed.

In the example in Fig. 5, the direction of
the crane motor (up, stop, down) can be
directly reversed if it is going up. If it is
going down the motor must be stopped be-
fore the direction can be reversed.

A DFA is modeled in the database as a set
of nodes, a current node, and a set of ac-
tive rules activations that are responsible
for the state transitions in the DFA. The
conditions of the active rules consist of
several parts. The condition must test if
there exists a satisfied node constraint, if
the object is already executing a control al-
gorithm, and that the current node satis-
fies certain constraints. The action part of
the active rule sends a message to the re-
al-time kernel to initiate a previously
downloaded algorithm.

5. Crane modeled with active rules

DOWN
UP

STOP

referenceDirection(crane1)="up"
referenceDirection(crane1)="down"

referenceDirection(crane1)="stop"

:codeD

:codeS

:codeD

:codeS

:codeU

6. Rules controlling the active behavior of a crane

CREATE RULE transition(object o, node n1, node n2, codeId c) AS
WHEN (currentNode(o)=n1 AND

notany(algorithmRunning(o)) AND
nodeConstraint(n2))

DO startTransition(o,c);

CREATE node(name) INSTANCES :uNode("up"),:sNode("stop"),
:dNode("down");

ACTIVATE transition(:crane1,:uNode,:dNode, :codeD);

7. An example of a translated operation wait condition

CREATE FUNCTION cellReady(processId id) AS
SELECT TRUE WHERE

partsat(arg(id,3)) AND
position(arg(id,3))="open" AND
palletCapacity()>=COUNT((SELECT b FOR EACH part b

WHERE
name(position(b))=currentPallet()));

CREATE RULE cellReadyCondition(processId id) AS
WHEN active(id) AND cellReady(id)

DO BEGIN
SET status(id)=:running;
ADD currentProcesses()=id;

END;

In this way, the objects in the world model
are monitored and controlled by the active
rules.

The transition rules are parameterized.
The same generic rule will be used for all
transitions. In AMOSQL, the activation of
a parameterized rule correspond to the
creation of a rule instance with bound pa-
rameters [Ris93]. Fig. 6 shows how the
DFA is represented in the database.

In summary, the invocation of control lev-
el algorithms is not directly expressed in
the control application language. Instead,
CAMOS(L) interacts indirectly with the en-
vironment using the primitive operations
(update transactions). This separates the
control view of the object and the opera-
tions the object is participating in.

QUERIES

The information about the world model
and executing processes is retrieved using
queries. Query constructs are used as
wait conditions on the operations, as itera-
tion conditions, as arguments to sub-oper-
ations, and as DFA node constraints.

The processing of queries is complicated by
the presence of formal parameters in the
operations. The example in Fig. 7 illus-
trates how a wait condition can be rewrit-
ten to a form that use a stored process
representation (the instanciated opera-
tion) to make parameters available to the
query processor. In Fig. 7 a translation of
the wait condition in Fig. 3 is shown. It
consists of two parts; a database query
over the WM which yields a boolean re-
sult and an active rule controlling the op-
eration execution.

THE RUNTIME ENVIRONMENT

In this section we present a logical view of
how the execution of the control applica-
tion language is carried out using the ac-
tive rules. The operation manager
repeatedly carries out the following se-
quence:

1. Data transfer from/to real-time
kernel (communication manager)
2. Processing composite operations
(interpreter)
3. Dynamic scheduling (scheduler)

4. Rule activation/deactivation
(rule coordinator)

5. Rule check (database rule engine)
The interpreter creates a process object for
every composite and primitive operation,
which is then scheduled by the scheduler.
A terminating operation implies deletion
of the corresponding process.

Two basic synchronization mechanisms
depend on the rule check phase:

• Rules that monitor the transitions in a
DFA must be able to detect and react to
changes in the world model. Therefore,
each primitive operation must be fol-
lowed by a subsequent rule check opera-
tion in the database.

• A rule check operation must also be per-
formed after the control algorithms
have terminated and reported the ex-
ported state variables. This will enable
the operation wait conditions to trigger.
Since the rule facility use deferred se-
mantics, the execution model contains
explicit rule check operations.

DISCUSSION

USABILITY OF ACTIVE DATABASE TECHNOLOGY FOR

CONTROL APPLICATIONS

Applications with interacting rules are
hard to develop using a flat active rule
structure. Even a very small number of de-
pendencies between rules will make it dif-
ficult to maintain the system [Wid94].
There is also the issue of interactions be-
tween the controlling software and the ac-
tive rules.

Another problem is that control applica-
tions are highly dynamic. The applica-
tions continuously change focus resulting
in very frequent activation and deactiva-
tion of rule sets. Considering the number
of rules needed in a manufacturing con-
trol system, it would be difficult to use ac-
tive rules alone to control it. Generally, the
ECA and CA rules are too far from the ap-
plication to be used as a programming lan-
guage for control applications.

Therefore, we use a specialized control ap-
plication language and a combination of
active rules and a supervising operation
manager to implement the event based
part of the control system architecture.
The actual condition-action rules are de-
rived from the operation definitions and
therefore hidden from the programmer.
Hopefully this will result in easier mainte-
nance, better understanding of the control
flow and absence of undesired and unan-
ticipated interference between the applica-
tion programming language and a rule
system in the database.

It is important to reduce the workload for
the rule engine in the database. Three
measures were taken to improve perfor-
mance of the unified system:

The rules are only responsible for detect-
ing and reacting to complex conditions in
the database that otherwise would re-
quire extensive polling of the database.
Several synchronization points in the exe-
cution model can be managed with wrap-
pers, rendezvous techniques or messages
instead of active rules. In the current im-
plementation, only the wait conditions and
the transitions in the DFA’s need to be
handled by rules.

The rules instances are active only when
they are needed. Our approach benefits
from the dynamic nature of control appli-
cations and the procedural description of
operations. In CAMOS, active rules associ-
ated with wait conditions are activated
when an operation is initiated and imme-
diately deactivated when the rule triggers
(fire-once rules). Only rules associated
with currently waiting processes will be
active. This reduces the workload for the
rule engine.

All rule instances are reused. To provide
efficient handling of activations and deac-
tivations, rule conditions are augmented
with boolean valued flag functions. Using
the flag functions the rule coordinator can
temporarily activate and deactivate rule
instances without using the costly acti-
vate/deactivate statements in AMOSQL.

For this to be efficient the flag functions
must be evaluated early in the query pro-
cessing, which is achieved by cost hints de-
fined on the flag functions. The approach
will imply a small performance degrada-
tion during rule check phase while the flag
function of inactive rules is checked.

The individual wait condition rule instanc-
es are derived from the same generic rule.
The instances have individual parameter
bindings and associated operation to
which the wait condition belongs. The
rule instances can be reused if an interme-
diary table is used to store parameters and
operation identity. A predefined number
of inactive rule instances can in this way
be created at compile time, which will re-
duce the number of costly activate state-
ments at runtime.

Systems involving active rules must also
deal with the cascading rules problem.
There are situations where one rule may
introduce a change in the database that
activates another rule, that may intro-
duce yet another change etc. resulting in
unpredictable response times. In the cur-
rent implementation of CAMOS the ac-
tion part of active rules are foreign
function calls that will reschedule opera-
tions in the scheduler. The problem with
cascading rules is avoided because no
rules are generated containing database
updates that directly could lead to trigger-
ing of another rule.

Three different categories of active rules
are important in this control system.

• Aborting constraint. This type of rule
can for instance be used to express safe
areas in a declarative manner: WHEN
angle(robotbase(r)) >120 DO
ABORT;

• Synchronization rules: WHEN actu-
alElevation(t) =1 do synchro-
nize(); This type of rules initiate ac-
tivities outside the database. In our ar-
chitecture synchronization rules are

used to synchronize the operations with
the real-time kernel.

• Rules in a specific application context:
WHEN active(id) AND condition
DO.....;

Typically only a small part of the wait con-
dition rules are active simultaneously. In
CAMOS this is related to operation invoca-
tions - when an operation is invoked, the
scheduler activates a rule instance to mon-
itor the wait condition and the rule is de-
activated directly after is is triggered.
Built-in system support for rule contexts
would make it possible to check only the
rules in currently active rule contexts.
This mechanism is further discussed in
[Skö95].

REQUIREMENTS

The work presented in this paper requires
functionality not found in regular databas-
es. The database must support:

• Efficient change monitoring techniques.
The main motivation for using active
rules in the execution model is that
rules can handle operation dependen-
cies involving large volumes of data effi-
ciently. The incremental evaluation
technique [Skö94] used by AMOS rules
is more efficient than repeated polling
or simple indexing of rule conditions.

• Fast rule context switch. The rules in a
control system are not static. Since acti-
vation and deactivation is a very fre-
quent operation in the control system
architecture it must be efficiently imple-
mented.

• Facilities to tightly integrate the data-
base with applications. The result from
queries should be directly accessible
without translation of data formats and
message passing. The CAMOS(L) lan-
guage operate in the same address space
as the database and share the same
data types.

• High performance. The database must
be very fast to handle the stream of up-
dates from the real-time kernel. The
AMOS database used in this project is a
main memory based system that does
not need slow and unpredictable disk
accesses.

• Foreign function interface. In many sit-
uations the database need to access data
and programs outside the database
(communication manager, operation
manager)

It is also important to be able to extend
the database system with specialized data
structures to model more closely the do-
main of control applications (processes, op-
eration descriptions etc.) The application
specific storage structures should be im-
plemented at the lowest possible level to
ensure best performance. The performance
is essential if the database is used to store
information about processes. Our imple-
mentation uses specialized ordered collec-
tions to represent schedules for executing
processes.

The database must support extensions to
query analysis, optimization, execution
strategies, data access methods, and stor-
age methods. AMOS is extensible with
new data types using a foreign function in-
terface. To provide the additional function-
ality and data structures efficiently, the
new dedicated access methods have to be
incorporated into the query optimizer.
This is achieved using the open cost mod-
el in AMOS[Lit92].

SUMMARY

An increasing number of control applica-
tions require database-like functionality.
It is the management of data that becomes
a problem when the control applications
grow, become complex, and operate in en-
vironments which involve large volumes
of data [Gra92]. The integration of control
applications with embedded active object-
relational databases and a high level con-
trol application language aims at a gener-
al approach to modeling, data
management, and exchange of informa-

tion in complex control applications. This
paper presented an event driven control
application language CAMOS(L). To fully
benefit from the data management facili-
ties in the AMOS database, queries were
embedded in the control application lan-
guage. This required a tight integration
with the query processor and a unified
type system to avoid translations of query
results. When the control application ar-
chitecture was extended to include a data-
base with a query language, we also
extended the power of expression for con-
trol application language. The database
provides uniform access to all data. There-
fore, conditions and expressions could be
made over process data, information
about the current execution, timing infor-
mation, sensors, actuators and even exter-
nal databases.

In the architecture, we use an object-rela-
tional database as middleware, storing an
abstract model of the environment. Apart
from storing the model, the database
plays a central part in the execution model
of CAMOS(L). Parts of the operation de-
scriptions are compiled to active rules in
the database. The active rules efficiently
monitor changes in the world model and
initiate appropriate control algorithms in
the real-time kernel. The integration re-
quires functionality not found in regular
databases. The database must contain an
efficient active rule facility, support for
process synchronization and an efficient
context switch mechanism. The database
must have high performance to handle
the stream of updates from the real-time
kernel.

The database centered approach is suit-
able for control applications that can be
layered into an operation level and a tradi-
tional feedback level of control. The archi-
tecture brings us closer to better data
management in control applications.

It is planned that this paper will be fol-
lowed by an effort to formally define the
architecture combining a general activity
modeling language and cyclic control algo-
rithms.

The hierarchical system outlined in this
paper will be used as a starting point for
that effort.

We also develop new tools for specifying
and verifying important characteristics of
the modeled system using modified timed
petri nets [Pen93]. The long term goal is a
design environment for modeling of large
real-time systems which allows the design-
er to explore different alternatives and to
verify timing properties of the design. We
are conducting an extensive case study of
a typical industrial production cell to test
this approach.

ACKNOWLEDGEMENT

The authors would like to thank NUTEK,
The Swedish National Board for Industrial
and Technical Development for financial
support. The local Linköping University
funding from CENIIT - The Center for In-
dustrial Information Technology is also
gratefully acknowledged.

REFERENCES

[Bur90] Burns, A., Welling, A: Real-Time Systems and
Their Programming Language,
Addison-Wesley Publishing Company, 1990.

[Chr93] Chrysanthis, P.K., Ramamritham, K., A Formalism
for Extended Transaction Models,
Proc. of the 17th VLDB Conf. 1991

[Day90] Dayal, U., Hsu, M., Ladin, R.: Organizing Long-
Running Activities with Triggers and Transactions,
Proc. SIGMOD , Atlantic City, May 1990.

[Fah93] Fahl, G., Risch, T., Sköld, M.:
AMOS - An Architecture for Active Mediators,
NGITS’93, Haifa, Israel, 1993, pp. 47-53

[Fis89] Fishman D., et al: Overview of the Iris DBMS,
Object-Oriented Concepts, Databases, and Appl.,
ACM press, Addison-Wesley Publ. Comp., 1989.

[Gar90] Garcia-Molina, H. et al:
Coordinating Multi-Transaction Activities,
Technical Report No. CS-TR-247-90,
Princeton University, 1990.

[Gar87] Garcia-Molina,H., K.Salem: SAGAS,
Proc. SIGMOD,
May 27-29, 1987, San Fransisco, pp. 249-259.

[Geo95] Georgakopoulos, D.,Hornick,M., Sheth, A.:
An Overview of workflow management
- From Process Modeling to Workflow
 Automation Infrastructure
Distributed and Parallel Databases, 3, 1995.

[Gra92] Graham, M.H.:
Issues in Real-Time Data Management,
J. Real-Time Systems, 4, 185-202, 1992.

[Hay85] Hayes-Roth, B.:
A blackboard architecture for control,
Artificial Intelligence, 26, 251-321, 1985.

[Hol92] P.Holmbom,P., Loborg, P., Sköld, M., Törne A.:
A Model for the Execution of Task Level
Specifications for Intelligent and Flexible
Manufacturing Systems, Proc. of the Intl.
Symposium on Artificial Intelligence, ISAI92,
Cancun, Dec 1992.

[Kra93] Kramer, R.,K.,Senehi,M.,K.: Feasibility study:
Reference architecture for machine control
system integration
Nat. Inst. of Standards and technology, 1993.

[Lew94] Lewerentz, C., Lindner, T.: Case Study
"Production Cell" - A Comparative Study in
Formal Software Development,
FZI-publication 1/94,
Forschungszentrum Informatik
Haid-und-Neu-Strasse 10-14
Karlsruhe, Germany, 1994.

[Lit92] Litwin, W., Risch, T.: Main Memory Oriented
Optimization of OO Queries using Typed Datalog
with Foreign Predicates, IEEE Transactions
on Knowledge and Data Engineering, 4, Dec. 1992

[Lob91] Loborg,P., Törne A.: A Hybrid Language
for the Control of Multimachine Environments,
Proc. EIA/AIE-91, Hawaii, June 1991.

[Lob93] Loborg, P., Risch, T., Sköld, M., Törne, A.:
Active OO Databases in Control Applications,
in Microprocessing and Microprogramming,
Vol. 38, No 1-5, p.255-264.
Proc. 19th Euromicro Conf., Barcelona, Sept 1993.

[Lob94] Loborg, P.: Error Recovey Support in
Manufacturing Systems,
Linköping Studies in Science and Technology,
Lic Thesis no 440, ISBN 91-7871-376-5, 1994.

[Ors93] Orsborn, K.: Modeling of Product Data Using an
Extensible O-O Query Language,
IDA Technical Report LiTH-IDA-R-93-15, 1993.

[Pen93] Peng, Z., Törne, A.:
A Petri Net Based Modelling and Synthesis
Technique for Real-Time Systems,
5th Euromicro Workshop on Real-Time Systems,
Oulu, Finland, 1993.

[Reu90] Reuter,A., Wächter,H.: Grundkonzepte und
Realisierungsstrategien des Contract-Modells
Informatik, Forschung und Entwicklung No. 4, 1990.

[Ris93] Risch,T., Sköld, M.: Active Rules based on
Object-Oriented Queries,
IEEE Data Engineering (Quarterly), January 1993.

[Rus94] M.Rusinkiewicz and A.Sheth: Specification and
execution of transactional workflows.
In W.Kim (ed.): Modern Database Systems.
Addison-Wesley, 1994.

[Shi81] Shipman, D.W.: The Functional Datamodel and
the Data Language DAPLEX,
ACM TODS, 6(1), March 1981

[Skö94] Sköld, M.: Active rules based on Object-Relational
Queries - Efficient Change Monitoring Techniques,
Licenciate Thesis No. 452,
Dept. of Computer Science and Information Science,
Linköping University, 1994

[Skö95] Sköld, M., Falkenroth, E., Risch, T.:
Rule Contexts in Active Databases
- A Mechanism for Dynamic Rule Grouping ,
Proc. RIDS’95, Athens, Greece,1995.

[Wid90] Widom, J.: Set-oriented production rules in
relational database systems,
Proc. ACM SIGMOD conf.,
Atlantic City, New Jersey, 1990, pp. 259-270

[Wid94] Widom, J:
Research Issues in Active Database Systems,
ACM SIGMOD Record,
Vol.23, No.3, September 1994.

