
AMOS - An Architecture for Active Mediators
by

Gustav Fahl
E-mail: gusfa@ida.liu.se

Tore Risch
E-mail: torri@ida.liu.se

Martin Sköld
E-mail: marsk@ida.liu.se

Abstract

AMOS (Active Mediators Object System) is an architecture to model, locate, search,
combine, update, and monitor data in information systems with many work sta-
tions connected using fast communication networks. The approach is called active
mediators, since it introduces an intermediate level of ‘mediator’ software between
data sources and their use in applications and by users, and since it supports ’ac-
tive’ database facilities. A central part of AMOS is an Object-Oriented (OO) query
language with OO abstractions and declarative queries. The language is extensible
to allow for easy integration with other systems. This allows for knowledge, now
hidden within application programs as local data structures, to be extracted and
stored in AMOS modules. A distributed AMOS architecture is being developed
where several AMOS servers communicate, and where queries in a multi-database
language are allowed to refer to several AMOS databases or other data sources. An
overview is made of the architecture and components of AMOS, with references to
ongoing and planned work.

Also in the Proceedings of the International Workshop on Next Gen-
eration Information Technologies and Systems, NGITS ’93, Haifa,

Israel, June 1993.

1

1 Introduction
Future computer supported engineering, manufacturing, and telecom environ-
ments [Lob93, Imi92] will have large number of workstations connected with
fast communication networks. Workstations will have their own powerful com-
putation capacities which store, maintain, and do inferences over local engi-
neering data- and knowledge-bases, or information bases. Each information
base is maintained locally by some human operator and is autonomous from
other information bases. Each information base will need a set of DBMS capa-
bilities, e.g. data storage, a data model, a query and data modelling language,
transactions, and external interfaces. The classical relational database lan-
guages are not powerful enough for the manipulations needed, e.g. to build ad-
vanced models to filter and extract interesting information. Facilities are also
needed to support ‘reactive’ applications that sense changes in information,
i.e. active database facilities [DE92].

The AMOS (Active Mediators Object System) architecture uses the mediator
approach [Wie92] that introduces an intermediate level of software between
databases and their use in applications and by users. We call our class of in-
termediate modules active mediators, since our mediators support active data-
base facilities.

We have identified four classes of mediators needed in our architecture, which
will be explained more in detail in the next sections:

1. Integrators that retrieve, translate, and combine data from data sources
with different data representations.

2. Monitor models that notify mediators or application programs when inter-
esting data updates occur.

3. Domain models that represent application oriented models and database op-
erators.

4. Locators that locate mediators and data in a network of AMOS servers.

The AMOS architecture is built around a main memory based platform for in-
tercommunicating information bases. Each AMOS server has DBMS facilities,
such as a local database, a data dictionary, a query processor, transaction
processing, and remote access to data sources. Central to the AMOS architec-
ture is an OO query language, AMOSQL, that is a derivative of OSQL [Fis89].
AMOSQL supports OO abstractions and declarative queries. It is extensible to
allow for easy integration with other systems. AMOS makes it possible to ex-
tract knowledge that currently is hidden within application programs as local
data structures and represent it in AMOS modules. The query processing
must be efficient enough to encourage the use of local embedded databases
linked into applications without significant performance penalty. The query
and modelling language must also be powerful enough to store complex knowl-
edge models. Furthermore, queries should be allowed to access more than one
autonomous AMOS server as well as other data sources. It should be possible
to state queries using the same multi-database query language independent of

2

where the queried data reside. AMOSQL also supports active rules [Ris92]
that execute when certain more or less complex conditions change.

To support the initial work on AMOS, a main-memory OO DBMS engine, WS-
IRIS [Lit92], is being modified. It provides an extended OSQL version and fast
execution. WS-IRIS is open and easy to modify for our research. The system
supports extensibility through foreign functions written in an external pro-
gramming language (usually Lisp or C). A query optimizer translates OSQL
queries and methods into optimized execution plans in an internal logical lan-
guage, ObjectLog [Lit92]. The optimizer is extensible so that cost hints can be
associated with arbitrary OSQL functions to guide the optimizer about alter-
native execution plans. We are developing new optimization strategies by new
kinds of transformations on the ObjectLog query plans.

2 AMOS Components
Figure 1 illustrates how a set of application programs access a set of data
sources through active mediators. An overview follows of the work we are do-
ing on each kind of mediator.

2.1 Integrators
Data sources are likely to be heterogeneous. Data could be stored in different
DBMSs, using different data models. And even if the same DBMS is used,
data could still be semantically heterogeneous [She91].

Integrators are responsible for making this heterogeneity transparent to high-
er-level mediators and applications. Integrators retrieve and combine data

Figure 1 Active mediators of different classes mediating between data sources and users/
applications

Integrator

Data
Source

Data
Source

Data
Source

Data
Source

Data
Source

IntegratorMonitor

Application ApplicationApplication

AMOS

Domain modelDomain model

3

from underlying data sources, giving applications and higher-level mediators
an integrated view of data and decoupling them from the necessity to under-
stand multiple data models.

Integrators are implemented with two kinds of AMOS servers; Translation
AMOS (TAMOS) servers and Integration AMOS (IAMOS) servers (see figure
2). We will initially concentrate on access to heterogeneous data sources, not
updates.

There is a lot of current research on heterogeneous database systems [She90].
The usual way to deal with data model heterogeneity is to map the schemas of
the data sources to schemas in a common data model (CDM). Most previous
research use a relational CDM. This is inadequate if there are data sources
with a data model that is semantically richer than the relational model. In
these cases, it will not be possible to capture all of the semantics of the data
sources in the CDM. Ideally, the expressiveness of the CDM should be greater
than, or equal to, the expressiveness of all the data models of the data sources.
We use the functional and object-oriented data model from IRIS [Fis89] as our
CDM.

Related work of particular interest are the Multibase [Lan82] and Pegasus
[Ahm91] projects.

Multibase has a similar architecture and uses a functional data model as their
CDM and DAPLEX [Shi81] as the Data Manipulation Language (DML).
AMOSQL is a DAPLEX derivative, but an important difference is that
AMOSQL is object-oriented. Queries in AMOSQL can return OIDs. Another

Figure 2 Translation AMOS (TAMOS) and Integration AMOS (IAMOS) - the servers
implementing Integrators

IAMOS

TAMOS

Data
Source

Data
Source

Data
Source

Data
Source

MMMM

M = Mediator, Application, or End-User

IAMOS

TAMOSTAMOSTAMOS

4

difference is the role of the translation component. This will be discussed in
section 2.1.1.

The Pegasus project also uses the IRIS data model as their CDM and an ex-
tension to OSQL as the DML. The main difference to AMOS is architectural. A
Pegasus server performs both translation and integration, whereas in AMOS
this is separated in two modules. There is one type of TAMOS server for each
type of data source. Each TAMOS server only needs to know the data model of
one data source and how to map this to the CDM. IAMOS servers only need to
understand the CDM. The Pegasus server must understand all underlying
data models and must have language constructs for mapping each of these
data sources to the CDM.

2.1.1 TAMOS

Translation AMOS servers map the schemas of the data sources to schemas in
the CDM. There is one TAMOS server for each kind of data source. An
AMOSQL query sent to a TAMOS server is translated to calls to the underly-
ing data source. The results of these calls are then processed to form answers
to the AMOSQL query.

A TAMOS server can be used by one or more IAMOS servers or directly by ap-
plications and other mediators. We are initially developing TAMOS servers for
a relational database (SYBASE), and for a conventional file data source.

A central problem is how to get OO access to a non-OO data source. In the
method chosen, each TAMOS server will contain descriptions of how to map
values in the underlying data source to object identifiers (OIDs). OIDs are dy-
namically generated when necessary and are thereafter maintained by the
TAMOS server.

When the data model of the data source provides less semantic modelling con-
structs than the CDM, mapping a data source schema into a schema in the
CDM involves a semantic enrichment process [Cas93]. We want TAMOS to
capture as much of the semantics of the data source as possible. This is differ-
ent from, e.g., Multibase, where the translated schema is the simplest possible
and where the semantic enrichment is performed in the integration module.
We want to avoid this approach, which leads to increased communication be-
tween the translation and integration modules. Our approach makes query
optimization in TAMOS more difficult, since query processing involves both
calls to the data source and local TAMOS computations. The optimizer must
find the most effective combination of these.

TAMOS query plans are represented by an extended version of ObjectLog.
Some TAMOS types will have instances corresponding to atomic values in the
data source. OIDs must be generated when a query returns objects of such a
type. Similarly, OIDs must be converted back to atomic values when they are
used in queries to the data source. Thus, TAMOS query plans often contain
statements which map between OIDs and atomic values. However, when a
query is a used as a subquery of a larger query and thus query plans are com-
bined, the OID mappings on intermediate results are not needed. The optimiz-

5

er recognizes these cases and removes such unnecessary OID mappings from
the execution plan. This makes larger portions of TAMOS execution plans
translatable to, e.g., relational queries to the data source, which minimizes
communication between TAMOS and its data source.

2.1.2 IAMOS

An Integration AMOS server combines data from other AMOS servers (TA-
MOS or IAMOS) and presents an integrated view of the data. A query sent to
a IAMOS server is transformed into several queries against the underlying
AMOS servers. The results of these queries are then processed to form an an-
swer to the initial query. Special optimization techniques are needed com-
pared to conventional distributed DBSs due to the heterogeneity and
autonomy of the data sources [Lu93].

To define the mapping between the integrated IAMOS schema and the under-
lying TAMOS/IAMOS schemas, an OO multi-database query language is
needed. This language is used to define object views [Abi91] in terms of combi-
nations of data from other AMOS servers and from local data and views.

To access the data sources it is not necessary to use a IAMOS server. Queries
can be put directly against TAMOS servers using the multi-database lan-
guage. Using the terminology from [She90], our architecture can be seen as a
combination of a Loosely Coupled Federated DBS and a Tightly Coupled Fed-
erated DBS (with multiple federations).

Thus, the same OO multi-database query language is used for local queries,
multi-database queries, and for defining multi-database object views. One pro-
posal being studied for such a language is in [Cho92].

2.2 Monitor Models
Some applications require a mechanism to handle the problem of dynamically
changing data. Mediators are provided that continuously monitor these data
changes and notify applications when changes of interest for some application
occur. These monitor models allow application programs to cooperate via
AMOS. Of particular interest is to provide means to build monitor models that
filter change in data sources, so that irrelevant changes are ignored.

To support monitor models AMOS provides active database capabilities by ac-
tive rules using AMOSQL queries [Ris92]. The active database capabilities of
AMOS are used also for other purposes than monitor models, such as for con-
sistency checking. AMOSQL permits functional overloading on types, and
types and functions are first-class objects. By implementing rules on top of
AMOSQL, overloaded and generic rules are possible, i.e. rules that are param-
eterized and that can be instantiated for different types. We also utilize the
optimizations performed by the AMOSQL compiler.

The HiPac [Day89] project introduced active ECA rules (Event-Condition-Ac-
tion). The event specifies when a rule should be triggered. The condition is a
query that is evaluated when the event occurs. The action is executed when
the event occurs and the condition is satisfied.

6

In our active rules the event is made optional by defining each rule as a pair
<Condition,Action>, where the condition is a declarative OO query and where
the action is an OO database procedure body, i.e. a CA rule. An action is exe-
cuted (i.e. the rule is triggered) when the condition becomes true. We believe
that CA rules are more suitable for integration in a query language, since they
are more declarative. CA rules make physical events implicit, just as a query
language makes database navigation implicit. OPS5 [Bro85] and Ariel
[Han92] have similar rule semantics. Unlike those systems, the condition in
an AMOS rule can refer to derived AMOSQL functions (which correspond to
views). Data can be passed from the condition to the action of each rule by us-
ing shared query variables. By quantifying query variables set-oriented action
execution is possible [Wid90]. Rules are furthermore parameterized and type
overloaded, so that they can be instantiated for objects of different types.

An interface is also developed between active rules and application programs
where the programmer can specify trackers [Ris89], which are procedures or
processes of the application or other AMOS servers that are invoked or called
by AMOS when a rule action is triggered. AMOS thus needs a callback mecha-
nism that is invoked from active rules. Such a mechanism will be part of the
application programming language interface to AMOS. We have developed
such an interface between AMOS and the functional concurrent programming
language Erlang [Arm93] for real-time applications. The callback mechanism
is also a part of the communication protocol between AMOS servers.

Possible tasks for the trackers include:

- Notifying the end user that data have changed.

- Refreshing data browsers

- Modifying values in mediators.

- Changing processing heuristics in mediators.

- Changing stored abstractions in mediators.

- Informing applications that data views which the application depends on
have changed.

By using active rules the monitor model can filter insignificant data source
changes before notifying the application. This decreases the frequency of noti-
fication for intensively updated data. Notification filtering is required, for ex-
ample, by real-time monitoring AI systems where the tracker initiates time
consuming reasoning activities [Was89].

2.3 Domain Models
Domain knowledge and data now hidden in application programs should be
extracted from the applications and stored in mediators with domain specific
models and operators, called domain models. The benefits of using domain
models include easier access through a query language, better data descrip-
tion (as schemas), transaction capabilities, and other benefits currently pro-
vided only by advanced DBMSs. Examples of domain models are models for
structural analysis of mechanical designs, models to obtain a preferred part

7

for a product, or models to describe properties of a user interface. The query
processing of AMOSQL must be about as efficient as customized main-memo-
ry data structure representations. This would encourage the use of local em-
bedded AMOS databases linked into applications. Domain models often need
to be able to represent specialized data structures for the intended class of ap-
plications.

Important research problems in developing domain models are to investigate:

1. How is the domain modelled using an OO query and modelling language?

2. Which domain oriented data structures are required, and how should they
be represented?

3. What domain oriented operators need to be defined?

4. How are queries accessing domain oriented data structures optimized?

2.4 Locators
In large dynamic information bases, it is not trivial to know which data sourc-
es contain requested data. For this, a class of mediators is needed, which given
descriptions of the data to retrieve, locates the matching data sources. AMOS
mediators, called locators, will be developed as servers that know properties of
other mediators and where they are located. In a simple environment the ap-
plication will know exactly where the data sources are located, e.g., by know-
ing the exact locations of database tables. In a broadly distributed
environment one may not have such direct ’handles’ to the data sources, but
rather query the locators given descriptions of what to look for. Locators pro-
vide a query language for connecting data to application programs. The effect
is to increase flexibility when information sources are changing.

The need for locator facilities has been acknowledged in the research area
called mobile databases [Imi92], which combine future telecommunication and
database capabilities. In a global and very fast network of information servers,
databases are accessible via radio links. When people travel long distances the
system will eventually move data (or create data) to new locations. In such an
environment non-trivial locator facilities become very important. There are
some connections between locators and traditional name servers, where IP ad-
dresses are looked up via a set of distributed servers. However, since AMOS
servers are relatively lightweight, it will be feasible to make each of our loca-
tors a complete AMOS server. This will make it possible to provide many new
locator services through locator querying. Locators also have connections to
traditional DBMS data dictionaries. However, data dictionaries are central-
ized, i.e. a single data dictionary knows where all data is located, which is
what is required to support conventional distributed databases. In contrast,
our locators are distributed, autonomous, and loosely coupled.

8

2.5 Distributed AMOS Systems
The architecture requires facilities to state OO queries and to build OO mod-
els that span many AMOS servers. Therefore the system needs to contain
means for intercommunication between AMOS servers as well as between
AMOS and applications.

We have developed a transactional remote procedure call mechanism that
handles low level message interfaces between AMOS servers. A query layer
will be built on top of this mechanism. Transactional behaviour ensures that
each database can remain consistent after communication or software fail-
ures.

We also plan to generalize monitor models so that active rules can be specified
that access more than one AMOS server.

3 A Scenario
With AMOS it will be possible to build domain models that combine data from
several outside data sources with local data, and which contain rules that as-
sists the user in making decisions.

As an example, consider a computer supported quotation task, where the sug-
gested design and price depends upon prices from subcontractors, e.g. a HV-
transformer design depends on copper and oil prices, or a turn-key dairy proc-
ess equipment depends on stainless steel tubing prices. Integrators allow the
information to be stored in and accessible from different vendor databases.

Product data are represented differently by different suppliers. Integrator
models allow conversions between semantically different data representa-
tions.

Domain models allow customization of parts of the product selection model by
local data and rules. For example, the user might specify preferred price rang-
es, quality requirements, and constraints on the means for transportation
from the supplier. Different domain models will be used by different users and
have different customizations.

All data used in the product selection may not be directly available for each
considered product and locators must then be used to find the appropriate da-
tabase. For example, access to each supplier’s database is needed in order to
estimate the cost of obtaining a product.

Assuming that the main contractor is not in direct hurry to buy the product, s/
he may postpone the purchase until the right market conditions occur which
can be provided by monitor models. For example, if supplier A does not have
the desired product in stock, the main contractor may want a signal if and
when it can be delivered also from supplier A. Similarly, s/he may want a sig-
nal if the price for the product drops below some threshold in case a sale is ex-
pected. These kind of monitoring conditions are expressible in the rule
language. We also plan to add timeliness specifications in monitoring models,

9

e.g. to specify a deadline after which it is absolutely necessary to have an or-
der put on the needed product, even if the choices are not the best.

4 Summary
The AMOS architecture was described where AMOS information bases medi-
ate between application programs and data sources. AMOS provides facilities
to extract data, and to manipulate and model the extracted data using a pow-
erful query and modelling language. The system provides integrator servers
that combine data from many different data sources, and provide OO views for
all types of data sources. The modelling language has active rules facilities
that detect when the state of a data source gets updated in some ’critical’ way.
Critical data source updates can then initiate reasoning in application pro-
grams or just notify the user. The modelling language is based on extensions
to OSQL [Fis89].

An example scenario was given of the use of AMOS to help main contractors
get timely and needed information for the quotation task. One may construct
similar scenarios for other domains, e.g., computer network service planning
systems, and project planning and tracking systems.

References

[Abi91] Abiteboul S., Bonner A., ’Objects and Views’, Proc. ACM SIGMOD,
1991.

[Ahm91] Ahmed R., DeSmedt P., Du W., Kent W., Ketabchi M.A., Litwin W.,
Rafii A., Shan M-C. ’The Pegasus Heterogeneous Multidatabase Sys-
tem’, IEEE Computer, Vol. 24, No. 12, Dec. 1991.

[Arm93] Armstrong J., Williams M., Virding R., Concurrent Programming in
Erlang, Prentice-Hall, 1993. ISBN 13-285792-8.

[Bro85] Brownston L., Farell R., Kant E., Martin A., Programming Expert
Systems in OPS5, Addison-Wesley, Reading Mass., 1986.

[Cas93] Castellanos M., ’Semantic Enrichment of Interoperable Databases’,
Proc. RIDE-IMS (Interoperability in Multidatabase Systems) Work-
shop, Vienna 1993.

[Cho92] Chomicki J., Litwin W., ’Declarative Definition of Object-Oriented
Multidatabase Mappings’, in Özsu M.T., Dayal U., Vadduriez P.
(eds.): Distributed Object Management, Morgan Kaufmann Publish-
ers, 1993 (to appear).

[Day89] Dayal U., McCarthy D., ’The architecture of an Active Database
Management System’, Proc. ACM SIGMOD, 1989, pp. 215-224.

[DE92] IEEE Data Engineering bulletin, Vol. 15, No. 1-4, Dec. 1992.

[Fis89] Fishman D. et al., ’Overview of the Iris DBMS’,Object-Oriented Con-

10

cepts, Databases, and Applications, ACM press, Addison-Wesley
Publ. Comp., 1989.

[Han92] Hanson E. N., ’Rule Condition Testing and Action Execution in Ari-
el’, Proc. ACM SIGMOD, 1992, pp. 49-58.

[Imi92] Imielinski T., Badrinath B.R., ’Querying in highly mobile distributed
environments’, Proc. VLDB ’92, pp. 41-52.

[Lan82] Landers T., Rosenberg R., ’An overview of Multibase’, in Schneider
H-J. (ed.): Distributed Databases, North-Holland, 1982, pp. 153-184.

[Lit92] Litwin W., Risch T., ’Main Memory Oriented Optimization of OO
Queries using Typed Datalog with Foreign Predicates’, IEEE Trans-
actions on Knowledge and Data Engineering, Vol. 4, No. 6, December
1992.

[Lob93] Loborg P., Risch T., Sköld M., Törne A., ’Active Object-Oriented Da-
tabases in Control Applications’, 19th Euromicro Conference, Barce-
lona 1993 (to appear).

[Lu93] Lu H., Ooi B-C., Goh C-H., ’Multidatabase Query Optimization: Is-
sues and Solutions’, Proc. RIDE-IMS (Interoperability in Multidata-
base Systems) Workshop, Vienna 1993.

[Ris89] Risch T., ’Monitoring Database Objects’,Proc. VLDB ’89, Amsterdam
1989.

[Ris92] Risch T., Sköld M., ’Active Rules based on Object-Oriented Queries’,
IEEE Data Engineering bulletin, Vol. 15, No. 1-4, Dec. 1992, pp. 27-
30.

[She90] Sheth, A., Larson, J., ’Federated Database Systems for Managing
Distributed, Heterogeneous, and Autonomous Databases’, ACM
Computing Surveys, Vol. 22, No. 3, September 1990.

[She91] Sheth, A., ’Semantic Issues in Multidatabase Systems’, Preface by
the special issue editor, SIGMOD RECORD, Vol. 20, No. 4, Decem-
ber 1991.

[Shi81] Shipman, D.W., ’The Functional Data Model and the Data Language
DAPLEX’, ACM Transactions on Database Systems, Vol. 6, No. 1,
March 1981.

[Was89] Washington R., Hayes-Roth B., ’Input Data Management in Real-
Time AI Systems’, 11th Intl. Joint Conf. on Artificial Intelligence,
1989, pp. 250-255.

[Wid90] Widom J., Finkelstein S.J., ’Set-oriented production rules in rela-
tional database system’, Proc. ACM SIGMOD, Atlantic City, New
Jersey, 1990, pp. 259-270.

[Wie92] Wiederhold G., ’Mediators in the Architecture of Future Information
Systems’, IEEE Computer, March 1992.

