
Optimizing the Optimizer

Principles of Modern Database Systems 
2007

Tore Risch
Dept. of information technology

Uppsala University
Sweden



Randomized query optimization

Query optimization is a combinatorial optimization problem
- Each solution is a state in space, i.e. a node in a graph that includes 

all solutions.
- Each state has associated cost using some cost function.
- Goal: Find state with lowest cost.

Randomized optimization: Use various methods based on random 
generation of solutions followed by costing



Search space

Works well when many bottoms:

Cup bottom

Hillclimbing good to guarantee to find one solution!



Terminology for randomized algorithms:

- Perform random walks through state space via a series of moves.
- A move originates in a source state and takes us into a destination 

state.
- The states reachable in one move from one state S is called 

neighbours of S.
- A move is uphill (downhill) if the cost of the source state is lower 

(higher) than the cost of the destination state.
- A state is local minimum if all neighbours are uphill.
- A state is global minimum if every other state is downhill.
- A state is a plateau if it has no downhill neighbour, but can reach 

downhill state without uphill moves.



Iterative improvement, II

- Idea:
1. Start at random state.
2. Move to randomly chosen downhill neighbour.
3. Repeat until stopping condition reached.
- Repeat algorithm over and over.
- The more times, the more likely to reach global optimum.
II algorithm:
while not(stopping_condition) do 

S = random state
while not(local_minimum(S) do

Si’ = random state in neighbours(S)
if(cost(S’)<cost(S)) then minS = S’

return(minS)



Simulated annealing, SA
- Local optimization in II performs only downhill moves
- SA accept uphill moves too with some probability
- Avoid being caught in high cost local minimum
- Algorithm originally developed for annealing of crystals
SA idea/terminology
- Inner loop of SA called stage.
- Each stage performed under fixed value of parameter T, the 

temperature.
- Temperature controls probability of accepting uphill move, Pu
- Pu = e-DC/T, where DC difference in cost between old and new state.
- Higher temperature => More likely to accept uphill move
- Higher DC => Less likely to accept uphill move
- The end of a stage reached when algorithm reached equilibrium.
- After each state lower T according to some function.
- New stage begins.
- Stop algorithm when considered frozen, i.e. T=0.



Simulated Annealing, SA, algorithm

S = S0
T = T0
minS = S
while not(frozen) do

while not(equilibrum) do
S’ = random state in neighbours(S)
DC = cost(S’) - cost(S)
if(DC < 0) then S = S’
if(DC > 0) then S = S’ with probability eDC/T

if(cost(S) < cost(minS)) then minS = S
T = reduce(T)

return(minS)



Two phase optimization

- Combination of II and simulated anneiling
A.Swami, SIGMOD 1989: 
Optimization of Large Join Queries: Combining Heuristics and 
Combinatorial Techniques

- Amos II variant (II + sequence heuristics):
http://user.it.uu.se/~udbl/Theses/JoakimNasMSc.pdf

optmethod(‘randomopt’);
optlevel(50,1000);



Summary cost-based optimization 

- With a good cost model it provides the optimal database execution 
plan

- Without it much less scalable query execution might occur
- Cost of optimization high
- There are alternative faster methods (e.g. randomized or heuristic 

optimization) but they give suboptimal plans
- Cost model need not be perfect as it is used only for comparing 

plans
- However, error in cost models may cause problems when:

- Queries are large (errors multiplied)
- There are statistical dependencies (independence assumed)
- Costs are varying (e.g. network speed)
- All data not known (e.g. parameterized queries, prepare in JDBC)



Prepared queries and the query cache 

- Dynamic query compilation in program
- In JDBC (ODBC and other APIs)
- Idea:

p = prepare(“select name from person where name = ?”)
….
Execute(p, “Tore”)

Programmers make prepare statement in beginning of program.
The compiled query is forgotten at end of session.

- Problems with prepare:
- Programmer unaware of it!
- Slow startup time for programs 

- Modern DBMSs always have a query cache:
- Server executes the preparations and saves in hashtable keyed by 
prepare string (including ?)
- Saves start-up time
- prepare followed by execute in loop efficient!



Dynamic query optimization 

- Useful when 
- Queries are dynamic (i.e. dynamic strings sent to DBMS)
- Parameterized queries (i.e. prepare in JDBC)
- Cost changes during run 

- Optimization of parameterized queries:
prepare(“select name from person where income > ?”)
Index on income

- Different plans depending on parameter value provided at execution 
time:
Large value: Use index scan
Small value: Use table scan



Dynamic query optimization 

- One solution:
R.L.Cole & G:Graefe: Optimization of Dynamic Query Evaluation 
Plans, SIGMOD Conf. 1994

- Idea: 
Make several plans dependent on parameter
Keep value intervals when plan applies
Let prepare choose plan depending on actual parameter value

- Problem: 
Even slower query optimization
Not useful when costs change dynamically (e.g.web)



Symmetric hash join 

- Problems to solve:
- Hash join favors one incoming argument 
- Not good in web environment

- For example:
select s.sales+d.sales from SWStores s, DKsstores d
where s.prod=d.prod

- Assume s and d accessed through slow network connections
- Hash join on s will stall if s blocks and vice versa



Symmetric hash join 

- Solution:
W. Hong and M. Stonebraker. Optimization of Parallel
Query Execution Plans in XPRS. Distributed and Parallel 
Databases, 1(1):9–32, 1993.
A. N. Wilschut and P. M. G. Apers. Dataflow Query Execution
in a Parallel Main-Memory Environment. PDIS 1991

- Idea:
Make hash table on both operands
Fill hash tables through two threads
Emit tuples when match occurrs

- Space overflow: spill tables to disk



Adaptive query optimization 

- Problems to solve:
- Startup time for queries
- Dynamically changing costs

- Main paper:
R. Avnur and J. M. Hellerstein. Eddies: Continuously 
adaptivequery processing, SIGMOD, 2000.

- Idea:
- Implement a pipelined multi-select-project-join operator, the eddie
operator
- One eddie operator adapts execution so to always work on data 
from incoming stream that delivers values
- Work where data available in in-buffer
- Buffer up intermediate results 



Eddies (con.) 

- Advantage:
- Totally adaptive
- Very low start-up cost

- Problems:
- Eddie operator has overhead (25%)
- Cost-based optimization generates better plans when cost model 
good
- Adaptation may slow, bias towards first choice

- Improvement (STAIRS)
A.Desphande & J.Hellerstein: Lifting the Burden of History from 
Adaptive Query Processing, VLDB 2004

- Idea:
- Break down eddie into smaller operators
- Allow dynamic rollback-reconfigure-restart


