
Query Optimization

Principles of Modern Database Systems
2007

Tore Risch
Dept. of information technology

Uppsala University
Sweden

Query execution plan

Query execution plan is functional program with primitives:
Tuple scan operator
Tuple selection operator
Various index scan operators
Various join algorithm operators
Sort operator
Duplicate elimination operator
Stop after N tuples operator

.....

Normally pipelined execution
Streams of tuples produced as intermediate results
Avoid building large main memory data structures
Intermediate results can sometimes be materialized too

Degrees of freedom:

Plan enumeration: Generating all different possible
execution plans

Choice of, e.g.:
scan tuples vs traverse indexes
choose indexes to traverse
choose join order
choose algorithms used for joins
resources restricted by available main memory
possible materialization of intermediate results
intermediate results need sorting
duplicate elimination of intermediate results
…

Data statistics

- Used statistics to estimate size of intermediate results:
- Size of tables
- Number of different column values
- Histogram of distributions of column values

E.g. selectivity of AGE>xxx, etc.
- Classically rough models that still work rather well since
models used only for comparing different execution
strategies - not for getting the exact execution costs.
- Data independence assumed – major source of estimate
errors

Cost of maintaining data statistics

- Cost of maintaining data statistics
- Cheap: e.g size of relation, depth of B-tree.
- Expensive: e.g. distibution on non-indexed columns,
- Occational statistics updates – works well for steady-state
- Statistics not always up-to-date
- Wrong statistics -> sub-optimal but still correct plans

Dynamic programming:

optmethod(‘exhaustive’);
dyprogopt(query)

queue = priority queue containing queue nodes, qnode, of
partial plans (qnode.partial),
remaining parts of query (qnode.rest),
and costs (qnode.cost)

initialize queue to qnode(nil,query,0);
while(true)

if(queue empty) error("Query not executable");
bestplan = subplan in queue with lowest cost;
queue = remove(bestplan, queue);
if(bestplan.rest empty)return bestplan;
for each new queue node, nq,

constructed from bestplan.partial
extened with new partial neighbour plan, np,

picked from bestplan.rest
nq.partial = bestplan.partial + np;
nq.rest = bestplan.rest - nq;
nq.cost = bestplan.cost + cost(nq); (approx)
add nq to queue;

Tore Risch
Uppsala University, Sweden

UDBL Object-relational optimizers
10.2 User defined foreign functions

select name from emp where northof(loc,60)
Can define own selection function:

northof(locx,locy)
10.3 Associate function computing selectivity of foreign

function
10.7 Associate function computing cost of foreign function
Also needed:
- Query transformation rules that recognize UDF patterns to

simplify query
- Rewrites to utilize special indexing when applicable.

Tore Risch
Uppsala University, Sweden

UDBL Amos II foreign functions
In Amos II:
create function sqrt(number x)->number y as
multidirectional
(‘bf’ foreign ‘SQRT’ cost {2,0.5})
(‘fb’ foreign ‘SQUARE’ cost {1,1});

select sqrt(2.0); -> SQRT called.
select y where sqrt(y)=2; -> SQUARE called
select true where sqrt(4.0)=2.0; -> SQUARE called
Costs functions can be (foreign) Amos II functions.

Tore Risch
Uppsala University, Sweden

UDBL Object-relational optimizers
10.4 User defined negators

not(close(x,loc(5,5))) apart(x,loc(5,5))
10.6 User defined index updates

select … where readness(picture)<0.1
readness evaluated when picture inserted or updated!
select … where north(loc) > 60
north evaluated when picture inserted or updated.

10.9 User defined indexing
E.g. R-trees,
Requires API on server
Access to locks, recovery, page management

Tore Risch
Uppsala University, Sweden

UDBL Object-relational optimizers
10.8 Smart handling of expensive predicates (functions)

Relational optimizer assumes all predicates cheap
-> always evaluate (filter) early (selection pushing)
Functions such as readness(..) may be expensive
-> evaluate after all cheap filters (selection pulling)
=> Need optimizer handling expensive predicates

properly (pull expensive predicates).
=> J.Hellerstein: Optimization Techniques for Queries

with Expensive Methods
How to modify traditional dynamic programming
optimizer to handle expensive predicates.

Tore Risch
Uppsala University, Sweden

UDBL Object-relational optimizers

10.10 Expression flattening
Basic idea: Functions/views are macro-expanded
Amos II expands derived functions.

create function foo(Date d)->bag of Emp e
as select e where startdate(e)>d;

Select name(e) from Emp e
where e = foo(‘…’) and salary(e)>18000;

Use B-tree index on salary rather than
first evaluating foo if that requires a scan.

Traditinal optimizer expand views, here functions too..

Tore Risch
Uppsala University, Sweden

UDBL Object-relational optimizers
10.15 User defined aggregation operators

Good idea.
In Amos II: foreign functions
Problem: Optimization

Conclusion:
Object-relational optimizers must support extensibility
of query language and of storage structures.
Requires extended query optimizer compared to
traditional relational optimizers.

Optimizing large queries

- Don’t optimize at all, order of predicates significant
-Optimize partly, i.e. up to ca 8 joins, leave rest
unoptimized
- Heuristic methods
- Randomized (Monte Carlo) methods (research papers)
- Hybride methods, mix dynamic programming, heuristic,
randomized
- User breaks down large queries to many small queries
manually (often necessary for translating relational
representations to complex object structures in application
programs)

…

Optimizing the optimizer (meta-optimization):

Naïve approach (trying all execution orders and indexes): O(|Q|!)
Dynamic programming O(|Q|2) – O(3|Q|) generates optimal plan.

Normally used. System R style optimizer.
Hillclimbing O(|Q|2) may generate suboptimal plans.
Randomized methods O(|Q|2) converge to optimal plan.
Adaptive methods, modify plan dynamically by monotoring.

Does not rely on static statistics.

