
DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 1 

DISTRIBUTED AND PARALLELL DATABASE 
SYSTEMS

Tore Risch

Uppsala Database Laboratory

Department of Information Technology

Uppsala University

Sweden

http://user.it.uu.se/~torer



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 2 

Background
What is a Distributed System?

A Distributed System is a number of autonomous computers communicating over a 
network with software for integrated tasks.

Examples of Distributed Systems:
• SUN’s Network File System (NFS), distributed file system

WS

PS

WS WS

FSFS PS

PC

PC

PC
WS

Local Area Network



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 3 

Client-Server Architecture

• Each client sends request (RPCs) to server
• Server waits for requests from clients
• FAT Server:

Databases, File servers, Heavy computations
• Thin Client:

Graphics, User interactions
• FAT Client:

CAD System, Numerical computations

SERVER

CLIENT CLIENT CLIENT CLIENT

RPC, CORBA, SOAP



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 4 

Database Communication 

• Stream based client-server interfaces
• DBMS specific interfaces
• Compiler integrated interfaces (embedded SQL)
• ODBC: SQL-based standardized subroutine call library (MicroSoft)
• JDBC: ODBC for Java (not MicroSoft)

VERY
FAT
SERVER

Many clients 

Much data 



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 5 

Distributed Databases

• Database transparently seen from application ONE database, usual SQL interface.
• Manual partitioning or fragmentation and repliction of data tables: 

Distributed database design
• DDBMS automatically optimizes queries and updates to distributed database.

DB DB
DB

DB

CL
CL

CL
CL



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 6 

What is a Distributed Database?
“A distributed database (DDB) is a collection of multiple, logically interrelated databases 
distributed over a computer network. A DDBMS is the software system that permits the 
management of DDBs and makes the distribution transparent to the user.”
• A DDB is NOT:

- A collection of files (need structure and DB manager)
- A client-server interface to a database

Data on one node, clients on other nodes in network
(Almost) every centralized DBMS has client-server interface



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 7 

Example of DDB

• Multi-national company with distributed departments
• Distributed data management:

- Each location keep local records of local employees
- R & D keeps track of what is going on at its facility.
- Manufacturing plants keep data related to their engineering operations and access 
to R & D

- Manufacturing keeps track of local inventory. Access to warehouse also
possible.

- Warehouses keeps local inventory. Manufacturing can access inventory levels.
- Headquarters keep marketing and sales records per region. Share with other
headquarters and can access inventory data at plants and warehouses.



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 8 

Advantages with DDBs

• Local autonomy for DDB nodes
- Local control
- Local policies

• Improved performance
- Avoid data shipping

• Improved Reliability
- Crashes less severe (if application not dependent on non-local data)

• Expandability
- Easy to add new nodes (not always linear scale-up because of central directory)

• Sharability
- Uniform interface and sharing through DDBMS



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 9 

Replication and fragmentation
• Data replication

Same data on several nodes
- For reliability and read performance
- Not necessary to replicate all tables

Fully replicated vs partially replicated
Full replication often not realistic!

- Updates must be propagated to each replica!
- Special procedures after failures to restore consistency
- More problematic transaction synchronization!
- Asynchronous propagation often OK

• Data Fragmentation (= data partitioning)
Tables transparently split over several nodes
- For access performance
- Good when nodes far apart



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 10 

Problems with DDBs
• Complexity

Database administration may be complex (e.g. design, recovery)
• Distribution of administrative Control
• Security
• Networking a known problem
• Distributed schema management

Schema is accessed whenever SQL query issued!
- Global directory => Central Database becomes hot spot
- Local directories => Data replication
=> Since schema is not updated often but need to be accessed very often it is normally fully 
replicated by the DDBMS.

• Synchronous distributed concurrency control decreases update performance 
• Reliability of DDBMS

- Maintain consistency of replicas
- Bring up (fragmented) database at failed sites



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 11 

Transparency 
• Replication Transparency

- User unaware of data replicas
- Automatic replica propagation at update
- Asyncrounous replica propagation may suffice
- Special problems when nodes are down

• Fragmentation Transparency
- E.g. a logical relation is horizontally fragmented into local physical tables
- Translation from global queries to fragmented queries

• Network Transparency
- Protect user from operational details of network
- Hide existence of network
- No machine names in database table references

Location transparency
Naming transparency



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 12 

Distributed database design
- Where to put data and applications?
- Partitioned data:

Split data into distributed partitions
- Replicated data:

Several sites have data copies
- Goal: Minimize combined cost of storing data, communication, transactions.
- NP complete optimization problem.

• Distributed Query Processing
- Automatically done by distributed query processor of DDBMS
- Analyze query --> distributed execution plan
- Factors:

Data replication
Data fragmentation

• Communication costs



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 13 

Distributed Database Design (Fragmentation)
• Correctness of Fragmentation

1. Completeness 
R has fragments R1, R2,...,Rn

Should be possible to find every tuple of relation in some fragment(s)
Lossless decomposition of fragmented relation.

2. Reconstructability
Should be possible to reconstruct original relation with some relational operator, ∇:

R = ∇ Ri, ∀ Ri ∈ FR
3. Distinctness

Data items (tuples or columns) d of R should only occur in exactly one fragment
d ∈ Ri => d ∉Rj , i≠j

Horizontal: d are rows
• Vertical: d are columns



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 14 

Parallel databases

Data Server Data Server Data Server Data Server Data Server

Query
Manager

Query
Manager

Query
Manager

Query
Manager

Query
Manager

Coordinator



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 15 

Parallel Databases
Parallel data servers
• Use parallel processing in cluster of computer nodes for data servers
• Automatic fragmentation and replication of data over the different nodes by the Parallel 

DBMS (PDBMS)
To achieve maximal throughput and availablility

• Utilization of modern hardware
- Multiple independent hardware components interconnected through 

fast communication medium (e.g. a bus)
- Modern multi-processor architectures natural to support 

interquery, intraquery, and intraoperation parallelism
- Connect disk per processor unit



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 16 

Distributed Algorithms, SDDS
Distributed data storage algorithms should be designed so that no hot spot 
nodes are created and so that they scale well.

Problem:
• How to store large storage structures on distributed nodes without any central 

hot spot.
• How to design storage structure that gracefully grows and shrinks over nodes in 

network as database evolves.

Solution: 

SDDS, Scalable Distributed Data Structures
• Most well known SDDS: LH* by Witold Litwin (Chord very similar)
• LH* is a scalable and distributed hash table.
• Can be extended with high-availability: LH*g, LH*m



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 17 

LH*

• No directory (no hot spot)
• Each client has approximate image of hash buckets
• Addressing error => max 2 forwardings + Image Adjustment Messages
Table growth => bucket splits => dynamic extension of # of hash buckets

Hash buckets

Clients

IAM
IAM

Forward Forward



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 18 

DDBMS Reliability
Two-Phase Commit Protocol (2PC)
• The most well known protocol to ensure atomic commitment of distributed transactions.
• Extend local site commit protocols by ‘contract’ (synchronization) that they all

agree on committing (or aborting) in a distributed transaction.



DISTRIBUTED DATABASES

TORE RISCH, UDBL, UU

PAGE 19 

•

Start

Write 
begin_commit
in log

Any No?

Write commit
in log

write
end_of_transaction
in log

Write abort
in log

Write ready
in log

Ready

write abort
in log

abort write abort
in log

write commit
in log

commitabort

Start

Wait

Type of
msg?

commit

n

Ready to
commit?

commit

y

n

y

abort

prepare

abort!
commit!

global-abort!

global-commit!

ack

ack

Coordinator Each participant


