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1 Problems with Static Query Plans

In databases where different resources have much changing characteristics, static
query plans is often not a good solution. The problem is that, while a particular
query plan might be a good alternative with some initial characteristics of the
database, it may be a bad alternative when the characteristics changes. Con-
sider, for example, joining the tables R, S and T', and assume first that R and .S
contain 1000 rows and 7" contains 10 rows. Clearly, it is best to not use the join
ordering (R ® S) x T but to choose any other ordering such as (T' X R) x S.
However, if the size of T' drastically increases to 1,000,000 rows, this is not a
good choice anymore.

In this overview we present the ideas of [1, 2] which suggests two adaptive
query operators called Eddies and STAIRs. Using these operators instead of
traditional ones, the query plans need not be fixed, but can be changed on a
tuple-by-tuple basis. In the following, Section 2 starts by presenting the Eddy
operator and discuss some of its shortcomings. After that, Section 3 presents
the STAIR operator and how it can be used to overcome these shortcomings. Fi-
nally, Section 4 concludes the overview. For in-depth information about Eddies
and STAIRs see [1, 2].

2 Eddies: Continuously Adaptive Query Pro-
cessing

The eddy [1] was introduced to limit the problems with static query plans in
a database with changing characteristics. An eddy has several inputs and one
output, and functions as an adaptive router between several operators. Each
input corresponds to a relation and an incoming tuple is routed to all the eddy’s
operators, in some order, before it is sent to the output. The eddy is an adap-
tive router since, for an active query, it may change the routing order of a tuple
among its operators. By doing this, the eddy can adapt to changing character-
istics of the database and be more efficient than a static query plan on the same
operators. An example (from [1]) of an eddy is shown in Figure 1, with three
input relations R, S and T, and four operators.

In general, an eddy consists of the following:

e A number of n input relations Ry, ..., R,.



Figure 1: [1] An eddy with input relations R, S and T, and four operators.

e One output relation.

e A number of m unary or binary operators Oq,...,O,,, each operator O;
having one or two inputs and one output.

e A priority queue for buffering unfinished tuples.

Each tuple ¢ that is accepted on one of the eddy’s input relations is assigned
a ready, bit-string and a done; bit-string, both of length m, corresponding to
the number of operators of the eddy. Bit ready,[i] is on (denoted by 1) if and
only if operator O; may accept t. Bit donet[i] is on if and only if relation O;
has accepted and returned t back to the eddy. By assigning different ready
bit-strings to different tuples, different routings can be realised. When all done,
bits are on, the tuple ¢ is sent to the eddy’s output. If ¢ has some done bits off
(denoted by 0), it is stored in the priority queue of the eddy, waiting for its turn
to be accepted by its next operators, according to the on-bits of ready,.

To illustrate this, consider the example shown in Figure 2. It displays an
eddy with three incoming relations R, S and T, and two joins R x S and S x T
In Figure 2(a), we see that the eddy’s priority queue is filled with (in order of
priority) the tuples s, 7 and ¢, where each tuple is of its corresponding capital-
letter relation. We let R x S be operator Oy and S x T be operator O;. The
ready and done bit-strings for s, r, and ¢ are then respectively:

ready, = 11
dones = 00
ready, = 10
done,, = 00
ready, = 01
done; = 00
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Figure 2: Three different states of an eddy with three input relations R, S and
T, and two joins R x S and S x T.

As we can see, there is a choice for tuple s to go first to either R X S or S x T,
as indicated by the ready, bit-string as well as the two arrows from the priority
queue in Figure 2(a). This choice corresponds to the join orderings (R x S) x T’
and R x (S x T), respectively. Choosing S x T for s, we see in Figure 2(b)
the eddy where s has been accepted by S x T', and where r has been accepted
by R x S (the only choice for r). Figure 2(c) then shows the eddy where ¢
has been accepted by S x T (the only choice for ¢) and the joined tuple st has
been returned to the eddy’s priority queue. The bit-strings for st are then set
to respectively ready,, = 10 and dones; = 01. Hence, the only choice for st
is R x S, after which has accepted st, the joined tuple rst can be sent to the
eddy’s output.

By making different choices for routing tuples in the eddy, such as for the
tuple s above, we can make the eddy route different tuples in different ways.
Various heuristics for doing this can be imagined, some of which are evaluated
in [1].

Unfortunately, there are still problems with the eddy operator which means
that it may make current decisions resulting in poor performance in the future.
This is partly because the operators within the eddy may buffer a large num-
ber of tuples, forcing the eddy to stick to certain routing decisions for a long
time, even though it is clear that some other routing decisions would be better.
Consider, for example, the eddy in Figure 2, and assume that initially the size
of R and S are much larger than 7. Assume also that the eddy initially routed
the tuples of S to the join S x T and that a large number of S tuples was
buffered in S x T, waiting for T" tuples to arrive. The join ordering will then
be R x (S x T) for all these tuples. Assume now that T grows to become
much larger than R and S, meaning that the join ordering R x (S x T) is not
a good choice anymore. Since there are a large number of S tuples buffered in
S x T, the eddy must stick to this ordering for some time resulting in poor
performance.



3 STAIRs: Lifting the Burden of History from
Adaptive Query Processing

The problem with eddies mentioned in the end of the previous section is handled
by what is called a STAIR operator [2], which we will now describe. This
operator uses ideas developed for the SteM operator [3], partly by the same
authors. The basic idea behind the STAIR operator is to (from [2]):

“expose the state in the (eddy’s) operators to the eddy, and allow the
eddy to manipulate this state”

In this way, when the eddy ends up in a state forcing it to make bad routing
decisions, the eddy may manipulate its state in order to (continue to) make
good routing decisions.

A join operator over two relations within the eddy is replaced by a pair of
STAIR operators, associated with each of the relations of the join. The basic
functionality of a STAIR operator is achieved by the following operations:

e insert(R.a,t) stores the tuple ¢ in the STAIR R.a where a is the join
attribute.

e probe(R.a,v) returns all tuples r in the STAIR R.a where r.a = v.

By using these operations it is now easy to mimic a join operator by a pair
of STAIRs. For example, assume that the join R x S is replaced by the two
STAIR operators R.a and S.a and consider joining r from R with s from S.
Using the join R x S this would be done as follows (assuming that r arrives
before s):

e Add r to the buffer of the join operator.
e When s arrives, return the joined tuple 7s.
By instead using the pair of STAIRs R.a and S.a, this would be done as follows:

e Insert r into R.a with the call insert(R.a,r) and probe for r.a in S.a with
the call probe(S.a,r.a).

e Insert s into S.a with the call insert(S.a, s) and probe for s.a in R.a with
the call probe(R.a, s.a).

The first call to probe will return nothing since there are no inserted tuples in
S.a at that time. The second call to probe will return the tuple » which can
then be joined with s.

Now, in order to allow the eddy to do state manipulation, the STAIRs also
support the following operations:

e demotion(R.a,t,t') replaces t by t’ in R.a, where t’ is a sub-tuple of ¢.

e promotion(R.a,t,S.b)
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Figure 3: Three different states of an eddy with STAIRs. Starting from the
state in (b), the state in (a) shows the eddy after the call demotion(R.a,rs,r),
and the state in (c) shows the eddy after the call promotion(S.a,t,S.b).

— removes t from R.a;
— inserts t into S.b;

— probes T.b with t.b, where T.b is the other STAIR operator of a join
S xT;

— inserts the resulting matches (which are super-tuples of ¢) back into
R.a.

These two operations are only valid when certain preconditions are fulfilled.
We will not spell out these preconditions here but they can be found in [2].
Intuitively, the call demotion(R.a,t,t") undoes a join that resulted in the tuple
t, where one of the joined tuples is t’. The call promotion(R.a,t,S.b) reroutes
the tuple ¢, initially routed with respect to the join ordering (R x S) x T, with
respect to the new join ordering R x (S x T).

In Figure 3 we see the eddy of Figure 2 where the two joins are replaced by
two pairs of STAIR operators. Starting from the eddy’s state in Figure 3(b), we
see in Figure 3(a) the eddy after the call demotion(R.a,rs,r). Indeed, the tuple
rs in R.a is replaced by the sub-tuple r. In Figure 3(c), we see the eddy after
the call promotion(S.a,t,S.b). Indeed, the tuple ¢ has now been rerouted with
respect to the join ordering R x (S x T'). We see this since, in Figure 3(c), the
joined tuples tu and tv are inserted in S.a and ¢ is inserted in S.b.

By using demotion and promotion it is thus possible to manipulate the state
of the eddy, and a state forcing the eddy to make bad routing decisions can be
changed such that the eddy can (continue to) make good routing decisions.

4 Conclusion
In this overview we have presented part of the ideas in [1, 2] where the main goal

is to provide more efficient query operators. This was realised by providing the
eddy operator [1] which is an adaptive query operator that may choose different



query plans on a tuple-by-tuple basis. Since the eddy operator may suffer from
state buffering, forcing it to make bad routing decisions, the extension to eddy
named STAIR was introduced in [2]. With this extension, the operator is truly
adaptive since it may manipulate its state, and thus overcome bad routing
decisions.
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