
Object-Relational Query Processing

Johan Petrini
Department of Information Technology

Uppsala University, Sweden
Johan.Petrin@it.uu.se

1. Introduction

In the beginning, there where flat files of data
with no querying capabilities. Then came the
relational database, RDBMS, with data
structured according to some schema, and a
standardized query language, SQL.

As time went by and with the growing need
for people to store and model more complex
data such as e.g. multi-media data, the relational
database had to be extended with support for
customized data types, functions and indexes.
Databases with such capabilities were called
object relational databases or ORDBMS. An
extension to the SQL standard, SQL-99 (a
subset of SQL3 [2]), was also needed to reflect
these new capabilities and allow the user to
utilize them in a declarative manor.

However, adding new functionality to the
relational database also implicated rebuilding
the traditional relational database optimizer to
handle this new functionality and keep on
creating scalable execution plans. Basically, all
information hard-coded in the RDBMS about
fixed data types should be replaced with a table-
driven system supporting e.g. user defined
types, functions and indexes, to be efficiently
handled by the optimizer [1]. In particular, a
new more advanced cost-function must also be
developed for the optimization of query plans
containing calls to expensive user defined
functions.

2. Object-relational database
systems

Object relational query processing is needed to
speed up queries over object-relational
databases. Before discussing the object-
relational optimizer in section 3 we here
describe a couple of features mentioned in [1] to
characterize an ORDBMS. These features are
needed to model real-world problems in a way
that is intuitive and easy for the developer and
also offers good performance for the
application.

First, the DBMS should offer support for
creating user defined base data types. The
DBMS should also be possible to define
functions and operators over the user defined
base data types.

Second, the DBMS should offer support for
creation of complex objects. A complex object
is an object that can be constructed from
multiple user defined base data types using
some type constructor e.g. row, set or reference
(OID). References are used to model primary
key foreign key relationships [2].

Third, inheritance for user defined data types
and functions (overloading) should be supported
by the DBMS.

3. Object relational query
processing

 There are several features of an ORDBMS that
has to be properly handled by the object-

relational query optimizer [1]. Here, we will
discuss a few of them and illustrate how they
should be supported by the object relational
optimizer using the examples from [1]. An
example from [3] will also be introduced. The
running example in the text will be the table
emp created to hold instances of the row type
employee_t as shown below:

create row type employee_t(
 id employee_id,
 name varchar(30),
 salary int,
 startdate date,
 location point,
 picture image);

create table emp of type employee_t;

The user-defined type point above is created to
model points in 2-D in a more simple way than
adding the two attributes longitude and latitude
as floating point numbers.

3.1 User-defined operators and
selectivity functions

As opposed to relational databases where the
selectivity functions for built-in operators is
hard-coded into the system this knowledge has
to be explicitly defined for user defined
operators in ORDBMS for the optimizer to do a
good job.

For example, given the query below containing
a call to the user -defined operator,
N_equator_equals, the user must also specify a
corresponding selectivity function for the
function:

select name
from emp
where
location N_equator_equals point(‘500,1’);

In the ORDBMS there should be functionality
to associate this user-defined selectivity
function to the operator. During optimization

time when the optimizer encounters the call to
N_equator_equals it will call the correct
selectivity function and use the returned value
(floating-point number between 0-1) to get a
measurement of the cardinality of the user-
defined function. Often the selectivity function
use statistics from the ORDBMS to calculate its
value.

3.2 User-defined access methods

An access method is a collection of functions
for handling indexes on data such as open a scan
of an index, iterate through the scan, insert,
delete or replace a record and close the scan.
Consider the query below extracting the
employees that lives within the area defined as
the bounding box specified by origin and
point(1,1):

select name
from emp
where
location contained box(‘0,0,1,1’);

Since finding all the point contained within the
bounding box is a 2-dimensional search there is
a need for a 2-dimensional index such as e.g. an
R-tree. A plain B-tree will not do. Since an
ORDBMS allows the creation of user-defined
types, e.g. point, special access methods are
needed to speed up access to data defined in
terms of these types. However, different data
types using the same index in their access
methods can assign different semantics to the
operators (<,>,= e.t.c) of the particular index.
The optimizer must be made aware of these
characteristics to be able to do a good job
optimizing the query. Therefore, a template has
to be defined for every index specifying the
operators of the index. Then when a new access
method is added the user should specify which
interpretation of the index operators that should
be associated with the access method. With this
information the optimizer has enough
knowledge to get to work.

Also, the access method must handle tasks like
locking on index objects, recovery of index data
structures and coordination with the ORDBMS
buffer manager when reading and writing index
disk pages.

3.3 Expensive clauses and functions

The ability of the optimizer to find the correct
placement of expensive clauses/functions in the
query plan can have an enormous impact on the
query processing time. Consider the query
below extracting the name of employees with a
salary over 10000 and low redness in their
pictures:

1. select name
2. from emp
3. where
4. redness (picure) < 0.1 and
5. salary > 10000;

We assume that the clause on line 4 requires
100 CPU instructions to be evaluated while the
clause on line 5 needs about 1000000 times as
many instructions. We also assume for now that
there are no indexes on the emp table.

In a relational DBMS the optimizer would
have chosen to perform a sequential scan and
evaluated the predicates for each extracted
record from left to right. This is not a poor
strategy since in traditional SQL clauses are
often cheap w.r.t. CPU time. In the case with
expensive clauses, as illustrated in our example,
this strategy will lead to unacceptable
performance since redness will be called for
every employee instead of for employees

The cost-model used by relational optimizers
as shown below is too primitive to model the
impact of expensive clauses.

cost = expected nr of records examined +
 (fudge-factor *
 (expected number of pages read))

For example, the expected number of records

examined is not a good measurement of CPU
resources since it is not treat different ordering
of predicates in the query differently. To enable
the object relational optimizer to make the right
decision when ordering the clauses it must be
offered a more comprehensive cost-model with
additional information about e.g. the CPU cost
per call for the functions in the clauses.

Also, it is crucial that the object relational
optimizer put the expensive functions in the
query plan at the correct places for the
generation of scalable execution plans. This is
motivated with the following Postquel (query
language of POSTGRES) query from [3]

retrieve (maps.name)
where
 maps.week = weeks.number and
 weeks.month = “June” and
 maps.channel = 4 and
 coverage(maps.picture) > 1;

The query retrieves all channel 4 maps from
week starting in June 17 showing more than 1%
snow cover. Information about each week is
kept in the weeks table requiring a join. In the
example the function coverage is a complex
image analysis function that may take thousands
of instructions to compute. Now, a relational
optimizer would try to restrict the maps and
weeks tables as much as possible before joining
them (predicate pushdown). But in this case it is
the wrong thing to do since coverage is an
expensive function. Instead the optimizer should
delay the restriction coverage(maps.picture) > 1
until after the join on maps and weeks to
minimize the number of instructions performed,
so called predicate pullup. The two different
execution plans for predicate pushdown and
pullup are shown in Figure 1.

Figure 1: Executions plans for predicate pushdown (left) and pullup (right)

The execution time with predicate pushdown is
21 minutes. This is compared to the execution
time with predicate pullup which is 3 sec.

3.4 Scans of inheritance hierarchies

Suppose the new user-defined type student is
added to our company database [1]. Consider
the queries below extracting employees hired
before a given date and with a given salary:

select name
from only(emp)
where salary = 10000 and
 startdate = < ’01/01/1990’;

select name
from emp
where salary = 10000 and
 startdate = < ’01/01/1990’;

Here the first query only extracts employees
with the correct requirements while the second
one extracts from the emp table and from the
hierarchy under it i.e. the dept table. An
approach for the optimizer to answer the
second query could be to divide it into two
sub-queries and then run them separately. A
better way would be to try and union the two
tables before applying the restrictions thus
eliminating the overhead of processing two

queries. However, this is not such a good idea
if one of the table have an index defined over
some attribute and the other does not meaning
that the index could not be utilized.

3.5 Joins over inheritance hierarchies

In this section we assume that a user-defined
type dept is also added to the employee
database [1]. Concider the query below
retrieving all employess and students working
on the first floor:

select e.name
from emp e, dept d
where e.dept = d.name and
 d.floor = 1;

The query could be replaced by the two sub-
queries shown below:

select e.name
from only (emp) e, dept d
where e.dept = d.name and
 d.floor = 1;

select e.name
from only (student_emp) e, dept d
where e.dept = d.name and
 d.floor = 1;

A possible action taken by the optimizer is to
perform an index scan on the dept table and
then join the result with the emp and
student_emp tables respectively. This is not a
good strategy since the index scan on dept is
done twice. A better execution plan, which
should be generated by the optimizer, is the
one shown in Figure 2.

Figure 2: Execution plan with one index scan of dept

Here the union of emp and student_emp is
done before the join with dept meaning that the
index scan on dept is only performed once.

4. Summary

In this paper the motivation behind, and
characteristics of object-relational query
processing has been discussed.

ORDBMS has evolved due to the need of
users to model more complex real world
problems in a way that is simple and intuitive
for the developer.

Of course, this also put new demands on the
optimizer to generate efficient execution plans.
Instead of hard-coding all the information
about fixed data types a table drive approach
should be implemented allowing the creation
of user-defined data types, functions, access
methods and selectivity functions.

Particularly important is the development of
a new more elaborate cost-model taking into
account the impact of expensive functions and
strategies for correct placing of these functions

in execution plans e.g. predicate pullup as
shown in [3]

References

1. M.Stonebreaker, P.Brown: Object-
Relational DBMS – tracking the next great
wave. Morgan Kaufman Publishers, 1999.

2. R.Elmasri, S.B.Navath: Fundamentals of
database systems. Pearson International
Edition, 2007

3. J.Hellerstein, M.Stonebreaker: Predicate
Migration: Optimizing Queries with
Expensive Predicates. In Proc. ACM
SIGMOD Conference on Management of
Data, pp. 267—276, 1993.

Nested Loop Join

Index scan on dept

student emp emp

Union

