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Abstract 
This paper presents an overview of indexes for spatial and multimedia databases, whose 
indexes are often of the same kind as spatial ones. Records in spatial databases are 
characterized by their locations in an n-dimensional space where n is 1 or greater. A 
spatial database query involves finding all objects at a certain location, or finding all 
locations or areas occupied by a certain set of objects. The retrieval will be time-
consuming if the DBMS must traverse the entire database in the search for the matching 
records, but will be speeded up if an index is used. For spatial database applications it is 
important to study efficient retrieval, insertion and deletion. Implementations of spatial 
indexes that facilitate these operations have been a very active field of study in database 
research.  

1 Introduction 
Two fundamental kinds of spatial database queries can be identified [9]: 

• Feature query: Given an object, determine its location or constituent cells. 

• Location query: Given a location in space, determine which objects occupy that 
location, and (optionally) the remaining constituent locations of those objects. 
The location query could be either a point query, or a window query (in one or 
more dimensions). 

A location query could be 

• a point query, e.g. “find point objects that are located exactly in a given point”, or 
“find objects that overlap with a given point”; 

• a region (in one or more dimensions) “find objects that overlap (with a certain 
point or region)”; 

• an approximation (this is often a case of  an interval or nearest-neighbor query); 

• a nearest-neighbor query, e.g. “find the n points that are closest to a certain other 
point”. 

Furthermore, two fundamental representations can be identified: 

• Implicit (image based) representation: A representation consisting of unit-size 
cells. For each cell in the space, a list of objects occupying that cell is stored. 

• Explicit (object-based) representation: For each object, a list of its constituent 
cells is stored. 

When implicit representation is used, the location query is easily answered, whereas a 
feature query has to examine all cells in space to be answered. On the other hand, an 
explicit representation is efficient for the feature query, whereas the execution of a 
location query must examine all objects. The goal is to find a spatial index that can 
efficiently answer both types of queries. In this paper, a few classes of indexes will be 
discussed: 



• Hash tables. These are useful for point queries in one dimension. Query 
complexity is typically O(1). 

• Space filling curves. These provide a mapping from the d-dimensional space to a 
one-dimensional space of index values (integers). They support point and range 
queries in spaces of any dimensionality. 

• Containment hierarchies (trees) are an important class of spatial indexes. These 
hierarchies split the search space hierarchically, thereby reducing the search 
complexity typically from linear to logarithmic. For implicit representations, 
space is aggregated into successively larger blocks; while for explicit 
representations, objects are aggregated into successively larger groups. 

This paper is organized as follows: In Section 2, the concept of inverted files is 
introduced. Methods for searching one-dimensional data are described, like the classical 
B-tree and its variants. Section 3 discusses space filling curves, which allow 
transformations of multi dimensional attributes to a one-dimensional attributes. Section 
4 presents object-based and image-based multi-dimensional spatial indexes. 

2 One dimensional spatial indexes 
An inverted file is the simplest and most popular access structure in database systems. 
Inverted files are important for efficient execution of the location query when an object 
based representation is used. For each distinct value of an attribute, the inverted file 
stores a list of pointers to records that have the same attribute value, and (optionally) the 
length of that list. Finding certain values or ranges is then a matter of searching the list 
of attribute values. This postings list of attribute values can in turn be indexed using a 
hash table or a B-tree. On the other hand, image based representations are not 
frequently used in one-dimensional applications. 

2.1 B-trees 
A B-tree is a one-dimensional index structure. It has the structure of a search tree with 
the following additional properties: 

• It is balanced. On insertions and deletions, B-trees are automatically re-balanced 
if needed. 

• The space wasted on deletions never becomes excessive. A B-tree is always 
50…100% full. This ratio (0.5…1.0) is called the fill factor.  

Formally, a B-tree of order p is defined as follows [11]; 

1. Each node in a B-tree is of the form 
<P1, K1, Pr1, P2, K2, Pr2, …, Pq-1, Kq-1, Prq-1, Pq>, 
where q≤ p. Each P is a pointer to a subtree, and each Pri is a data pointer, i.e., a 
pointer to the location in the postings list for the records that have attribute value 
Ki. 

2. Within each node, K1 < K2 <…< Kq-1. 

3. For all attribute values X in a subtree pointed at by Pi we have 
Ki-1 < X < Ki for 1 < i < q, X < K1, and Kq-1 < X. 

4. Each internal node has at least p/2 tree pointers. The root node has at least two 
pointers unless it is the only node. 



5. All leaf nodes are at the same level. The subtree pointers of the leaf nodes are 
null. 

2.1.1 B-tree operations 
A search starts at the root and descends the tree. For each node, the searched attribute 
value v is compared the Ki values in the tree. Depending on whether v is less or greater 
than Ki, the search will continue down the left or right subtree respectively. If v=Ki the 
records pointed at by Pri is returned as a result. 

When a value is inserted, a search is first performed to find the location of insertion. 
Nodes that overflow are split. The first (p+1)/2 entries are kept in the original node, 
and the remaining entries are moved to a new node, which will be pointed to by a new 
tree pointer in the parent node of the original node. If the parent node overflows, the 
process will be repeated for that node. Thus, node overflows and splits might propagate 
all the way up to the root, thereby creating a new tree level. 

If a value or a subtree is deleted from a node so that it is filled less than 0.5p, then the 
node is merged with its neighbor. This process might also propagate so that one deletion 
results in the removal of an entire tree level. 

2.1.2 Tree fanout and B-tree variants 
A tree with many entries per node (high fanout) will have fewer levels and hence fewer 
comparisons will be needed until the value is found. On the other hand, a tree node with 
many subtrees will not fit into a single disk block. To fit a node into a single disk block we 
employ the following model. Each node consists of p subtree pointers of size P, p–1 
record pointers of size Pr, and p–1 search attribute values of size V. Assuming block size 
B, we have 

pP + (p–1) (Pr+V) ≤ B  ⇔  p ≤ (B+Pr+V) / (P+Pr+V) 

This gives a maximum value for the B-tree fanout, given the disk block and pointer sizes. 

A variant of the B-tree, the B+-tree, is often used in applications. The B+-trees store 
record pointers only at leaf level. This leads to fewer levels and higher-capacity indexes. 
Furthermore, all B+-tree leaf nodes are linked together, which allows sequential access. 
Formally, a B+-tree is defined in the same way as a B-tree, with the following exceptions: 

1. Each internal node in a B+-tree is of the form 
<P1, K1, P2, K2, …, Pq-1, Kq-1, Pq>, 
and a leaf node is of the form 
<<K1,Pr1>, <K2, Pr2>, …, <Kq-1, Prq-1>, Pnext> 
where Pnext is a pointer to the next leaf node in the tree. 

3. For all attribute values X in a subtree pointed at by Pi we have 
Ki-1 < X ≤ Ki for 1 < i < q, X ≤ K1, and Kq-1 < X. 

5. All leaf nodes are at the same level. Leaf nodes have no subtree pointers. 

The maximum fanout is computed using a model similar to the B-tree: 

Pp++((p+-1)V) ≤ B  ⇔  p+ ≤ (B+V)/(P+V) 

Comparing the formulas for p and p+, we can show that 

(B+Pr+V) / (P+Pr+V) ≤ (B+V)/(P+V)  ⇔ 

BP + PPr + PV + VB + VPr + V2  ≤  BP + BPr + BV + VP + V2  ⇔ 



P  ≤  B, 

which is always true – QED. So the B+-tree index is of higher capacity because its 
maximum fanout is higher. 

One more variant on B-trees is to change the fill factor constraint. For instance, the B*-
tree requires each node to be at least 2/3 full. Some DBMSs allows the user to change the 
fill factor requirement for the leaf level and for the node level separately. 

3 Space filling curves reduce dimensionality 
Space filling curves is a class of access structures for multi-dimensional image based 
representations of unit size cells. They are a mapping between a multi-dimensional 
representation and the integers, since they impose a linear ordering of the elements 
(pixels) of an n-dimensional space. Thus, space filling curves reduce a multi dimensional 
location query to a one dimensional query, which in turn can be speeded up using one-
dimensional indexes like hash tables or B-trees. 

Samet [9] lists six desirable properties of space filling curves: 

• Uniqueness: The curve should pass through each location in space once and only 
once 

• Simple mapping: The mapping between the d-dimensional space and the integers 
should be simple. 

• Stability: The ordering should be stable, i.e. the relative ordering of the individual 
locations is preserved when the resolution is doubled. 

• Adjacency preservation: Two locations that are adjacent in space are neighbors 
along the curve and vice versa. This is impossible to satisfy for all locations at all 
space sizes.  

• Easiness of retrieval: The process of retrieving the neighbors of a location in 
space should be simple. 

• Admissible: At each position in the ordering at least one adjacent neighbor in 
each of the directions must have already been encountered. This is useful in 
several algorithms. 

The simplest space filling curve is the row order, which is also known as the multi 
dimensional array access structure. In many computer graphics applications, this 
ordering is very natural since a bitmapped image is organized in memory in the same 
way as a bitmapped image. 

 
Figure 1. The row ordering in two dimensions is shown  

for 2x2, 4x4, and 8x8 collections of cells (resolution 1, 2, and 3). The ordering enumerates the 
cells starting from the upper left corner and following the curve. 



Another example of a space filling curve is the Morton order or z-ordering. The z-
ordering for two dimensions is shown in 

  

Figure 2. This ordering is a more complicated mapping than the row order, but it fulfills 
other properties (e.g. stability and admissibility) better than the row order.  It is also 
simply calculated by bitwise interlacing the keys. Many other orderings have been 
proposed, like the Peano-Hilbert order, Gray order etc. However, there is no space-filling 
curve that can fulfill all desirable properties at the same time. 

  

Figure 2. The Morton order in two dimensions is shown  
for 2x2, 4x4, and 8x8 collections of cells. The ordering enumerates the cells starting from the 

upper left corner and following the curve. 

Figure 3 shows how 2-D region query is transformed into a set of 1-D interval queries 
using Morton order. The shaded region query shown in the upper part of Figure 3 is 
transformed into this set of 1-D interval queries shown in the lower part of the figure. 

 
 

Figure 3. Upper part: A spatial region query shown as a shaded region in a 2-D collection of 
cells. Lower part: The region of the query is transformed into a set of 1-D intervals. 

3.1 UB-trees 
The UB-tree (Universal B-tree) [2] enables B-trees to be used for multi dimensional data. 
The records of the B+-tree are stored according to the Morton order. Insertion, deletion, 
and point queries are performed in the B+-tree. Range searches in multidimensional 
point data will be transformed using the order as shown in Figure 3. 



4 Multi-dimensional spatial indexes 
In this section, some object-based and image-based indexes are discussed. First, some 
image-based hierarchies are presented, including the grid file and k-D tree. Next, the 
classical R-tree is discussed. Finally, some R-tree variants and their basic properties are 
outlined. 

4.1 Block hierarchies 
Block hierarchies decomposes the space by successively partitioning it into blocks. In the 
classical block hierarchies, the number of splits on each level is either 2, where each node 
splits the space in two, or 2d, where each node performs one split per dimension.  

Regular decompositions (bintrees and region quad trees) place the first split at the 
origin. Successive splits are placed in the most crowded quadrant. Regular 
decompositions might well result in unbalanced trees if the distribution is not uniform. 
Figure 4 A shows the result of three successive splits of a region quadtree in two 
dimensions where the data distribution is towards the lower right.  

Irregular decompositions have more freedom to place splits. The classical k-D tree [4] 
splits one dimension per level. The level below is splitting the next dimension, and so on 
in a round robin fashion. Figure 4 B shows a space partitioned by a k-D tree.  

  

Figure 4 A. A region quad tree partitioning in two dimensions. B. The result of a generalized k-D 
tree split. 

Figure 5 shows a classification of block hierarchies. Note that the quad tree is often 
called “octtree” for 3-dimensional spaces since each node divides the space in eight parts. 
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Figure 5. A classification of block hierarchies. 



4.2 R-trees 
The R-tree is an object-based index structure for objects which have spatial extent. It can 
be said to capture the spirit of B+-trees in n dimensions, to enable answering location 
and range queries without the need of a space filling curve as in the UB-tree. The R-tree 
aggregates every M objects, that are close to each other, to larger blocks. This process is 
repeated recursively until there is only one node left. Searching R-trees for objects that 
contain a location a involves descending all sub trees that contain a. Sub trees that do 
not contain a are pruned from the search. 

The original R-tree article by Guttman [7] presents the R-tree data structure, the basic 
algorithms, and some performance tests on some different R-tree reorganization 
algorithms. If M is the maximum number of entries that fit into a node, and m ≤ M/2 is a 
parameter specifying the minimum number of entries in a node, Guttman formally 
defines an R-tree for an n-dimensional space as follows: 

• Every leaf node contains between m and M index records unless it is the root. 

• For each index record <I, P> in a leaf node, I=(I0, I1, …, In) is the smallest n-
dimensional rectangle (bounding box) that spatially contains the object. Ik is a 
closed bounded interval describing the extent of the object along dimensin k. It 
might have one or both endpoints equal to infinity, indicating that the object 
extends indefinitely. 

• Every non-leaf node has between m and M children unless it is the root. 

• For each entry <I, Pr> in a non-leaf node, I is the smallest n-dimensional 
rectangle that spatially contains the rectangles in the child node. 

• The root node has at least two children unless it is a leaf. 

• All leaves appear on the same level. 

Searching index records in an R-tree is similar to B-tree search. A search starts at the 
root and descends the tree. Given a root node T, find all index records that overlap a 
search rectangle S, by inspecting the rectangle part EI of an index entry E: 

If T is not a leaf, check each entry E to determine whether EI overlaps S. For all 
overlapping entries, search the tree whose root node is pointed to by Ep. If T is a leaf, 
check all entries E to determine whether EI overlaps S. If so, E is a qualifying record. 

The insertion into R-trees is similar to that of B-trees. New index records are added to 
the appropriate leaf, and overflowing nodes are split. The node split must be done so that 
subsequent searches will only examine nodes that contain qualifying records. To find a 
good node split is an optimization problem, to which Samet [9] outlines three possible 
objectives: (i) minimize the overlap between sibling nodes (Figure 6(a)); (ii) minimize 
the total area spanned by the bounding boxes of the sibling nodes (Figure 6(b)); and (iii) 
minimize the dead area (Figure 6(b)). 



 
Figure 6. (a) Aggregation of two bounding boxes minimizing the overlapping area. (b) 

Aggregation of the same boxes minimizing the total area. The dead area for the two 
aggregations is shaded. 

 

In the original R-tree article, Guttman attempts to minimize the overlapping area, thus 
achieving the partitioning shown in Figure 6(a). Guttman implements three different 
optimization methods;  

• exhaustive search with complexity 2M-1 – which is infeasible even for moderately 
sized nodes, 

• a quadratic cost algorithm which is quadratic in M and linear in the number of 
dimensions, 

• a linear cost algorithm which is linear both in M and in the number of 
dimensions. 

The quadratic and linear algorithms do not guarantee to find the minimum. However, 
Guttman’s experiments show that the linear cost algorithms produced node splits of 
quality comparable to higher-cost algorithms. 

One important improvement of the R-tree is the R*-tree, proposed by Beckmann et al 
[3]. It differs in three important ways from the R-tree in the insertion procedure. These 
differences lead to shorter search times and more efficient storage utilization. First, the 
insertion decision works differently for leaf nodes and internal nodes. When an object is 
inserted, the overlap is minimized for each internal node it traverses, whereas the 
increase in area is minimized at the leaf node. Second, when a node overflows, that node 
is not split immediately as in an R-tree. Instead, the R*-tree attempts to move some of 
the objects of that node to another node. This is achieved by re-inserting a fraction of the 
objects in the overflowing node into the tree. This procedure is called deferred split. 
Third, the R*-tree has a two stage procedure for splitting nodes. The first stage selects 
the dimension for the split and the second selects the split position in that dimension. 

5 Text and multimedia databases 
Text and multimedia information retrieval, data mining, pattern recognition, machine 
learning, computer vision, biomedical databases, data compression and statistical data 
analysis all deal with complex or multi-dimensional data. To enable classification and 
retrieval in these applications, objects are characterized using features that are extracted 
from the objects. These features are represented using a set of parameters – a set of 
coordinates in an n-dimensional space. Therefore, the representation in these databases 
and index structures is similar to those of spatial databases. Consequently, all indexing 
methods outlined in this paper are important also for these kinds of databases. Similarity 



queries are a common class of queries in text and multimedia databases. Similarity 
between multimedia objects is reflected by proximity in feature space. Typically, such 
queries are of the kind withindist(x0,d) or k_NN(x0). A class of spatial indexes, 
metric trees, has been developed for these kinds of queries. Some of these include 
Similarity Search trees (SS-trees) [12], M-trees [5], and distance indexes (D-indexes) [6]. 
All these exploit the triangle inequality of a metric space.  

5.1 M-tree and D-index 
The M-tree is similar to an R*-tree in that only leaf nodes contain pointers to records. 
Each leaf node contains the feature value, a pointer to the record, and the distance from 
the feature value to the feature value of its parent node. Each internal node has a feature 
value, a covering radius, and a distance from its parent. Since each internal node has a 
covering radius, the containment hierarchy of an M-tree can be envisioned as a set of 
(possibly overlapping) (hyper-) spheres in feature space. These spheres – whose centers 
are called pivot points – decrease the number of distance calculations for proximity 
searches. When compared to and R*-tree, the M-tree showed to outperform the R*-tree 
for distance and k-NN queries.  

One shortcoming of the M-tree is the fact that regions may overlap, so that several 
branches need to be visited during a search. On the contrary, the hierarchy of the D-
index [6] is non-overlapping. Like the M-tree, each node has a pivot point and a radius. 
However, each partitioning circle have a region of width 2ρ along the boundary that 
excludes is neither inside nor outside the circle. Figure 7 shows a partitioning circle with 
excluded middle partitioning. 

 
Figure 7. A. Excluded middle partitioning. 

B. A combination of two excluded middle partitionings form separable sets (1…4) and an 
exclusion set (shaded). 

Because of the excluded middle partitioning, each level h in the D-index will contain a 
number of buckets and an exclusion set, which is the union of all exclusion regions of 
that level. Each bucket contains its center point and radius, along with pointers to the 
objects that lie inside their region. The exclusion set of level h is further partitioned by 
the rest of the tree, as shown in Figure 8. A query of the withindist(x0,d) will 
descend all the buckets in the D-hierarchy that intersect with the query ball region. 

 



 
Figure 8. Three levels of hierarchy in a D-index. Four separable buckets are present at the first 
level. The exclusion bucket of the first level is partitioned at the second level into three separable 
buckets. Since there are no more levels of the tree, the figure shown to the right is the exclusion 

bucket of the whole structure. 
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