

UDBL

Tore Risch, Professor

Uppsala DataBase Laboratory

Dept. of Information Technology Uppsala University, Sweden http://user.uu.se/~torer

Introduction to Object-Oriented and Object-Relational Database Systems

Tore Risch Uppsala University, Sweden

UDBL

Database Design

•Logical Database Design:

How to translate a schema in the conceptual data model (e.g. extended ER-schemas) to a schema in the DBMS data model (e.g relational tables)

PROBLEM:

Semantics may disappear or be blurred when data is translated from extended ER-model to less expressive relational data model

Tore Risch

Uppsala University, Sweden

UDBL

Database Design

•Physical Database Design:

E.g by indexes:

- permit fast matching of records in table satisfying certain search conditions.

PROBLEM:

New applications may require data and index structures that are not supported by the DBMS.

E.g. calendars, numerical arrays, geographical data, images, text, voice, etc.

UDBL

Database Manipulation

- •Typical query language *operations* are:
 - Searching for records fulfilling certain selection conditions
 - Iterating over entire tables applying *update operations*

PROBLEM: Would like to be able to customize and extend query language for different application areas, maps, time series, images, etc.

Tore Risch Uppsala University, Sweden

UDBL

Classical DBMSs

Applications:

Administrative applications

e.g. banking (ATMs)

•Properties:

Very large structured data volumes

Very many small Transactions On-line (High transaction rates)

Occasional batch programs

High Security/Consistency

Tore Risch

Uppsala University, Sweden

UDBL

New DBMS applications areas

CAD Computer Aided Design

Multi-media databases (images, maps, voice, time series,...)

Scientific Applications (measurements, logs)

Hypertext databases/documents (WWW/HTML/XML)

UDBL

New DBMS applications (for OODB)

•New needs for e.g. CAD and scientific databases:

Extensibility (on all levels)

Better performance

Expressability

E.g. Object-Orientation needed

Tight programming language interfaces

E.g. C++, Java

Long transactions

E.g. Engineering requires checkin/checkout model

Very large objects

Tore Risch

Uppsala University, Sweden

UDBL

Kinds of **DBMS** support

Query	Relational DBMSs	Object-Relational DBMSs
No Query	File systems (scalable) Storage managers	Object Stores

Simple Data

Complex data

Tore Risch

Uppsala University, Sweden

UDBL

Object Stores (OO databases)

•First generation ODBs (around 1990)

Extend OO programming language with DBMS primitives

E.g. Smalltalk, C++, Java

Allow *persistent* data structures in C++ programs

Navigate through database using C++ primitives (as CODASYL)

An object store for C++

•Many products, e.g.:

Objectivity, Versant, ObjectStore

•Special embedded (C++/Java) OO Query language proposal: OQL

UDBL

Object Stores (OO databases)

- •Pros and cons:
 - + Long transactions with checkin/checkout model
 - + Always same *host* language (C++/Java)
 - + High efficiency only for checked-out data
 - Primitive 'query languages'
 - No methods in database (all code executes in client)
 - Rudimentary data independence (no views)
 - Limited concurrency
 - -Unsafe, database may crash
 - -Slow for many small transactions (e.g. ATM applications)

Tore Risch Uppsala University, Sweden

UDBL

Orthogonal Persistence in Object Stores

Pointer swizzling:

Automatic conversion from disk addresses to pointers References to data structures on disk (OIDs) look like regular C++/Java pointers/references!

Navigational access style.

Fast when database cached in main-memory of client! Preprocessed by OODBMS for convenient extention of C++ (JDK support in Pjama research project)

Tore Risch Uppsala University, Sweden

UDBL

Orthogonal Persistence in Object Stores

Integrated with programming language

E.g. C++/Java with persistent objects (e.g. ObjectStore/Pjama) class PERSON { ... };

....

{PERSON P; // Local within block... }

static PERSON p; // Local for execution

persistent PERSON p; // Exists between program executions

Tore Risch

Uppsala University, Sweden

UDBL

Object-Relational Databases

- •Second generation ODBs (around 1997)
- •Idea:

Extend on RDBMS functionality

Customized (abstract) data types

Customized index structures

Customized query optimizers

Use declarative query language, SQL:99

•Extensible DBMS technology:

 ${\it Object-orientation}\ {\rm for\ abstract\ data\ types}$

Data blades provide:

User definable index structures

Cost hints and for the query optimizer

UDBL

Object-Relational Databases

- •Pros and cons:
 - + Support for high-level SQL queries, compatibility
 - + Views, logical data independence possible with queries
 - + Programming language independence
 - + Stored procedures, triggers, constraints
 - + High transaction performance by avoiding data shipping
 - Overkill for application needing just a C++ object store
 Performance may suffer compared to OODBs for applications needing just an object store
 - May be very difficult to extend index structures and query optimizers

Tore Risch Uppsala University, Sweden

UDBL

OO/OR Comparison

Object identity

E.g. for structure sharing:

Unique OIDs maintained by DBMS

E.g. OR:

create Person instances :tore, :kalle, :ulla;

In OO: use OO programming (C++, Java) constructs.

•Complex objects

Not only tables, numbers, strings

But sets, bags, lists, and arrays, i.e. non-1NF relations.

E.g. OR: set courses(:tore) = {:c1,:c2,:c3};

OO: use OO programming constructs in e.g. C++.

Tore Risch

Uppsala University, Sweden

UDBL

Object-to-Relational Bridges

•Idea:

Object-Store with relational database as back-end Persistent objects in Java stored in relational databases Interface stubs generated for easy Java programming Some query language support

Pros and cons:

- + No need to develop new storage manager
- + Scalable search in back-end possible using JDBC/SQL
- Slower than JDBC
- No control over database schema!

Products: Hibernate, ObjectRelationalBridge (Apache), Castor, TopLink(Oracle)

Tore Risch

Uppsala University, Sweden

UDBL

OO/OR Comparison

Extensibility

User defined data types, OR: create type Picture;

create type Timepoint;

User Defined Functions (UDFs) on new datatypes, OR: similar (Picture, Picture) ->Number

Extensible query operators through UDFs, OR:

select t1.image, t2.image

from albums1 t1, albums2 t2

where similar(t1.image,t2.image)>0.9;

OO has abstract datatypes through OO host language

OR databases: Also extensible indexing and query processing

Tore Risch

Uppsala University, Sweden

UDBL

OO/OR Comparison

 $\hbox{\bf \bullet Class Hierarchies as modelling tool (both OO/OR)}$

Classification

E.g. OR:

create type Student under Person;

Students are subsets of persons.

Specialization

Student subtype of Person with extra attributes University, Classes, ...

Tore Risch

Uppsala University, Sweden

UDBL

OO/OR Comparison

Concurrency

OO databases: Long transactions with checkin/checkout

OR database: Normally short transactions

•Ad Hoc Query Facility

OO Databases: Weak

OR Databases: Very strong and extensible

•Data independence

OO Databases: Very weak

OR Databases: Strong, e.g. using views

Tore Risch

Uppsala University, Sweden

UDBL

OO/OR Comparison

•Computational completeness

OR databases: SQL:99: Turing complete stored procedures

language executed in database server

OO Databases: C++/Java code executed in client

Persistence

OR databases: Embedded queries to access persistent objects

OO databases: Transparent access to persistent objects

by swizzling

•Secondary storage management

OR databases: Indexes can be implemented by user

(difficult!)

Tore Risch

Uppsala University, Sweden

UDBL

Object-Oriented DBMS Standard

•The ODMG standard proposal:

R. Cattell, Ed.: The ODMG-93 Standard

for Object Databases

Morgan-Kaufmann Publishers, San Mateo,

California, 1993.

http://www.odbms.org/odmg.html

•The SQL:99 standard proposal:

ISO standard