
Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 1 

Active Databases

General principles of Conventional Database Systems

DBMS

SQL Schema Definitions

SQL
Queries and Updates Query Results



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 2 

Conventional (Passive) Databases

• Data model, usually relational
• Transaction model

- Passive update principle - client controls DBMS updates

Example of real world problem not well suited for passive update principle:
• Inventory control

- reordering items when quantity in stock falls below threshold.
• Travel waiting list

- book ticket as soon as right kind is available
• Stock market

- Buy/sell stocks when price below/above threshold



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 3 

Conventional Databases

Passive DBMS

• Periodical polling of database by application
- Frequent polling => expensive
- Infrequent polling => might miss the right time to react

• The polling has to be done for all items in stock and can be expensive.
• Problem is that DBMS does not know that application is polling.

DBMS

T1: 25 copies of Elmasri/Navathe sold

Less than 5 copies of
S. in stock?

Order 100
more copies

Records



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 4 

Active Databases

Active DBMS

• Recognize predefined situations in database
• Trigger predefined actions when situations occur

Actions are usually database updates, not calls to external programs to e.g. order items.

Records
Rules

ADBMS

T1: 25 copies of Elmasri/Navethe sold

Order 10
copies

when quantity<5
order 100 copies

on update of Sales



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 5 

Active Databases

General idea
• ADBMS provides:

Regular DBMS primitives 
+ definition of application-defined situations 
+ triggering of application-defined reactions

ADBMS

schema situation/action
rules

Results

Program
invocations

Manipulation
operators

Situation
notification
as updates

(poll event table
or use 
persistent queue)



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 6 

Active Databases

Can be used for computation of derived data 

View materialization of derived data
e.g. incremental recomputation of view of sum of salaries per department,
salsum(dno,total),

computed from employee(ssn,dno,salary)
or invalidation of materialized view when relevant update (e.g. salary) occurs

=> Rematerialize view when accessed next time if materialized view
invalid

In Oracle materialized views can be specified declaratively as

create materialized view salsum

as select dno, sum(salary) as total

from employee

However, this is not standard SQL! Triggers provide an alternative.



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 7 

Active Databases

Semantics of ECA rules
• Most common model presently
• Event Condition Action:

WHEN event occurs
Usually update of single row in database table)

IF condition holds
Usually SQL query joining the triggered row with database table. 
Condition is considered true if query returns non-empty result)

DO execute action
Usually SQL update statements or call to stored procedure
referencing the updated row



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 8 

Active Databases

• Example, no condition part (EA-rule), SQL-99 
EMPLOYEE(SSN, DNO, SALARY)

SALSUM(DNO, TOTAL) <= Materialized from EMPLOYEE

CREATE TRIGGER EMPLOYEE_SALARY_MATERIALIZATION

AFTER UPDATE OF SALARY ON EMPLOYEE<--- Event

REFERENCING NEW ROW AS NROW, OLD ROW AS OROW

FOR EACH ROW <--- per single updated row

BEGIN <--- Action

UPDATE SALSUM S

SET TOTAL = TOTAL - OROW.SALARY FROM OROW

WHERE S.DNO = OROW.DNO

UPDATE SALSUM S

SET TOTAL = TOTAL + NROW.SALARY FROM NROW

WHERE S.DNO = NROW.DNO

END

This does not cover changes to DNO! More triggers may be needed.



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 9 

Active Databases (ECA)

• Event: 
Update of a single database record
Parameterized using pseudo tables with a single row (added, updated, or deleted) specified 
by REFERENCING clause.

• Condition: 
Query on database state, 
e.g. a database query

empty result => condition is FALSE
non-empty result => condition is TRUE

• Action:
Database update statement(s)
Call stored procedure 

• Unconditioned (EA) rules, as in example:
ON ... DO

• Condition/Action (CA) rules
Not used in databases
Difficult to identify situation when rule triggered both for user and DBMS.



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 10 

Active Databases

• Example of triggers (ECA) for maintaining constraints, SQL:99:
Department table with number and manager’s SSN:
DEPARTMENT(DNO, MGRSSN)

CREATE TRIGGER SALARY_SITUATION1

AFTER UPDATE OF SALARY ON EMPLOYEE<--- Event

REFERENCING NEW ROW AS NROW, OLD ROW AS OROW

FOR EACH ROW <--- C and A per updated row

IF NROW.SALARY >(SELECT M.SALARY <--- Condition
FROM EMPLOYEE M,DEPARTMENT D,NROW
WHERE 

NROW.DNO = D.DNO AND
D.MGRSSN = M.SSN)

THEN BEGIN <--- Action

UPDATE EMPLOYEE E

SET SALARY = OROW.SALARY*0.9 FROM OROW

END



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 11 

Active Databases

• NOTICE! SALARY_CONSTRAINT needed for managers:
CREATE TRIGGER SALARY_SITUATION2

AFTER UPDATE OF SALARY ON EMPLOYEE

REFERENCING NEW ROW AS NROW, OLD ROW AS OROW

FOR EACH ROW

IF NROW.SALARY < (SELECT E.SALARY 
FROM EMPLOYEE E,DEPARTMENT D, NROW

 WHEREE.DNO = D.DNO AND
D.MGRSSN = NROW.SSN )

THEN

ROLLBACK 

• NOTICE! SALARY_SITUATION3 needed for departments too in case employee 
promoted to manager!

• Possible catch-all solution: Integrity constraints, assertions.



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 12 

Active Databases

• Advanced level SQL:99 has assertions too:

CREATE ASSERTION SALARY_CONSTRAINT

CHECK(NOT EXISTS

(SELECT * 

FROM EMPLOYEE E, EMPLOYEE M,

 DEPARTMENT D

WHERE E.SALARY > M.SALARY AND

E.DNO = D.DNO AND

D.MGRSSN = M.SSN))

NOTICE: Advanced assertions may not be supported by the DBMS or may be implemented 
very inefficiently! Check manual for when they are efficient.

Naive implementation would check above constraint after each update to any of the tables 
EMPLOYEE or DEPARTMENT, which is very inefficient (does not scale). 

Assertions cannot make different compensating actions depending on situation, as triggers can!



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 13 

Active Databases

Cautions:
• Very powerful mechanism:

Small statement => massive behavior changes.
Rope for programmer.
Requires careful design

• Trace consequences of rule specification/changes.
Make sure indefinite triggering or undesired cascading triggering cannot happen.

• Avoid using triggers unless really needed.
Use queries, view materialization statements, referential integrity constraints, or stored 
procedures instead if possible.



Active Database Systems 

Tore Risch

Dept. of Information Technology

Uppsala University

Sweden

Tore.Risch@it.uu.se

Page 14 

Active Databases

SUMMARY
• Active DBMSs embed situation-action rules in database
• Support many functionalities:

E.g. Integrity control, derived data, change notification
• ADBMS functionality commercially available in SQL:99 as triggers:


