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Abstract

The level of automation in our society is ever increasing. Technologies like self-
driving cars, virtual reality, and fully autonomous robots, which all were unimag-
inable a few decades ago, are realizable today, and will become standard con-
sumer products in the future. These technologies depend upon autonomous lo-
calization and situation awareness where careful processing of sensory data is
required. To increase efficiency, robustness and reliability, appropriate models
for these data are needed. In this thesis, such models are analyzed within three
different application areas, namely (1) magnetic localization, (2) extended target
tracking, and (3) autonomous learning from raw pixel information.

Magnetic localization is based on one or more magnetometers measuring the
induced magnetic field from magnetic objects. In this thesis we present a model
for determining the position and the orientation of small magnets with an ac-
curacy of a few millimeters. This enables three-dimensional interaction with
computer programs that cannot be handled with other localization techniques.
Further, an additional model is proposed for detecting wrong-way drivers on
highways based on sensor data from magnetometers deployed in the vicinity of
traffic lanes. Models for mapping complex magnetic environments are also an-
alyzed. Such magnetic maps can be used for indoor localization where other
systems, such as gps, do not work.

In the second application area, models for tracking objects from laser range
sensor data are analyzed. The target shape is modeled with a Gaussian process
and is estimated jointly with target position and orientation. The resulting algo-
rithm is capable of tracking various objects with different shapes within the same
surveillance region.

In the third application area, autonomous learning based on high-dimensional
sensor data is considered. In this thesis, we consider one instance of this chal-
lenge, the so-called pixels to torques problem, where an agent must learn a closed-
loop control policy from pixel information only. To solve this problem, high-
dimensional time series are described using a low-dimensional dynamical model.
Techniques from machine learning together with standard tools from control the-
ory are used to autonomously design a controller for the system without any prior
knowledge.

System models used in the applications above are often provided in continu-
ous time. However, a major part of the applied theory is developed for discrete-
time systems. Discretization of continuous-time models is hence fundamental.
Therefore, this thesis ends with a method for performing such discretization us-
ing Lyapunov equations together with analytical solutions, enabling efficient im-
plementation in software.

v





Populärvetenskaplig sammanfattning

Hur kan man få en dator att följa pucken i bordshockey för att sammanställa
match-statistik, en pensel att måla virtuella vattenfärger, en skalpell för att digi-
talisera patologi, eller ett multi-verktyg för att skulptera i 3D? Detta är fyra appli-
kationer som bygger på den patentsökta algoritm som utvecklats i avhandlingen.
Metoden bygger på att man gömmer en liten magnet i verktyget, och placerar ut
ett antal tre-axliga magnetometrar - av samma slag som vi har i våra smarta te-
lefoner - i ett nätverk kring vår arbetsyta. Magnetens magnetfält ger upphov till
en unik signatur i sensorerna som gör att man kan beräkna magnetens position
i tre frihetsgrader, samt två av dess vinklar. Avhandlingen tar fram ett komplett
ramverk för dessa beräkningar och tillhörande analys.

En annan tillämpning som studerats baserat på denna princip är detektion
och klassificering av fordon. I ett samarbete med Luleå tekniska högskola med
projektpartners har en algoritm tagits fram för att klassificera i vilken riktning
fordonen passerar enbart med hjälp av mätningar från en två-axlig magnetome-
ter. Tester utanför Luleå visar på i princip 100% korrekt klassificering.

Att se ett fordon som en struktur av magnetiska dipoler i stället för en enda
stor, är ett exempel på ett så kallat utsträckt mål. I klassisk teori för att följa
flygplan, båtar mm, beskrivs målen som en punkt, men många av dagens allt
noggrannare sensorer genererar flera mätningar från samma mål. Genom att ge
målen en geometrisk utsträckning eller andra attribut (som dipols-strukturer)
kan man inte enbart förbättra målföljnings-algoritmerna och använda sensordata
effektivare, utan också klassificera målen effektivare. I avhandlingen föreslås en
modell som beskriver den geometriska formen på ett mer flexibelt sätt och med
en högre detaljnivå än tidigare modeller i litteraturen.

En helt annan tillämpning som studerats är att använda maskininlärning för
att lära en dator att styra en plan pendel till önskad position enbart genom att
analysera pixlarna i video-bilder. Metodiken går ut på att låta datorn få studera
mängder av bilder på en pendel, i det här fallet 1000-tals, för att förstå dyna-
miken av hur en känd styrsignal påverkar pendeln, för att sedan kunna agera
autonomt när inlärningsfasen är klar. Tekniken skulle i förlängningen kunna an-
vändas för att utveckla autonoma robotar.
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Notation

Throughout this thesis, scalars or scalar-valued functions are denoted with non-
bold lower-case symbols, e.g. θ. Vectors or vector-valued functions are denoted
with bold lower-case symbols, e.g. y. Electromagnetic vector fields are denoted
with bold upper-case symbols, e.g. B. This choice has been made to be consis-
tent with most literature on electromagnetism although it mathematically can be
considered as a vector-valued function. Finally, matrices are denoted with upper-
case non-bold symbols, e.g. P . Furthermore, Cartesian coordinates are denoted
using Sans-serif font, e.g., x and y, to distinguish them from other variables.

Electromagnetic Theory

Notation Meaning

E Electric field, [V m−1 = kg m s−3 A−1]
D Electric displacement field, [C m−2 = A s m−2]
B Magnetic field, [T = kg A−1 s−2]
H Magnetizing field, [A m−1]
µ0 Permeability of free space, [H m−1 = kg m A−2 s−2]
ε0 Permittivity of free space, [F m−1 = s4 A2 kg−1 m−3]
ρ Charge density, [C m−3 = A s m−3]
J Current density, [A m−2]

Jm Magnetization current density, [A m−2]
Jf Free current density, [A m−2]
M Magnetization, [A m−1]
A Magnetic vector potential, [V s m−1 = kg m s−2 A−1]
ϕ Magnetic scalar potential, [A]
ρM Effective magnetic-charge density, [A m−2]
m Magnetic dipole moment, [A m2]
∇ · B Divergence of vector field B
∇ × B Curl of vector field B
∇ϕ Gradient of scalar field ϕ
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xx Notation

Symbols and Operators

Notation Meaning

AT Transpose of matrix A
trA Trace of matrix A
E Expected value

Var Variance
Cov Covariance
∂y
∂x

Partial derivative of y with respect to x
× Cross product
� Quaternion product
⊗ Kronecker product
, Defined as
∼ is distributed according to
∈ belongs to
O Ordo
In Identity matrix of size n × n
0n Matrix with only zeros of size n × n

0m×n Matrix with only zeros of size m × n
0m×n Matrix with only zeros of size m × n

Estimation

Notation Meaning

x State
y Measurement
u Input/control input
z Feature
w Process noise
e Measurement noise
T Sampling time
N (·, ·) Gaussian distribution with mean and covariance
GP (·, ·) Gaussian process with mean and covariance function
P State covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
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Geometry and dynamics

Notation Meaning

r Position
v Velocity
q Unit quaternion
R Rotation matrix
ω Angular velocity
x Cartesian x-coordinate
y Cartesian y-coordinate
z Cartesian z-coordinate

Abbreviations

Abbreviation Meaning

gnss Global navigation satellite system
gps Global positioning system
wlan Wireless local area networks
imu Inertial measurement unit
wsn Wireless sensor network
slam Simultaneous localization and mapping
snr Signal to noise ratio
glrt Generalized likelihood ratio test
pdf Probability density function
crlb Cramér-Rao lower bound
fim Fischer information matrix
bfgs Broyden-Fletcher-Goldfarb-Shanno
gp Gaussian process
se Squared exponential
ddm Deep dynamical model
narx Nonlinear auto-regressive exogenous model
dof Degrees of freedom
nll Negative log likelihood
rmse Root-mean-square error
ekf Extended Kalman filter
iou Intersection-Over-Union
mpc Model predictive control
pca Principal component analysis
pilco Probabilistic inference for learning control
rl Reinforcement learning
siso Single input, single output
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1
Introduction

Many modern technologies are characterized by a high degree of autonomy. To
accomplish this autonomy, appropriate sensors technologies are needed. There
exist many well-established sensor technologies such as gps, radar and vision, all
which are well suited for certain applications. However, all technologies have
their advantages and disadvantages, which can be quantified, for example, in
terms of cost, accuracy, range, reliability, flexibility, weight, and size. This thesis
considers the problem of localization, control, and self-awareness using different
types of such sensor technologies.

An important ingredient in these sensor technologies is the ability to describe
the relation between measurements from a sensor and some quantity that we
can interpret, for example a position of an object. This is accomplished by using
models. Therefore, this thesis has a specific focus on how to model the data from
these sensors.

This introductory chapter provides overview of the contributions in this thesis
from an application point of view. The presentation is organized based on four
different sensor techniques, all of which the author of this thesis has worked with.

1.1 Magnetometers

Magnetometers are sensors that measure strength and mostly also the direction of
magnetic fields. They have various applications ranging from finding sea mines
(Clem, 2002) to monitoring “space weather” (Singer et al., 1996). In navigation,
magnetic sensors are most commonly used as a compass that measures the bear-
ing of an object. However, in this thesis we use them to sense other magnetic
objects. This approach is used in magnetic anomaly detectors for detecting ferro-
magnetic objects, see Lenz and Edelstein (2006) for an overview of the problem
and other applications.

In this thesis, we are not only interested in detecting magnetic objects, but
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4 1 Introduction

also in determining their position, direction of motion, magnetic signature and
geometric shape. This is accomplished by using mathematical models relating
these quantities to the measured magnetic field. In contrast to gps, laser range
sensor and computer vision, this localization technology is not dependent of un-
obstructed line-of-sight between the sensors and the object. In fact, magnetic
fields propagate in all direction before reaching the sensor. Therefore, it is nearly
impossible to eliminate the magnetic signature of magnetic objects. This makes
the sensors insensitive to jamming, which is important in many applications. In
addition, magnetic sensing is almost independent of weather conditions.

Recently, magnetometers have become smaller and cheaper, which makes an
extensive usage of magnetometers more interesting, for example, in localization
of magnetic objects. However, for many applications, the short sensor range is
limiting. With commercial-grade magnetometers, a 1 cm long neodymium mag-
net can be sensed from a distance of approximately 1 m, and a car can be sensed
from a distance of approximately 10 m. Magnetic sensors are superpositional sen-
sors, meaning that they measure the sum of the magnetic signatures from all
present magnetic objects. In contrast to many other types of sensors (for example
radar and vision sensors), more objects do not create more measurements (or de-
tections), which makes a multi-target tracking framework more challenging than
for non-superpositional sensors.

As part of the PhD program for the author of this thesis, many applications
have been analyzed and realized using magnetometers. Some of them are also
considered in more depth in this thesis. These applications can be divided into
three categories, (1) devices for human-computer interaction, (2) traffic surveil-
lance and (3) indoor localization and mapping. These application areas are intro-
duced below.

1.1.1 Devices for Human-Computer Interaction

A stationary sensor network of multiple magnetometers can be used to localize
and track small magnets. Both position and orientation information for these
magnets can be extracted. By mounting a magnet in a hand-held device, a wire-
less and cheap tool can be constructed. This tool can be used as a three-dimen-
sional input device for computer programs, which increases the level of interac-
tion in comparison to other input devices, e.g., touch screens, 2D mouse devices,
and standard keyboards. In contrast to vision based solutions (for example Mi-
crosoft Kinect), the user does not have to operate relative to any special camera
position. Further, that hand-held device does not need any batteries or external
power supply.

This magnetic localization technique is described in Paper A and has been
used in multiple applications. Below four applications are described that all have
been realized with this technique, see also Figure 1.1.

(a) Digital watercolors: Museums and science centers have a high need for tech-
nology enabling interactive exhibits that encourage visitors to experiment
and explore. In exhibits where spatial information is important, a localiza-
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(a) Digital watercolors: Virtual watercolor
painting application, where the painting is
displayed on a screen. The user interacts us-
ing a regular painting brush equipped with
a permanent magnet. A sensor network of
four magnetometers is mounted under the
screen that senses the position and orienta-
tion of the brush. The user can paint and
splash color on the virtual canvas and se-
lect new colors from the palette and wet the
brush in the (virtual) water glass.

(b) Interactive modeling: A computer
program for interactive 3D modeling in
a virtual reality. The hand-held device
equipped with a magnet can be used to
pull, push and smoothen textures of an
object, as well as moving and turning it.
Both the virtual object and the virtual
device can be observed through a head-
mounted display making the interaction
intuitive and realistic.

(c) Digital pathology: Input device within
digital pathology. A magnet is placed in a
scalpel to be used by a pathologist. With the
tracking system, they can directly measure
distances and create a digital log of their
work. This saves time and removes manual
non-ergonomic activities.

(d) Digital table hockey: The sensor
network is placed under a table hockey
game and a magnet is mounted in the
puck. Accurate position can be used to
visualize the puck on a digital screen.
The system can also count the number
of goals.

Figure 1.1: Four applications that have been realized with the technique
described in Paper A. Photo: (a) Anders Ynnerman (2015), (b) Olle Grahn,
Isabelle Forsman (2015), (c) Linkin AB (2014), (d) Martin Stenmarck (2015).
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tion system is required. These systems need to be intuitive for the visitors to
control and interact with.

In this context, the magnetic localization technique was used in an exhibition
case mimicking water color painting, see Figure 1.1a. The software for this
exhibition case was a result of a Master’s thesis project by Correia and Jonsson
(2012) that was supervised by the author of this thesis. The resulting system
was running at the science center Visualiseringscenter C in Norrköping during
2012 and 2013.

(b) Interactive modeling in a virtual reality: The hand-held device is also suit-
able for interaction and manipulation of three-dimensional virtual objects.
During 2015 the technique was used in a computer program enabling inter-
active 3D modeling. With this program a virtual object can be crafted using
the hand-held device, see Figure 1.1b. Together with 3D printers, this could
increase the ease of prototyping and crafting real objects. The integration of
the magnetic tracking solution was performed by Isabelle Forsman and Olle
Grahn as a continuation of their Bachelor’s project report (Forsman et al.,
2015).

(c) Digital pathology: Within medicine and healthcare, technology has made
a giant leap during the last decades. However, more can be accomplished
to increase efficiency and quality even further. For example, in pathology
the introduction of digital technologies could generate huge cost savings (Ho
et al., 2014). This has motivated the VINNOVA financed project “Optimized
flows and IT tools for digital pathology”. As a part of that project, the mag-
netic localization technique has been used for improving the workstation that
pathologists use when examining tissues. By mounting a magnet in a scalpel,
a digital record can be constructed of the actions that have been performed,
see Figure 1.1c.

(d) Digital table hockey: Automation has also increased in toys, games and other
leisure activities. A common trend is to enhance classical analog toys and
games with digital features. With magnetic localization, a similar enhance-
ment can be made for a table hockey game. By mounting a magnet in a puck
for a table hockey game, the puck can be localized in real time, and meta
information can be extracted, e.g., number of goals, see Figure 1.1d.

1.1.2 Traffic Surveillance

Localization and tracking of vehicles is a primary concern in automated traffic
surveillance systems. The information can be used for statistical purposes by
road administrations, urban planners or traffic management centers to improve
the road infrastructure. The information can also be used in safety systems, for
example to detect wrong-way drivers on highways.

Vehicles have a high content of ferromagnetic material and they will therefore
induce a magnetic field, which can be measured by magnetometers. By deploying
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Figure 1.2: Sensor unit including a 2-axis magnetometer and an accelerom-
eter powered with solar energy. The unit is glued onto the road surface to
sustain harsh weather conditions. Measurements from this unit are used in
Paper B. By courtesy of GEVEKO ITS. (www.gevekoits.dk)

one or more of these sensors in the vicinity of the traffic lane, the vehicle can be lo-
calized. For this application, the magnetometers have the advantage of being less
sensitive to weather conditions in comparison to other technologies in automated
surveillance systems, e.g., cameras. Their energy efficiency makes it possible to
integrate them in a wireless sensor node powered by solar energy. These nodes
can easily be deployed at points of interest, which makes the technology flexible.

In Wahlström (2010); Wahlström et al. (2011); Wahlström and Gustafsson
(2014), different models are investigated for localizing vehicles based on a sensor
network of magnetometers. Both models for point targets and extended targets
were proposed.

Parts of this work have also been accomplished in collaboration with Luleå
University of Technology working with a sensor unit equipped with a magne-
tometer suited for standing the harsh weather conditions present in northern
Sweden, see Figure 1.2. Within this cooperation a robust classifier for determin-
ing the driving direction of a vehicle has been implemented and analyzed. This
work is presented in Paper B. This sensor unit also contains an accelerometer
enabling detection and estimation using road surface vibration, which has been
investigated by Hostettler et al. (2012).

1.1.3 Indoor Localization and Mapping

Over the past decade, we have witnessed an increasing attention for localization
in indoor environments. There are many applications, e.g., operation of emer-
gency personnel, navigation in shopping malls, and positioning of autonomous
vacuum cleaners. Because the gps system does not work in indoor environments,
many alternative localization techniques have been discussed and analyzed. Deak
et al. (2012) give a survey of different indoor localization systems.

In recent years, the use of the magnetic disturbances present in indoor en-
vironments has been considered as a source for localization, (see, e.g., Vissière
et al., 2007; Vallivaara et al., 2011; Zhang and Martin, 2011; Le Grand and Thrun,
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2012). These disturbances are induced by metallic structures present in most
buildings and carry enough information to be used for localization. The distur-
bances can be measured with a magnetometer and the localization can be aided
using other sensors, e.g., accelerometers and gyroscopes.

The modeling of these magnetic environments is challenging. Unlike the two
previous application areas, the magnetic content is not limited to be contained in
a small region, i.e., within a vehicle or within a permanent magnet. In Paper C,
the modeling of these complex magnetic environments is addressed. Based on
that work, the setting has been extended in Solin et al. (2015) to handle more
complex scenarios , e.g., larger buildings and environments changing over time,
enabled by a more computational efficient algorithm. Figure 1.3a illustrates an
estimated magnetic map constructed based on that work.
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(a) A map of the magnitude of the mag-
netic field in an indoor environment. The
magnetic field has been measured by
a robot equipped with a magnetometer.
The position was determined by an opti-
cal reference system. This figure is from
our work in Solin et al. (2015), which is a
continuation of Paper C.
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(b) Estimated position, orientation and
shape of four different targets, here en-
coded with four different colors, are
illustrated at four different time in-
stances. The figure is from Paper D.

Figure 1.3: Two different applications considered in this thesis using Gaus-
sian processes. Gaussian processes are explained in Section 2.3.

1.2 Laser Range Sensors

A laser range sensor measures the distance from the sensor location to the nearest
object using a laser beam. By sweeping over different angles, it provides a map
of contours for the surrounding environment. If a certain object enters the scene,
that object will be visible to the sensor in case it is within the range of the sensor,
is not obstructed by other objects, and has a favorable reflectance property. Due
to these properties, laser range sensors are among the most popular sensors in
robotics (Thrun et al., 2005).
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In many aspects, this type of sensor is different from magnetometers. In con-
trast to magnetometers, it does require line-of-sight to the target to be able to
detect it, which is not required by magnetometers. This sensor also can be con-
sidered to be non-superpositional. If multiple objects enter the scene, more mea-
surements will be generated. Also, if the object has a large extent, more measure-
ments will be generated along the contour of that object, than if the target would
have been smaller.

This last property is exploited in Paper D, in which a model is proposed for
jointly estimating the position, orientation and extent of objects moving within
line-of-sight of the sensor. This is accomplished by modeling the extent with
Gaussian processes. Some of the results are illustrated in Figure 1.3b. This tech-
nique could for example be used in traffic surveillance applications monitoring
cars, bicycles and pedestrians in a crossing or for autonomously localizing robots
in unknown environments.

1.3 Image Sensors

An image sensor is a sensor whose measurement constitutes an image of some
kind. In this thesis, we consider digital image sensors. They consist of an ar-
ray of pixel sensors, each of them containing a photo detector. An image sensor
can be considered as a high-dimensional (2D-array) sensor, in which each pixel
corresponds to one dimension in the measurement vector.

Neighboring pixels are usually highly correlated with each other and in most
cases only a small fraction of the measurements is related to the quantity that
is of interest in the application. A common procedure is to reduce this high-
dimensional measurement into a collection of lower-dimensional features. For
tracking and localization purposes, this is usually performed with algorithms
for extracting hand-crafted features that detect edges and corners similar to the
measurements from the laser range sensor described in the previous section.

In Paper E and F, a fundamentally different path is followed. In these pa-
pers, a low-dimensional representation of the high-dimensional measurement is
still extracted. However, this is not performed in a separate pre-processing step
with hand-crafted features. Instead we employ data-driven dimensionality reduc-
tion methods, which do not explicitly take geometrical properties into account.
Through this low-dimensional representation, predictions of future image frames
can be generated. This allows a robot to plan and control for accomplishing a cer-
tain task without any prior knowledge of neither the environment it is operating
in, nor its own dynamics, see Figure 1.4 for an illustration of this concept. In
Figure 1.5, prediction results for a double planar pendulum is shown using the
model described in Paper E and F. The figure is taken from (Assael et al., 2015),
which is an extension of the work in Paper F.
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Image at time k

Encoder Decoder
Prediction
model

Image at time k+1Feature at time k Feature at time k+1
zk xk xk+1 zk+1

g-1 gf

Figure 1.4: A camera observes a robot approaching an object. A good low-
dimensional feature representation of an image is important for learning a
predictive model if the camera is the only sensor available. This is a sketch
of the model architecture considered in Paper E and F.

True video frames

Predicted video frames

xt+0 xt+1 xt+2 xt+3 xt+4 xt+5 xt+6 xt+7 xt+8

xt+1 xt+2 xt+3 xt+4 xt+5 xt+6 xt+7 xt+8

Figure 1.5: True and predicted frames based on the model sketched in Fig-
ure 1.4. The figure is taken from Assael et al. (2015), which is a continuation
of the work in Paper F.

1.4 Light Sensors

The position of celestial bodies, such as the sun, the moon, a planet or a star, has
for hundreds of years been used by sailors in order to navigate. The angle be-
tween the celestial body and the horizon (altitude) reveals a combination of the
longitude and latitude of the observer. Partial information about the altitude of
the sun can be captured using a light sensor measuring the light intensity, see Fig-
ure 1.6b. From these data, the events of sunrise and sunset can be detected. The
events occur when the sun geometrically is a bit below the horizon, which in turn
depends on the threshold of light intensity for detecting these events. Localiza-
tion using light sensors is for example discussed by Hill (1994); Stutchbury et al.
(2009); Ekstrom (2004). The big advantage with light intensity sensors is their
low weight and low energy consumption in comparison to the gps. It allows to
construct devices under one gram (including sensor, memory, battery and clock)
lasting for many years, see Figure 1.6a. The sensor is also more cost efficient and
smaller than the gps. Like the gps, the technology can be used over the whole
earth, except close to the North Pole and South Pole during the winter solstice
and summer solstice, where the sun never rises. This technology is an attractive
solution for applications, in which weight, cost and global coverage are important,
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(a) A light logger consisting of a battery,
memory clock and a light sensor with a
weight of less than one gram, suited for
bird localization. Photo: Anders Heden-
ström, Forskning & Framsteg 5/6 - 2012.
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(b) Light intensity sampled from a sensor
mounted on a Common Murre (sv. Sillgrissla)
from Karlsöarna in the Baltic Sea during the
summer of 2010. The light sensor satu-
rates during the day time and the night time.
The measurements are also corrupted due to
shading. The sampling time is 10 minutes.
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(c) The trajectory of the common swift
during a period of 298 days. The positions
are estimated at each sunrise and sunset.

Figure 1.6: Illustration of setup and results for the bird localization de-
scribed in Wahlström et al. (2013).

for example, to localize small migrating animals.
On the other hand, the accuracy of approximately 150 km is much lower

than other technologies. It also depends on weather conditions and proximity
to equinox and equator. The technology is also challenged by shading of foliage
and other vegetation, which might cause false detection of the sunrise and sunset
events.

Localization of migrating birds is important for evaluating theories about
their the genetics, migration patterns, and the evolution behind. For smaller
birds, the weight of the localization equipment attached to the bird is crucial. As
a rule of thumb, the sensor can weigh at most 5 % of a bird’s weight. Therefore,
the use of light sensors is an attractive localization technique, providing abso-
lute position of small birds that other techniques cannot accomplish with these
weight requirements.

With this technology, the migration pattern of the common swift has been
revealed by researchers from Lund University using data from light loggers
mounted on different swifts (Åkesson et al., 2012). The common swift is a
medium sized bird with a weight of 40 g in average, limiting the maximum al-
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lowed weight of the sensor equipment to 2 g.
In Wahlström et al. (2013), the estimation of migration path was formulated

as a nonlinear filtering problem, in which the position is updated at each sunrise
and sunset. That study was performed in collaboration with aforementioned bi-
ologists from Lund University. They also provided the real data, which were used
in the work.

This work is not included or further studied in this thesis. The interested
reader can refer to the author’s Licentiate’s thesis (Wahlström, 2013), which also
contains an introductory chapter on astronomy needed to derive the appropriate
sensor models.

1.5 Contribution

This thesis contains the following contributions:

• Parametric magnetic models: Models describing moving magnetic objects.
In Paper A, a variety of different models are presented including a point tar-
get model, an extended target model and motion models related to these.
Paper B describes a model for estimating the driving direction of the vehi-
cle.

• Nonparametric magnetic models: Models describing complex magnetic
environments suitable for indoor localization are described in Paper C.

• Flexible models for extended target tracking: Models for describing the
contour of targets suitable for tracking and localization are proposed in
Paper D.

• Autonomous learning from raw pixel information: A model and control
strategy for autonomously learning a task from raw pixel information with-
out any additional prior information about the system at hand is presented
in Paper E and F.

• Efficient discretization of stochastic dynamical systems: A method for
performing discretization of stochastic dynamical systems using Lyapunov
equations is proposed in Paper G.

1.6 Thesis Outline

The thesis is divided into two parts, with edited versions of published and sub-
mitted papers in Part II.

Part I - Background

Part I introduces the background theory needed for the models presented in this
thesis. In addition to this introductory chapter, the relevant background is intro-
duced in Chapter 2 and Chapter 3. Chapter 2 introduces three different model
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components used in the publications. Chapter 3 introduces the relevant electro-
magnetic theory that is needed to describe the relation between magnetic objects
and their induced magnetic field. Part I ends with Chapter 4 that summarizes
the conclusions and presents possible directions for future work.

Part II - Publications

The second part consists of edited versions of seven publications. Below is a
summary of each paper together with a clarification of the background and the
contribution of the author for each of the papers.

Paper A: Tracking Position and Orientation of Magnetic Objects Using Magne-
tometer Networks

N. Wahlström and F. Gustafsson. Tracking position and orientation of
magnetic objects using magnetometer networks. IEEE Transactions
on Signal Processing, 2015. Submitted.

Summary: This paper presents a localization technique, where a sensor net-
work of magnetometers is used to track both the position and the orientation of
a permanent magnet. The system can track all three degrees-of-freedom (dof)
for the position and two dof for the orientation. The model is further extended
to objects including multiple permanent magnets inducing an asymmetric mag-
netic field enabling tracking of all three dof for orientation. Both motion models
and sensor models are presented in the paper. The models are validated on real
data achieving 5 mm error for position and 2° error for orientation. The paper
ends with four applications: (1) virtual water colors, (2) interactive 3D modeling,
(3) digital pathology, and (4) digital table hockey game, which all were realized
as part of the research.

Background and Contribution: This paper is to a great extent a journal ver-
sion of the patent application (Gustafsson and Wahlström, 2012), which was in-
vented by me in collaboration with Prof. Fredrik Gustafsson in 2011. Since then,
many application oriented project were conducted involving M.Sc. thesis stu-
dents, science museums and other companies. For this paper, I wrote all code
and also the vast majority of the text in the paper, which later was revised by
Fredrik.

Paper B: Classification of Driving Direction in Traffic Surveillance Using Magne-
tometers

N. Wahlström, R. Hostettler, F. Gustafsson, and W. Birk. Classification
of driving direction in traffic surveillance using magnetometers. IEEE
Transactions on Intelligent Transportation Systems, 15(4):1405–1418,
2014.

Summary: This paper presents a robust method for determining the driving
direction of vehicles based on measurements from one 2-axis magnetometer is
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presented. In contrast to the setting in Paper A, these targets are close to the
sensor (relative to the size of the target) and cannot always be approximated with
one or multiple permanent magnets. In addition, the algorithm is supposed to
be implemented on wireless sensor nodes powered by solar cells with low energy
budget. Consequently, the algorithm needs to be computationally cheap. The
proposed solution relies on a non-linear transformation of the measurement data
comprising two inner products. The validity of this transform is derived from
the point target model (dipole model used in Paper A). Experimental verification
indicates that good performance is achieved, even when targets are close to the
sensor.

Background and Contribution: The cooperation with Dr. Roland Hostettler
was initiated at Reglermöte (Swedish control conference) 2010 and during the
fall we collected data together. Later, the author of this thesis came up with
the core idea used in this paper. An early version of this work was then pub-
lished in Wahlström et al. (2012b). The work was accomplished jointly by Roland
and me including data collection, theoretical analysis, coding and writing. Prof.
Fredrik Gustafsson and Prof. Wolfgang Birk acted as supervisors and reviewed
the manuscript.

Paper C: Modeling Magnetic Fields Using Gaussian Processes

N. Wahlström, M. Kok, T. B. Schön, and F. Gustafsson. Modeling mag-
netic fields using Gaussian processes. In Proceedings of the the 38th
International Conference on Acoustics, Speech, and Signal Processing
(ICASSP), pages 3522–3526, Vancouver, Canada, May 2013.

Summary: This is the third and last paper in this thesis dealing with magnetic
sensors. In this paper a different approach for modeling of magnetic objects is
taken in comparison to the previous two papers. In contrast to Paper A, the mag-
netic field is not induced by moving magnets, but rather by extended metallic
structures present in indoor environments. Due to the complexity of such envi-
ronments, we have used a non-parametric model, more precisely a Gaussian pro-
cess that exploits constraints imposed by physics. The model and the associated
estimator are validated on both simulated and real experimental data producing
Bayesian non-parametric maps of both the magnetic field and the magnetized ob-
jects. This is related to the work Kok et al. (2013), in which the positioning based
on magnetic maps was considered.

Background and Contribution: I came up with the modeling idea presented
in this paper after a course in Machine Learning 2011, where Gaussian processes
were taught. After that, I did the implementation and wrote the vast majority of
the text. The measurements used in the paper were collected together with Lic.
Manon Kok. After this work, Gaussian processes for magnetic maps were further
investigated by primarily Arno Solin and Manon Kok, to which I also contributed.
That work is reported in Solin et al. (2015).
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Paper D: Extended Target Tracking Using Gaussian Processes

N. Wahlström and E. Özkan. Extended target tracking using Gaussian
processes. IEEE Transactions on Signal Processing, 63(16):4165–4178,
2015.

Summary: In this paper, we suggest using Gaussian processes for tracking
extended targets. Instead of magnetic fields, the Gaussian processes are used to
model the contour of an extended object or group of objects. The shape and the
kinematics of the object are simultaneously estimated, and the shape is learned
online. The proposed algorithm is capable of tracking different objects with dif-
ferent shapes within the same surveillance region. The shape of the object is ex-
pressed analytically, with well-defined confidence intervals, which can be used
for gating and association. Furthermore, we use an efficient recursive implemen-
tation of the algorithm by deriving a state space model in which the Gaussian
process regression problem is cast into a state estimation problem.

Background and Contribution: Together with Dr. Emre Özkan the idea of
using Gaussian Processes in this context was initiated. I did the major work in
implementing this idea and in writing the technical part of the text. The remain-
ing part of the text has been written jointly together. The experimental data used
in this paper was collected by Dr. Karl Granström and has previously been used
in Granström and Orguner (2012); Granström et al. (2012).

Paper E: Learning Deep Dynamical Models from Image Pixels

N. Wahlström, T. B. Schön, and M. P. Deisenroth. Learning deep dy-
namical models from image pixels. In Proceedings of the 17th IFAC
Symposium on System Identification (SYSID), Bejing, China, October
2015a.

Summary: Modeling dynamical systems is important in many disciplines,
such as control, robotics, or neurotechnology. Commonly, the state of these sys-
tems is not directly observed, but only available through noisy and potentially
high-dimensional observations. In these cases, system identification, i.e., find-
ing the measurement mapping and the transition mapping (system dynamics) in
latent space can be challenging. For linear system dynamics and measurement
mappings efficient solutions for system identification are available. However, in
practical applications, the linearity assumption does not hold, requiring nonlin-
ear system identification techniques. If additionally the observations are high-
dimensional (e.g., images), nonlinear system identification is inherently hard. To
address the problem of nonlinear system identification from high-dimensional
observations, we propose a Deep Dynamical Model (ddm) combining recent ad-
vances in deep learning and system identification. This model uses deep auto-
encoders to learn a low-dimensional embedding of images jointly with a predic-
tive model in this low-dimensional feature space. Joint learning ensures that not
only static, but also dynamic properties of the data are accounted for. This is
crucial for long-term predictions, which are important for the developments in
Paper F.
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Background and Contribution: This work started during my pre-doctoral
visit at Imperial College in London, where I spent three months collaborating
with Dr. Marc Deisenroth. Starting from a small code base, I made the vast
majority of the implementation. The text was written after that visit, mainly by
me and Marc, and reviewed by Thomas.

Paper F: From Pixels to Torques: Policy Learning with Deep Dynamical Models

N. Wahlström, T. B. Schön, and M. P. Deisenroth. From pixels to
torques: Policy learning with deep dynamical models. In Deep Learn-
ing Workshop at the International Conference on Machine Learning
(ICML), Lille, France, July 2015b.

Summary: In this paper the pixels-to-torques problem is analyzed, where an
agent must learn a closed-loop control policy from pixel information only. We
use the ddm introduced in the previous paper together with an adaptive model
predictive control strategy for getting a closed-loop control. Compared to state-
of-the-art reinforcement learning methods for continuous states and actions, the
proposed approach learns fast, scales to high-dimensional state spaces, and is an
important step toward fully autonomous learning from pixels to torques. After
this work, John Assael, PhD candidate at Oxford University, entered the project.
With some more computationally efficient code and state-of-the-art learning for
the neural networks, we also managed to control a two-link arm (Assael et al.,
2015).

Background and Contribution: This work was done after my pre-doctoral
visit but still in close collaboration with Marc Deisenroth. Also for this paper the
vast majority of the implementation was done by me and the writing was done
together with Marc and reviewed by Thomas.

Paper G: Discretizing Stochastic Dynamical Systems using Lyapunov Equa-
tions

N. Wahlström, P. Axelsson, and F. Gustafsson. Discretizing stochas-
tic dynamical systems using Lyapunov equations. In Proceedings of
the The 19th World Congress of the International Federation of Au-
tomatic Control (IFAC), pages 3726–3731, Cape Town, South Africa,
August 2014.

Summary: Stochastic state space models are fundamental in state estimation,
system identification and control. System models are often provided in contin-
uous time, while a major part of the applied theory is developed for discrete-
time systems. Discretization of continuous-time models is hence fundamental.
In this paper, we present a novel algorithm using a combination of Lyapunov
equations and analytical solutions, enabling efficient implementation in software.
The proposed method circumvents numerical problems exhibited by standard al-
gorithms in the literature. Both theoretical and simulation results are provided.

Background and Contribution: This work started from a perspective of us-
ing Kalman filters for doing Gaussian process regression (see for example work by
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Hartikainen and Särkkä (2010)). For making the connection between Kalman fil-
tering and Gaussian processes, discretization of continuous time state space mod-
els is necessary. After coming up with the core idea, discussions continued with
Partrik Axelsson who also had analyzed numerical aspects of the time update in
Kalman filter using Lyapunov equations (Axelsson and Gustafsson, 2015). All
code and almost all text were written by me and final manuscript was reviewed
by Patrik and Fredrik.

1.7 Other Publications

The following additional publications have been authored or co-authored by my-
self, but are not included in this thesis:

F. Ceragioli, G. Lindmark, C. Veibäck, N. Wahlström, M. Lindfors, and
C. Altafini. A bounded confidence model that preserves the signs of
the opinion. In European Control Conference, 2015. Submitted.

J.-A. M. Assael, N. Wahlström, T. B. Schön, and M. P. Deisenroth. Data-
efficient learning of feedback policies from image pixels using deep
dynamical models. In Deep Reinforcement Learning Workshop at
the Annual Conference on Neural Information Processing Systems
(NIPS), Montréal Canada, December 2015. Accepted.

A. Solin, M. Kok, N. Wahlström, T. B. Schön, and S. Särkkä. Model-
ing and interpolation of the ambient magnetic field by Gaussian pro-
cesses. Pre-print arXiv:1509.04634, September 2015.

G. Hendeby, F. Gustafsson, and N. Wahlström. Teaching Sensor Fu-
sion and Kalman Filtering using a Smartphone. In Proceedings of
the The 19th World Congress of the International Federation of Auto-
matic Control (IFAC), pages 10586–10591, Cape Town, South Africa,
August 2014.

V. Deleskog, H. Habberstad, G. Hendeby, D. Lindgren, and
N. Wahlström. Robust NLS sensor localization using MDS initializa-
tion. In Proceedings of 17th International Conference on Information
Fusion (FUSION), Madrid, Spain, July 2014.

N. Wahlström and F. Gustafsson. Magnetometer modeling and vali-
dation for tracking metallic targets. IEEE Transactions on Signal Pro-
cessing, 62(3):545–556, 2014.

M. Kok, N. Wahlström, T. B. Schön, and F. Gustafsson. MEMS-based
inertial navigation based on a magnetic field map. In Proceedings
of the 38th International Conference on Acoustics, Speech, and Sig-
nal Processing (ICASSP), pages 6466–6470, Vancouver, Canada, May
2013.



18 1 Introduction

N. Wahlström, F. Gustafsson, and S. Åkesson. A Voyage to Africa by
Mr Swift. In Proceedings of the 15th International Conference on
Information Fusion (FUSION), pages 808–815, Singapore, July 2012a.

N. Wahlström, R. Hostettler, F. Gustafsson, and W. Birk. Rapid classi-
fication of vehicle heading direction with two-axis magnetometer. In
Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 3385–3388, Kyoto, Japan, March
2012b.

F. Gustafsson and N. Wahlström. Method and device for pose tracking
using vector magnetometers, 2012. Patent. Under revision.

N. Wahlström, J. Callmer, and F. Gustafsson. Single target tracking us-
ing vector magnetometers. In Proceedings of the International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), pages
4332–4335, Prague, Czech Republic, May 2011.

N. Wahlström, J. Callmer, and F. Gustafsson. Magnetometers for track-
ing metallic targets. In Proceedings of 13th International Conference
on Information Fusion (FUSION), Edinburgh, Scotland, July 2010.

E. Almqvist, D. Eriksson, A. Lundberg, E. Nilsson, N. Wahlström,
E. Frisk, and M. Krysander. Solving the ADAPT benchmark problem -
A student project study. In 21st International Workshop on Principles
of Diagnosis (DX-10), Portland, Oregon, USA, October 2010.



2
Mathematical Modeling

In many scientific disciplines models are used to explain the reality. In psychol-
ogy, mental models are used to explain how humans perceive the real world and
learn from previous experiences. In atom physics, the well-known Bohr model is
used to explain emission patterns and chemical reactions by describing atoms as
positively charged nucleus surrounded by negatively charged orbiting electrons.
In environmental science, global climate models are used to describe complex in-
terconnections between atmosphere and oceans to predict weather and climate.

The purpose of a model is to explain, generalize and predict phenomena in
the real world. Therefore, the model should not encode all aspects of the reality it
is trying to describe. On the contrary, a model is by construction a simplification
of the real world. This simplification is a necessity in order to have a tool that
can be used to predict, generalize and explain the real world. For example, we
know that the Bohr model is not quite correct.1 Nevertheless, the Bohr model can
be used to explain the emission line of atomic hydrogen. To take this argument
even further, George Box made the famous statement “All models are wrong but
some are useful” (Box, 1979). The most useful model might not even be the one
that fits data the best, but rather the one that provides the best result in some
performance measure, which depends on the application.

As an abstraction of the reality, a model can be described in terms of symbols,
flow charts, or a computer program. In this thesis we consider mathematical
models. Such models are described using a mathematical language. This could be
a mathematical function, set of differential equations, or probabilistic description
of the data.

Mathematical models can, according to Ljung (1999), be built either by

1In more modern quantum mechanics, the electron is rather considered to be a cloud of probabil-
ity.

19
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(a) modeling, i.e., combining previously known subsystems, for example using
known physical law, into bigger models, or by

(b) system identification, i.e., inferring a model directly based on experimental
data.

In this thesis, examples will be provided using both of these model building
techniques. In Paper A, B, C and D method (a) is applied and in Paper E and F
method (b) is used.

In the remaining part of this chapter, three different model components are
introduced, which are used throughout this thesis. These include state-space
models (Section 2.1), neural networks (Section 2.2) and Gaussian processes (Sec-
tion 2.3).

2.1 State-Space Models

A state-space model is a mathematical model of a dynamical system. It relates
inputs uk and outputs yk of the system by introducing a latent state xk . These
quantities are related to each other via a first order difference equation

xk+1 = f(xk ,uk), (2.1a)

yk = h(xk). (2.1b)

Note that most dynamical models can be reformulated into a state-space model,
for instance, the nonlinear auto-regressive exogenous model (narx), which is used
in Paper E and F.

Example 2.1: NARX model
Consider a nonlinear difference equation in which the next output yk+1 depends
on the past n outputs and m inputs as

yk+1 = f̃(yk , . . . , yk−n+1,uk ,uk−m+1). (2.2a)

This difference equation can be formulated on state-space form with the state

xk = [yT
k , . . . , y

T
k−n+1,u

T
k−1, . . . ,u

T
k−m+1]T (2.2b)

and the motion and measurement model as

f(xk ,uk) = f̃(yk , . . . , yk−n+1,uk , . . . ,uk−m+1), (2.2c)

h(xk) =
[
I 0 . . . 0

]
xk . (2.2d)
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2.1.1 Stochastic State-Space Models

As already stated, no model is perfectly correct. To account for uncertainty, the
state-space model is usually extended to include process noise wk and measure-
ments noise ek (for ease of notation, we omit the inputs uk)

xk+1 = f(xk) + g(xk)wk , (2.3a)

yk = h(xk) + ek . (2.3b)

Here, wk and ek are discrete-time stochastic processes. A useful way to model
wk and ek is to consider them to be white, which means that they are mutually
independently (Jazwinski, 1970). With this assumption, the model can also be
described using conditional densities for the transition and the observation

p(xk+1|xk), (2.4a)

p(yk |xk). (2.4b)

This will make it easier to estimate the state sequence xk based on the measure-
ments yk because a filter solution can be designed by alternating between comput-
ing the filter distribution p(xk |y1:k) and the prediction distribution p(xk+1|y1:k).

Furthermore, the noise terms wk and ek are usually assumed to be Gaussian.
This simplifies the filtering operation even further. For example, if the stochastic
state-space model (2.3) is linear and wk and ek are white Gaussian random se-
quences, the filtering problem can be solved with the Kalman filter (Kailath et al.,
2000).

A further reason to model wk and ek to be Gaussian is that many physical pro-
cesses are approximately Gaussian (Jazwinski, 1970). The noise terms are a col-
lection of many unmodeled random effect, all of which are independent. When
these effects are added to each other, their total contribution is approximately
Gaussian, regardless of their individual distributions. This is also the essence of
the central limit theorem.

Stochastic state-space models can be identified directly from data (compare
with item (b) on page 20) using different methods. A prediction error method
(Ljung, 1999) can be used to estimate system parameters included in the model.
Also subspace methods (Van Overschee and De Moor, 1996) can be used (mainly
for linear models).

On the other hand, in many applications, the model is derived from physical
laws (compare with item (a) on page 19). Most physical models are defined in
continuous time. Therefore, if the model is derived using physical modeling,
the continuous state-space model has to be discretized to reach a model in the
form (2.3). Before reaching that point, we will first formalize the continuous-time
stochastic state-space model.
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2.1.2 Continuous-Time Stochastic State-Space Models

To find a continuous-time counterpart of (2.3a), we consider the stochastic differ-
ential equation

dx(t)
dt

= a
(
x(t)

)
+ b

(
x(t)

)
· “noise”, (2.5)

where the term “noise” is a continuous-time process noise term that corresponds
to the white Gaussian process noise term wk in (2.3a). By following Öksendal
(2007), the connection to (2.3a) can informally be made by first considering the
case in which both the noise and the state are 1-dimensional

dx(t)
dt

= a
(
x(t)

)
+ b

(
x(t)

)
· “noise”. (2.6)

Now, the discrete version of (2.6) becomes

xk+1 − xk = a(xk)Tk + b(xk) · “noise”Tk︸               ︷︷               ︸
∆βk

, (2.7a)

in which

xk = x(tk), Tk = tk+1 − tk , ∆βk = β(tk+1) − β(tk), (2.7b)

and β(t) is some suitable stochastic process. By comparing with the discrete-time
model (2.3a), the increment ∆βk corresponds to the white noise term wk . We now
want to select β(t) such that the increments ∆βk are Gaussian and independent.
This is fulfill by assuming β(t) to be a Brownian motion. A Brownian motion is a
process with independent increments that are Gaussian distributed according to
β(t)−β(s) ∼ N (0, t − s) for t ≥ s, which also can be written as E[dβ(t)dβ(t)] = dt.

Further, from (2.7) we obtain

xk = x0 +
k−1∑

j=0

a(xj )Tj +
k−1∑

j=0

b(xj )∆βj (2.8)

and by letting the sample time Tk → 0 we obtain

x(t) = x0 +

t∫

0

a
(
x(s)

)
ds +

t∫

0

b
(
x(s)

)
dβ(s), (2.9)

which also can be written as

dx(t) = a
(
x(t)

)
dt + b

(
x(t)

)
dβ(t). (2.10)

Now (2.10), is only meaningful if the integrals in (2.9) are well defined. Following
Jazwinski (1970), the first integral can be defined as a Riemann integral, whereas
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the second integral is defined as an Itô integral. The interested reader can refer to
Öksendal (2007); Jazwinski (1970) for more details.

The derivation can also be extended to a multi-dimensional setting

dx(t) = a
(
x(t)

)
dt + b

(
x(t)

)
dβ(t), where E[dβ(t)dβ(t)T] = Sdt, (2.11)

Here, β(t) is a multi-dimensional Brownian motion. By dividing both sides with
dt, the model (2.11) can informally be written as a differential equation

dx(t)
dt

= a
(
x(t)

)
+ b

(
x(t)

)
w(t), where E[w(t)w(s)T] = Sδ(t − s), (2.12)

where w(t) = dβ(t)
dt is a white delta-correlated Gaussian process.

However, (2.12) is just an informal presentation of a continuous-time stochas-
tic state-space model for two reasons. First, a white delta-correlated Gaussian
process has a constant power spectral density (hence white), which requires infi-
nite power and it is therefore not physically realizable. Secondly, w(t) is not mean
square Riemann integrable, and (2.12) has therefore no mathematical meaning
(Jazwinski, 1970).

The continuous-time model (2.11) will now be used to complete the connec-
tion to its discrete-time counterpart (2.3).

2.1.3 Discretization of Stochastic State-Space Models

Consider a linear version of the continuous-time model (2.11)

dx(t) = Ax(t)dt + Bdβ(t), where E[dβ(t)dβ(t)T] = Sdt. (2.13)

By integrating (2.13) over the time interval [tk , tk+1], we can find its discrete-time
equivalence as

x(tk+1) = eATk︸︷︷︸
F

x(tk)︸︷︷︸
xk

+

tk+1∫

tk

eA(tk+1−τ)Bdβ(τ)

︸                   ︷︷                   ︸
wk

. (2.14)

This can be stated as a discrete-time stochastic difference equation

xk+1 = Fxk + Gwk , where E[wkwT
l ] = QTkδkl , (2.15)

where δkl is the Kronecker delta function. By following, for example Jazwinski
(1970), which requires the aforementioned Itô calculus, the noise wk will be zero-
mean, white Gaussian and its covariance is given by

GQGT =

Tk∫

0

eAτBSBTeA
Tτdτ. (2.16a)
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Together with the discrete-time system matrix

F = eATk , (2.16b)

this completes the discretization procedure. The integral (2.16a) is analyzed fur-
ther in Paper G, which proposes a solution based on Lyapunov equations for solv-
ing the integral.

In most physical models, the continuous-time process noise only affects a sub-
set of the state (meaning that dim[w(t)] < dim[x(t)] ⇒ rank(BSBT) < dim[x(t)]),
which means that BSBT does not have full rank. Nevertheless, GQGT will as a re-
sult of the integration (2.16) in most cases have it. In these cases, a discrete-time
process noise wk needs to be of the same dimension as the state, i.e., dim(wk) =
dim(xk), to encode the same properties as the continuous-time model even though
w(t) only affects a few state components.

We end this section with an example. This example generalizes each of the
three discretizations presented in Section 5 in Paper A, with M = I in Section 5.1,
M = C(m(tk)) in Section 5.2, and M = S̄(q̄(tk)) in Section 5.3.

Example 2.2
Consider a system in the form

A =
[
0m×m M
0n×m 0n×n

]
, B =

[
0m×n
In

]
, (2.17)

where M ∈ Rm×n. Because A is nilpotent with Ai = 0 for i ≥ 2, we obtain that

eAτ = I + Aτ =
[
Im τM

0m×n In

]
. (2.18)

By using this in (2.16), we obtain

F =
[
Im TM

0n×m In

]
, GQGT =



T 3

3 MSM
T T 2

2 MS
T 2

2 SM
T T S


, (2.19a)

where the last term, for example, can be realized as

G =
[
T 2M 0m×n
0n×n T In

]
, Q =

1
T

[
1
3S

1
2S

1
2S S

]
. (2.19b)

2.2 Neural Networks

A neural network is nonlinear function y = g(u; θ) suitable for modeling complex
relations between an input u (not to be confused with the control input in Sec-
tion 2.1) and an output y using the parameters θ.
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A one-layer neural network is a composition of a linear mapping Au + b and
a nonlinear function σ (u) according to

y = g(u) = σ (Au + b), (2.20)

in which σ (·) = [σ (·), . . . , σ (·)]T operates element-wise on its input. The function
is parametrized with the elements in the matrix A and the vector b. To model
complex relations, a multi-layer neural network is commonly used, which can be
achieved by composing multiple layers as

z(l+1) = σ (A(l)z(l) + b(l)), (2.21)

where the first layer is the input z(1) = u, the last layer is the output y = z(N−1)

and the parameter vector θ is a concatenation of the elements in all the matrices
A1 . . . AN−1 and vectors b1 . . .bN−1

The scalar nonlinear function σ (·) is called the activation function and is the
ingredient that makes the neural network nonlinear.

Various functional forms for the activation functions exist. Common choices
are the logistic sigmoid (2.22a) and the hyperbolic tangent (2.22b), whereas the
rectified linear unit (2.22c) has gained increasing popularity and is nowadays the
most popular activation function in deep neural networks (LeCun et al., 2015).

σ (z) =
1

1 + e−1
︸            ︷︷            ︸

logistic sigmoid (2.22a)

, σ (z) =
ez − e−1

ez + e−1
︸             ︷︷             ︸

hyperbolic tangent (2.22b)

, σ (z) = max(0, z)
︸               ︷︷               ︸

rectfied linear unit (2.22c)

. (2.22)

By writing each layer (2.21) on indexed form

z
(l+1)
i = σ



M(l)∑

j=1

a
(l)
ij z

(l)
j + bi


 , (2.23)

it is clear that each dimension in one layer depends on all dimensions of the
previous layer. This is commonly illustrated by a directed graph, in which each

node corresponds to a hidden unit z(l)
j and each edge corresponds to the weight

a
(l)
ij , see Figure 2.1.

The neural network can be trained by minimizing the squared error between
the output of the model g(uk ; θ) and the measurement yk

arg min
θ

V (θ), where V (θ) =
N∑

k=1

‖yk − g(uk , θ)‖2. (2.24)

The gradient of V (θ) with respect to θ can be calculated efficiently using the
back-propagation algorithm, which essentially is a recursive use of the chain rule
on each layer in the network. The details are covered in many textbooks, for
example in Bishop (2006).
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Figure 2.1: A sketch of a two-layer neural network. The input units ui ,
the hidden units zi and output units yi are represented with nodes and the
weights aij are represented with edges.

2.2.1 Deep Learning

Although the first conceptual ideas of neural networks date back to the 1940s
(McCulloch and Pitts, 1943), they had their first main success stories in the late
1980s and early 1990s with the use of the back-propagation algorithm. At that
stage, neural networks could, for example, be used to classify hand written digits
from low-resolution images (LeCun et al., 1990). However, in the late 1990s neu-
ral networks were largely forsaken because it was widely thought that they could
not be used to solve any challenging problems in computer vision and speech
recognition (LeCun et al., 2015). In these areas, neural networks could not com-
pete with hand-crafted solutions based on domain specific prior knowledge.

This picture has changed dramatically since the late 2000s. Since then, neu-
ral networks have had a new revival under the name deep learning. Progress
in software, hardware and algorithm parallelization made it possible to address
more complicated problems, which where unthinkable only a couple of decades
ago. For example, in image recognition, these deep models are now the dom-
inant methods of use and reach almost human performance on some specific
tasks (LeCun et al., 2015). Recent advances based on deep neural networks have
generated algorithms that can learn how to play computer games based on pixel
information only (Mnih et al., 2015), and automatically understand the situation
in images for automatic caption generation (Xu et al., 2015). As a part of this
development, more attention has been directed to systems that can automatically
adapt and learn actions from images based on little prior knowledge of the sce-
nario. In Paper E and F, this problem has been addressed by proposing a deep
dynamical model. This model is based on the autoencoder, which is introduced
in the next section.
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(a) Autoencoder: The encoder maps
the original data yk ∈ R

M onto its
low-dimensional representation zk =
g−1(yk) ∈ R

m, where m � M; the
decoder maps this feature back to a
high-dimensional representation yk =
g(zk). The gray color represents high-
dimensional observations.
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(b) Prediction model: Past features
are encoded via zk = g−1(yk). The
transition model predicts the feature
ẑk+1|k at the next time step based
on the n-step history of n past fea-
tures zk−n+1, . . . , zk and control in-
puts uk−n+1, . . . ,uk . A future high-
dimensional observation ŷk+1 can be
predicted via the decoder ŷk+1|k =

g−1(yk). The gray color represents
high-dimensional observations.

Figure 2.2: Model components of the deep dynamical model.

2.2.2 Autoencoder

Neural networks are normally used in a supervised fashion. The input u can, for
example, represent the pixel values of an image, and the output y could represent
the class depending on what the image is illustrating, e.g., a cat, a dog, or a car.
By using a lot of labeled data {uk , yk}k=1:N , the network can learn the function
to correctly classify new unseen images. However, in this thesis, the neural net-
work is used in an unsupervised fashion, where these labels do not exist. This is
enabled via the autoencoder.

The autoencoder is a neural network suitable for learning compressed repre-
sentations {zk}1:N of high-dimensional data {yk}1:N , where dim(yk) � dim(zk).
The network architecture is based on an input layer and an output layer with
equally many nodes. In addition, at least one of the hidden layers has fewer
nodes than the input and output layers, see Figure 2.2a. By training this net-
work with the same data as input and output, the narrower hidden layer needs
to encode all information about the data from the input in order to reconstruct
it on the output. The values of these hidden nodes zk can therefore be seen as a
low-dimensional representation of yk .

The first half of the autoencoder is called the encoder z = g−1(y) and the
second half the decoder y = g(z). After the training, the encoder and the decoder
will be approximate inverses of each other, since g(g−1(y)) ≈ y. We can then
easily transform either y into z or z into y using either the encoder or the decoder.
The access to both of these two mappings is advantageous for defining the deep
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dynamical model that is explained in the next section.

2.2.3 Deep Dynamical Model

The encoder and the decoder are usually combined with each other to encode and
decode the very same data point. In Paper E and Paper F, a dynamical version of
this model is proposed, here referred to as a deep dynamical model (ddm). In this
model, (1) past data points are encoded via the encoder to a set of past features,
(2) a future feature is predicted using a narx model (2.1), and (3) the predicted
feature is decoded via the decoder to a predicted data point. This process is il-
lustrated in Figure 2.2b. This model is used to autonomously learn models and
design controllers purely based on high-dimensional pixel information from im-
ages. The model and the control design is further discussed and analyzed in
Paper E and Paper F.

2.3 Gaussian Processes

Already in Section 2.1.2 we have encountered a white Gaussian process w(t). The
concept can be extended by considering colored Gaussian processes and also to
consider Gaussian processes with multi-dimensional inputs. A Gaussian process
(gp) can be interpreted as a distribution over functions. The unknown function is
denoted by f (u) hereafter, where u ∈ Rn and f (u) ∈ R. Rasmussen and Williams
(2006) provide somewhat a formal definition of a gp:
Definition 2.1. “A Gaussian process is a collection of random variables, any fi-
nite number of which have a joint Gaussian distribution.”

A gp can consequently be seen as a generalization of the multivariate Gaus-
sian probability distribution in the sense that the function values evaluated for a
finite number of inputs u1, . . . ,uN are normally distributed



f (u1)
...

f (uN )



∼ N (µ, K), where µ =




µ(u1)
...

µ(uN )



, K =




k(u1,u1) · · · k(u1,uN )
...

...
k(uN ,u1) · · · k(uN ,uN )



.

Here, µ(u) is the mean function, and k(u,u′) is the covariance function defined as

µ(u) = E[f (u)], (2.25a)

k(u,u′) = E[(f (u) − µ(u))(f (u′) − µ(u′))]. (2.25b)

The gp is then denoted as

f (u) ∼ GP
(
µ(u), k(u,u′)

)
. (2.26)

Although the gp is just a slight conceptual extension of the multi-variate Gaus-
sian distribution, it can be used to model and encode fairly complex assumptions.
A flavor of this will be provided in this section. Before digging into the modeling
aspects of gps, the gp regression will be outlined in the next section.
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Figure 2.3: Posterior of a gp after using one, two and three measurements.
The posterior mean and the posterior variance (±3 standard deviations) are
shown with a dashed line and gray region, respectively. The measurements
are illustrated with black dots.

2.3.1 The Covariance Function

The covariance function k(u,u′) determines how the function values are corre-
lated. One commonly used covariance function is the exponential of a quadratic
form, also called the squared exponential, with an additional constant term.

k(u,u′) = σ2
f e
− ‖u−u′ ‖2

2l2 + σ2
b , (2.27)

The parameters σf , l and σb (also called hyperparameters) determine the mag-
nitude and length scale of the correlation. For this specific covariance function,
σf determines the standard deviation of the function’s fluctuations, l determines
the characteristic length scale of these fluctuations, and σb determines the stan-
dard deviation of the constant level around which the function fluctuates. In
Figure 2.4, a few samples from a gp using this covariance function are displayed
with different sets of hyperparameters.

2.3.2 Gaussian Process Regression

The gp can be used to learn a function y = f (u) by using a data set of inputs and
outputs {uk , yk}1:N . We consider a measurement model in the form

yk = f (uk) + ek , where ek ∼ N (0, σ2
n ). (2.28)

The gp prior (2.26), the measurement model (2.28) and the data set {yk ,uk}1:N
can be used to predict a yet unseen output f∗ at any location u∗. To do this, we
first note that all measurements y1, . . . , yN together with the unseen output f∗ are



30 2 Mathematical Modeling

0 2 4

−2

0

2

u

(a) σf = 1, l = 1, σb = 0

0 2 4

−2

0

2

u

(b) σf = 1, l = 0.1, σb = 0

0 2 4

−20

0

20

u

(c) σf = 1, l = 0.1, σb = 10

Figure 2.4: Samples from a gp prior using the covariance function (2.27).
The samples in each plot have been realized with different values of the hy-
perparameters σf , l and σb.

jointly Gaussian



y1
...
yN
f∗



∼ N







µ(u1)
...

µ(uN )
µ(u∗)



,




k(u1,u1) + σ2
n · · · k(u1,uN ) k(u1,u∗)

...
. . .

...
...

k(uN ,u1) · · · k(uN ,uN ) + σ2
n k(uN ,u∗)

k(u∗,u1) · · · k(u∗,uN ) k(u∗,u∗)






,

which in a more compact form can be written as
[

y
f∗

]
∼ N

([
µ
µ∗

]
,

[
K + σ2

n I k∗
kT∗ k∗∗

])
. (2.29)

Based on (2.29), the conditional distribution f∗|y can be computed using standard
formulas for the conditional Gaussian distribution

f∗|y ∼ N (a, b) where a = µ∗ + kT∗ (K + σ2
n I)
−1(y − µ), (2.30a)

b = k∗∗ − kT∗ (K + σ2
n I)
−1k∗. (2.30b)

The conditional distribution can be extended for multiple inputs u∗1, . . . ,u
∗
N∗ to

obtain a posterior over a grid of function values f ∗1 , . . . , f
∗
N∗ . The posterior of these

function values can be interpreted as a posterior over the whole function.
The gp regression is illustrated in Figure 2.3. The figure illustrates how the

uncertainty decreases as more measurements are added. Also, the uncertainty is
low for the points close to the measurements, and higher for the points distant
from the measurements as expected. The interested reader might want to refer
to Rasmussen and Williams (2006) for further details about gp regression.

Throughout the rest of this chapter, the focus will be on various modeling
aspects of gps; i.e., determining the functional form of the mean function µ(u)
and the covariance function k(u,u′). In many situations the mean function can
be set to zero without loss of generality. The main part of the modeling therefore
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takes place in the design of the covariance function k(u,u′). We will discuss this
function in greater detail with emphasis on the covariance functions that appear
in Paper C and Paper D.

By comparing Figure 2.4a with Figure 2.4b, we can clearly see the effect of
changing the characteristic length scale l. With a small l, the function samples
change much faster than with a large l. Further, by comparing Figure 2.4b with
Figure 2.4c, the effect of the constant term σ2

b can be observed. For σ2
b = 0, the

function samples are centered around zero and for σ2
b � 0, the function samples

are centered around a level b ∼ N
(
0, σ2

b

)
.

2.3.3 Periodic Covariance Function

0 2π 4π
−2

−1

0

1

2

u

Figure 2.5: Samples
from a gp prior using
the periodic covariance
function (2.32).

One way to construct new covariance functions is to
combine and modify already existing ones. In Ras-
mussen and Williams (2006, Section 4.2.4) various
methods for this purpose are presented. One method
for constructing new covariance functions is to use
the output of another static function g(u) as input to
an already existing covariance function. The new co-
variance function is then given by k(g(u), g(u′)).

For example, a periodic covariance function can
be constructed by using the following periodic non-
linear function

g(u) = [cos(u), sin(u)]T. (2.31)

Together with the squared exponential covariance
function (2.27), we obtain

k
(
g(u), g(u)′

)
= σ2

f e
− (cos(u)−cos(u′ ))2+(sin(u)−sin(u′ ))2

2l2 = σ2
f e
−

2 sin2
(
u−u′

2

)

l2 . (2.32)

In Figure 2.5, a few samples based on this covariance function are displayed.
Clearly, all samples do obey the periodic assumption encoded in the covariance
function. Paper D uses this covariance function for modeling the contour of an
extended target in polar coordinates, for which the angle is the input, and the
radial distance from the center to the contour is the output.

2.3.4 Derivative and Integral Observations

It is well-known that Gaussian distributions are closed under linear transforma-
tion. In a similar manner, Gaussian processes are closed under linear operations
(Papoulis and Pillai, 1991; Rasmussen and Williams, 2006; Hennig and Kiefel,
2013; Garnett, 2015). By following the notation of Garnett (2015), here we de-
note this linear operator Lw[f ], where w is some argument of the operator. This



32 2 Mathematical Modeling

linear operator could for example be differentiation or integration, which are de-
fined as

Lw[f ] =
∂f (u)
∂u

∣∣∣∣
u=w

, and L[a,b][f ] =

b∫

a

f (u)du. (2.33)

By applying the functional Lw[·] on both the mean function and the covariance
function, the gp prior for Lw[f ] is given by

Lw[f ] ∼ GP
(
Lw[µ], L2

w,w′ [k]
)
, (2.34)

where L2
w,w′ [k] acts on both the first and second argument of k(·, ·) as

L2
w,w′ [k] = Lw

[
Lw′ [k(u, ·)]

]
= Lw′

[
Lw[k(·,u′)]

]
. (2.35)

For example, by considering the differentiation operator, the derivative of a gp is
another gp with the following mean and covariance functions

∂f (u)
∂u

∣∣∣∣
u=w
∼ GP

(
∂µ(u)
∂u

∣∣∣∣
u=w

,
∂2k(u, u′)
∂u∂u′

∣∣∣∣
u=w,u′=w′

)
. (2.36)

Moreover, not only Lw[f ] is a gp; Lw[f ] is also jointly Gaussian distributed
with f (u) (and also with any other linear operation of f ). By considering two
different points u1 and w2, this can be written as

[
f (u1)
Lw2

[f ]

]
∼ N

([
µ(u1)
Lw2

[µ]

]
,

[
k(u1,u1) Lw2

[k(u1, ·)]
Lw2

[k(·,u1)] L2
w2,w2

[k]

])
, (2.37)

where the cross-covariance between f (u1) and Lw2
[f ] is given by the off-diagonal

terms in the covariance matrix. Consequently, observations of Lw[f ] can be used
to make predictions of f (u), and vice versa.

Since both differentiation and integration are linear operators, see (2.33), we
can use gps to make predictions about a function f (u) based on measurements
of both its derivative and integral. Figure 2.6 shows the posterior of a gp in a 1D
toy example using measurements of the function, its derivative, and its integral.
The posterior clearly obeys the three constraints provided by the measurements
and still provides the appropriate confidence interval based on the remaining
uncertainty of the function.

Derivative observations have previously been used to for learning dynami-
cal systems (Solak et al., 2003), to model light from supernovas (Holsclaw et al.,
2013) and in Bayesian optimization (Osborne, 2010). However, integral observa-
tions have been less exploited in the literature (Hennig and Kiefel, 2013). Hen-
nig and Kiefel (2013) used it to obtain a probabilistic interpretation of quasi-
Newton methods. In Bayesian quadrature we want to do the opposite; given
observations of the function f (u), we want to obtain a posterior of the integral
Lp[f ] =

∫
f (u)p(u)du under some distribution p. This can be used to derive a
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Figure 2.6: Posterior of a gp after using (a) one measurement f (2) = 1, (b)
one additional derivative measurement f ′(2) = −1, and finally (c) one ad-

ditional integral measurement
∫ 4

1 f (u)du = 0. The measurements are illus-
trated with a black dot, red line and blue line, respectively. As in Figure 2.3,
the dashed line and the gray region represent the posterior mean and the
posterior variance, respectively.

Bayesian Mote Carlo method for evaluating such integrals. This method relies on
an active sampling scheme that maximizes information gain by using the uncer-
tainty Lp[f ], (see for example Osborne, 2010).

In this thesis, we use the derivative of a gp to derive two multi-variate covari-
ance functions used in Paper C. These two covariance functions are explained
in Section 2.3.6. Before this step, we first need to extend the scalar gp f (u) to a
multi-variate gp f(u).

2.3.5 Vector-Valued GPs

A gp can also be used as a prior over functions with multi-dimensional outputs
f(u) = [f1(u), . . . , fm(u)]T. The most obvious extension is to consider each output
dimension to be an independent one-dimensional gp

fi(u) ∼ GP
(
µ(u), k(u,u′)

)
. (2.38)

We can also choose to introduce a correlation between the different output dimen-
sions by considering a matrix-valued covariance function

f(u) ∼ GP
(
µ(u), K(u,u′)

)
, (2.39)

in which each component of µ(u) and K(u,u′) are defined as

µi(u) = E[fi(u)], (2.40a)

[K(u,u′)]ij = E

[(
fi(u) − µi(u))(fj (u

′) − µj (u′)
)]
. (2.40b)
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Álvarez et al. (2012) provide an excellent review of covariance functions for
vector-valued functions. In the next section, two specific covariance function for
vector-valued gps will be introduced. Both of them are used in Paper C.

2.3.6 Divergence- and Curl-Free Covariance Functions

In Section 2.3.4, we explained how derivative observations could be incorporated
in the gp regression. Since the derivative of a gp is another gp, we can also use it
to construct new covariance functions. Two such functions are presented in this
section. Both of them are used to model vector-valued gps that can be derived by
differentiation of potentials. These two covariance functions are used in Paper C
to model magnetic fields obeying certain constraints from the physics. The moti-
vation of these constraints is explained further in Section 3.6 in connection with
the electromagnetic theory.

Curl-Free Covariance Function

Consider a vector field g(u) = [g1(u), g2(u), g3(u)]T, where u = [u1, u2, u3]T.
Such a vector field is known to be conservative if it can be written as the gradient
of a scalar function f (u) (scalar potential)

g(u) = ∇f (u) ⇔ gi(u) =
∂f (u)
∂ui

. (2.41)

These vector fields also obey the relation

∇ × g(u) = ∇ ×
(
∇f (u)

)
= 0, (2.42)

which means that they are curl-free.
We model the scalar potential using a gp with a squared exponential covari-

ance function

f (u) ∼ GP
(
0, k(u,u′)

)
, where k(u,u′) = σ2

f e
− ‖u−u′ ‖2

2l2 . (2.43)

Since differentiation is a linear operator (see Section 2.3.4), the vector field g(u) ∼
GP

(
0, K(u,u′)

)
will also be a gp. By following the relations discussed in Sec-

tion 2.3.4, the covariance function for g(u) is given by

K(u,u′) =
σ2
f

l2


I3 −

(
u − u′

l

) (
u − u′

l

)T e
− 1

2l2
‖u−u′‖2 . (2.44)

The details of the derivation are outlined in Appendix A. Since K(u,u′) is not
a diagonal matrix, the constraints imposed by (2.41) introduce cross-correlation
between the different output-dimensions in g(u). Further, any sample from a gp
prior with the covariance function (2.44) will obey the curl-free property (2.42).
Therefore, this covariance function is suitable for modeling curl-free vector fields.



2.4 Summary and Connections 35

Divergence-Free Covariance Function

A vector field g(u) is known to be solenoidal if it can be written as the curl of
another vector field f(u) (vector potential)

g(u) = ∇ × f(u) ⇔ gi(u) =
3∑

j=1

3∑

k=1

εijk
∂fj (u)

∂uk
, (2.45)

where εijk is the Levi-Civita symbol defined as

εijk =



+1 if (i, j, k) is (1, 2, 3), (2, 3, 1) or (3, 1, 2),
−1 if (i, j, k) is (3, 2, 1), (1, 3, 2) or (2, 1, 3),

0 if i = j or j = k or k = i.

(2.46)

The vector fields also obey the relation

∇ · g(u) = ∇ ·
(
∇ × f(u)

)
= 0, (2.47)

which means that they are divergence-free.
Similar as for the scalar potential, we model the vector potential f(u) with

a gp, in which each component fi(u) is a gp with a squared exponential covari-
ance function as in (2.43). By following the details of the derivation outlined in
Appendix A, the covariance function of g(u) is then given by

K(x, x′) =
σ2
f

l2



(
2 −

∥∥∥∥∥
x − x′

l

∥∥∥∥∥
2)
I3 +

(
x − x′

l

) (
x − x′

l

)T e
− 1

2l2
‖x−x′‖2 . (2.48)

This covariance function is suitable for modeling divergence-free vector fields,
since all function samples from a gp with this covariance function do obey the
divergence-free property (2.45).

Both (2.44) and (2.48) are used in Paper C to model magnetic fields. Note,
in that paper, the parametrization of the hyperparameters is slightly different,
where σ2

f / l
2 is replaced with σ2

f .

2.4 Summary and Connections

In this chapter, an overview of three model components, all of which are used in
this thesis, has been presented. These model components include

• State-space models: These models describe dynamical systems via a latent
state. In particular, this thesis uses state-space models to track magnetic
objects in Paper A, and extended targets in Paper D. In Paper E and F,
the narx model is used, which can be interpreted as a state-space model
(see Example 2.1). Further, in Paper G, a procedure for discretizing these
models is described.
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• Neural networks: This model describes complex functional relationship
between an input and an output. In Paper E and Paper F a deep dynamical
model is studied, in which neural networks are one model component.

• Gaussian processes: Gaussian processes are, in contrast to a neural net-
works, a non-parametric model that describes functional relationship be-
tween inputs and outputs. Is it not as flexible as neural networks, at least
not in its standard formulation. However, in contrast to the neural network,
it allows you to encode certain constraints in the model. This model is used
in Paper C to describe magnetic fields, and in Paper D to describe the spatial
extent of targets.

In the next chapter, the electromagnetic theory is presented. This theory is
needed to derive the functional form for some of the models above.



3
Electromagnetic Theory

This chapter introduces the electromagnetic theory. Special interest is given to
the magnetic field and its properties when currents are steady. The material pre-
sented in this chapter is to a great extent based on the theory as presented by
Jackson (1998) and Cheng (1989).

Although electromagnetic phenomena were known to the ancient Greeks, its
development as a quantitative subject started first in the end of the 18th cen-
tury with Cavendish’ and Columbus’ experiments and research. Fifty years later,
Faraday was studying time-varying electromagnetic phenomena. By 1865 James
Clerk Maxwell had published his famous paper (Maxwell, 1865) on a dynamical
theory of electromagnetic fields. In that paper, the original set of four equations
first appeared. These equations will be our theoretical starting point.

3.1 Maxwell’s Equations

All electromagnetic phenomena are governed by Maxwell’s equations,

∇ · E =
ρ

ε0
, (3.1a)

∇ × B − µ0ε0
∂E
∂t

= µ0J, (3.1b)

∇ × E +
∂B
∂t

= 0, (3.1c)

∇ · B = 0, (3.1d)

in which E is the electric field, ρ is the charge density, B is the magnetic field and
J is the current density. Apart from the fields E and B and their sources ρ and J,
the equations also include the constants ε0 and µ0, which are the permittivity and
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permeability of free space, respectively. The permeability of free space µ0 has a
defined value

µ0 = 4π × 10−7 F m−1 = 1.257 × 10−6 H m−1, (3.2)

and the permittivity of free space is defined by

ε0 = 1/(µ0c
2
0) = 8.854 × 10−12 F m−1, (3.3)

where c0 is the speed of light in vacuum. Table 3.1 summarizes the meaning of
each symbol and the SI unit of measure.

Table 3.1: Definitions and units.

Symbol Meaning SI unit

E Electric field Volt per meter [V m−1]
B Magnetic field Tesla [T]
ρ Charge density Coulomb per cubic meter [C m−3]
J Current density Ampere per square meter [A m−2]
ε0 Permittivity of free space Farad per meter [F m−1]
µ0 Permeability of free space Henry per meter [H m−1]
c0 Speed of light in vacuum Meter per second [m s−1]

3.2 Quasi-Static Approximation

In this thesis, the magnetic field B is of special interest, since that is the quantity
that will be measured. In general, it is coupled with the electric field E through
their time derivatives (3.1b) and (3.1c). However, in the stationary case, the terms
∂E/∂t and ∂B/∂t can be neglected, and Maxwell’s equations become decoupled.
The magnetic field will therefore obey the magnetostatic equations

∇ × B = µ0J, (3.4a)

∇ · B = 0. (3.4b)

From these equations it is clear that the current density J can be regarded as the
source causing the magnetic field B. If the current density is time-dependent, the
static assumption does not hold and the full solution of Maxwell’s equations has
to be considered. However, if these changes are sufficiently small, a quasi-static
approximation can be made, in which the magnetostatic equations (3.4) still hold.
In this approximation, (3.4a) states that any variation in the current density J is
instantaneously communicated to the magnetic field B, implying that the velocity
of propagation is infinite. Hence, this approximation is only valid if the time
lag produced by the finite velocity of propagation is very small in comparison
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with the time it takes for the currents to change value (Di Bartolo, 2004). To be
more specific, assume that the currents undergo changes with a certain frequency.
Following Di Bartolo (2004), the condition of quasi-stationarity can be expressed
as

size of the physical system × frequency� c0.

This is illustrated with the following example borrowed from Di Bartolo (2004).

Example 3.1
For a transformer with the characteristic size of 30 cm and a frequency of 50 Hz,

we have

size × frequency = 0.3 m × 50 s−1 = 15 m s−1 � c0 = 300 000 000 m s−1

Thus, in this transformer, the quasi-static approximation is valid.

3.3 Magnetic Dipole Moment

Having complete knowledge of the current density J enables us to find the solu-
tion for the magnetic field B using the magnetostatic equations (3.4). However,
its solution is nontrivial and further approximations have to be made. In many
scenarios of interest the current density is zero except in one small region V , fur-
ther on referred to as the object, see Figure 3.1. Instead of solving the full system

P

J(r′)

r′

r

OV

Figure 3.1: Localized current density J(r′) in the region V resulting in a mag-
netic induction at the point P with coordinate r. Outside the region V the
current density is zero J(r′) = 0.

(3.4), we can represent region V with its magnetic dipole moment m at point O.
This dipole moment is related to the current density as

m ,
1
2

∫

V

r′ × J(r′)d3r ′ [A m2], (3.5)
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J(r′) , 0

mr

B(r)

J(r) = 0

Figure 3.2: An object with a non-
zero current density J(r′) , 0 in-
duces a magnetic dipole field, here
visualized with field lines. Via
(3.5), a magnetic dipole moment m
can be associated with the object.
The magnetic dipole field B(r′) can
be computed by using (3.6).
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Figure 3.3: A metallic vehicle in-
duces a magnetic field, which is
measured with a magnetometer de-
ployed at the road side. All three
Cartesian components of this mea-
surement are shown. The vehicle
can be modeled as a moving mag-
netic dipole.

where r′ is an integration variable, d3r ′ = dx′dy′dz′ is a three-dimensional vol-
ume element at r′ , and J(r′) is the current density at position r′ . This formulation
enables an analytical expression that relates the magnetic dipole moment to the
magnetic field. This relation is called the magnetic dipole field

B(r) =
µ0

4π
3(r ·m)r − ‖r‖2m

‖r‖5 =
µ0

4π‖r‖5 (3rrT − ‖r‖2I3)

︸                      ︷︷                      ︸
,L(r)

m = L(r)m, (3.6)

in which r is a vector from the object O to the observer at point P . The magnetic
dipole field is visualized in Figure 3.2. The derivation of this dipole field can
be found in Appendix B and requires a Taylor expansion, which is only valid if
the distance to the observer is large in comparison to the size of the object, i.e.,
if ‖r‖ � ‖r′‖ in Figure 3.1. The magnetic dipole model can be used to describe
the relation between measurement of a stationary magnetometer and a moving
object that induces a magnetic field. This is illustrated in (3.3). This dipole model
is the theoretical starting point for the models presented in Paper A and Paper B.

Furthermore, if there are multiple objects, each of them will induce its own
magnetic dipole field

Bi(r) = L(r − ri)mi , (3.7)

where ri is the position of object i and mi its dipole moment. Due to the linearity
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of the magnetostatic equations (3.4), all magnetic dipole fields will superimpose

B(r) =
∑

i

Bi(r) =
∑

i

L(r − ri)mi . (3.8)

This model is proposed in Paper A to represent objects including multiple mag-
netic dipoles. Multiple dipoles can also be used to represent larger objects by
dividing them into smaller regions and representing each region with a magnetic
dipole. This idea was advocated in Wahlström and Gustafsson (2014).

The idea can also be taken one step further. By dividing the object into even
smaller regions, we reach, in the limit, a vector field in which each point in space
has a magnetic dipole moment associated with it. This is called the magnetization
and is explained in the next section.

3.4 Magnetization

All materials consist of atoms with orbiting electrons. The electrons generate cir-
cular currents that can be represented with magnetic dipole moments mi . All
these dipole moments will contribute to the magnetization of the material. How-
ever, due to the very large number of atoms in a material, this description is not
convenient. Therefore, we use its average over a larger volume and describe mag-
netization as the quantity of magnetic moment per unit volume. If there are n
atoms per unit volume, we define the magnetization as

M(r) , lim
∆V→0

∑n∆V
i=1 mi

∆V
[A m−1], (3.9)

in which
∑n∆V
i=1 mi denotes the sum of all magnetic dipole moments within the

volume element ∆V centered at r. According to this definition, the magnetization
can be considered a density of magnetic dipole moments. This description is
convenient because it allows us to describe complex magnetized regions without
using a large number of magnetic dipole moments.

By generalizing (3.8), we can also find a relation between the magnetization
and the magnetic field

B(r) =
∫
L(r − r′)M(r′)d3r ′ . (3.10)

In this formulation, the magnetic dipole can be considered a Dirac-distribution,
illustrated in the example below.

Example 3.2
Consider a magnetization localized at position ri and zero elsewhere M = mδ(r −
ri). Inserting this field into (3.10) we obtain

B(r) =
∫
L(r − r′)mδ(r′ − ri)d

3r ′ = L(r − ri)m, (3.11)
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which is the magnetic dipole field of a magnetic dipole at ri with magnetic dipole
moment m.

However, the description (3.10) is complicated and highly nonlinear. By in-
troducing the magnetizing field, we can instead describe the relation between the
magnetization M and the magnetic field B with a set of linear differential equa-
tions similar to (3.4). This is explained in the next section.

3.5 Magnetizing Field

The current density J can be divided into the magnetization current Jm and the free
current Jf as

J = Jm + Jf . (3.12)

The magnetization current is bound to the material and can be seen as the cur-
rent density due the electrons orbiting around the nucleus in the material. The
magnetization current is defined as the curl of the magnetization

Jm , ∇ ×M [A m−2]. (3.13)

The free current density Jf is not bound to any material and its charges can move
freely, e.g., currents in electric cables.

Using (3.12) in the magnetostatic equation (3.4a) results in

1
µ0
∇ × B = Jf + Jm = Jf + ∇ ×M, (3.14)

or equivalently

∇ ×
(

B
µ0
−M

)
= Jf . (3.15)

For convenience, a new field H can be defined called the magnetizing field

H ,
B
µ0
−M [A m−1]. (3.16)

With this quantity, an alternative version of the magnetostatic equation, only in-
cluding the free current Jf , can be introduced

∇ ×H = Jf , (3.17a)

∇ · B = 0. (3.17b)

By this we have reformulated the magnetostatic equations (3.4) into (3.17), which
only depend on the free current Jf and not on the magnetization current Jm. In-
stead the effect of the magnetization current is described via the magnetization
M, which couples the two magnetic fields B and H via (3.16).
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The equations (3.16) and (3.17) are used in Paper C for modeling complex
magnetic structures in indoor environments using Bayesian nonparametric meth-
ods. In the paper, we assume there is no free current, i.e., Jf = 0. With this
assumption the H- and B-fields are curl- and divergence-free, respectively. These
properties are exploited in the proposed model.

3.6 Magnetic Potentials

A useful strategy for solving problems in magnetostatics (and in electrostatics)
is to work with potentials. Instead of studying the B-field and H-field directly,
we can choose to study their corresponding potentials. The main motivation for
introducing these potentials is to reformulate the magnetostatic equations (3.17)
into a set of differential equations, which are easier to solve. However, our moti-
vation for introducing these potentials is to derive probabilistic models for the B-
and the H-field, which are used in Paper C.

There exist two different magnetic potentials potentials; (i) the scalar poten-
tial and the (ii) vector potential. Their existence relies on the following two im-
portant null-identities

∇ × (∇ϕ) ≡ 0, (3.18a)

∇ · (∇ ×A) ≡ 0. (3.18b)

These two identities can easily be proven in Cartesian coordinates. For gen-
eral coordinate systems (see for example Cheng, 1989). We will discuss the two
potentials corresponding to these two identities in the following subsections.

3.6.1 Magnetic Scalar Potential

In regions without any free current Jf = 0, the H-field will be curl-free

∇ ×H = 0. (3.19)

By comparing (3.19) with the identity (3.18a), we can conclude that the H-field
can be written as the gradient of a scalar field

H = −∇ϕ. (3.20)

The scalar field ϕ is called the magnetic scalar potential. Note that the negative
sign in the definition is of no importance but follows the standard conventions.
The relation (3.20) can now be used to derive a probabilistic model for the H-field
by modeling ϕ as a Gaussian process. This was discussed in Section 2.3.6 with
further details in Appendix A.

By using this potential, we can also derive a relation between the scalar poten-
tial and the magnetization causing it. If we use the divergence operator on (3.16),
we obtain

∇ · H︸︷︷︸
−∇ϕ

=
1
µ0
∇ · B︸︷︷︸

=0

−∇ ·M. (3.21)
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This allows us to define the effective magnetic-charge density

ρM = −∇ ·M, (3.22)

and we obtain the following Poisson equation for ϕ

∇2ϕ = −ρM. (3.23)

Based on a certain distribution of the magnetic-charge density ρM, this can be
used to solve for the potential ϕ. See Jackson (1998) for further examples and
techniques for solving magnetostatic problems using the magnetic scalar poten-
tial. The magnetic scalar potential is also used in Solin et al. (2015) for modeling
magnetic fields in indoor environments.

3.6.2 Magnetic Vector Potential

Since the B-field is divergence-free (3.17b), the identity (3.18b) leads to that the
B-field can be written as the curl of another vector field

B = ∇ ×A. (3.24)

The vector field A is called the magnetic vector potential. In a similar manner as
for the scalar potential, this relation can be used to model the B-field by using a
Gaussian process prior for the vector potential A. This was discussed already in
Section 2.3.6 with further details in Appendix A.

With this definition, the magnetic vector potential A has a built-in ambiguity;
we can add any curl-free field to A without any effect on B. To resolve this ambi-
guity, we also require, without loss of generality, that ∇ ·A = 0 (this is the Lorenz
gauge condition). With this assumption, we have that

∇ × B = ∇ × (∇ ×A) = ∇(∇ ·A︸︷︷︸
0

) − ∇2A = −∇2A. (3.25)

Together with Ampere’s law (3.4a), we obtain one Poisson equation for each com-
ponent in A

∇2A = −µ0J. (3.26)

In a similar manner as for the scalar potential, these equations can also be used
to solve problems in magnetostatic. In Appendix B, the Poisson equation (3.26)
and its solution is also used to derive the magnetic dipole model.

3.7 Magnetic Materials

As explained earlier, all materials consist of atoms, each of which can be de-
scribed with a magnetic dipole. In most materials, these dipoles are not struc-
tured in any certain manner and the total magnetization will therefore be zero.
However, in some materials, these dipoles will be affected by the presence of an
external field, which in turn would cause a non-zero magnetization. In these ma-
terials, we distinguish between properties referred to as soft iron and hard iron.
The soft and hard iron effects were used in Wahlström and Gustafsson (2014) to
model the induced magnetic moment in vehicles.
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3.7.1 Soft Iron

In soft iron, the magnetization is aligned with an applied external field, see Fig-
ure 3.4. If the material is linear and isotropic, this magnetization is directly pro-
portional to the magnetizing field

M = χmH, (3.27)

where χm is the magnetic susceptibility, which is a dimensionless constant char-
acteristic for the magnetic material. By using (3.16), this results in a relation
between the magnetization M and the B-field

M =
1
µ0

χm
1 − χm

B. (3.28)

Thus, the magnetization is always aligned with the external field regardless of
the orientation of the object.

(a) Non-magnetized material. All
dipoles are independent of each
other and in average we have M ≈
0.

External

magnetic field

(b) Magnetized material. The
dipoles are aligned in the direction
of the applied external magnetic
field and therefore M , 0.

Figure 3.4: A material with χm > 0 is magnetized when an external field is
applied.
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3.7.2 Hard Iron

In soft iron materials, the magnetization vanishes when the external field is re-
moved. However, for other materials, the magnetization is not reversible if strong
magnetic fields are applied. This results in permanent magnets. Materials hav-
ing this property are called ferromagnetic. Magnetized ferromagnetic substance
also contributes to the total magnetization. Such permanent magnetization is re-
ferred to as hard iron. The hard iron magnetization is always be aligned with the
reference frame of the magnetized object, whereas the soft iron magnetization is
always aligned with the applied magnetic field.

3.8 Summary and Connections

In this chapter we present a short overview of the electromagnetic theory rele-
vant for this thesis. Different concepts have been introduced, which are used in
Paper A, B and C in the second part of this thesis.

The magnetic dipole model (3.6) has been introduced and proven to have
properties suitable for modeling magnetic objects with a small geometrical ex-
tent. However, in the real world scenarios presented in each of these three pa-
pers, the extent of the magnetic objects is not always negligible, which affects the
modeling. This issue is handled differently in each of the three papers.

• Paper A extends the dipole model by using multiple dipoles to model ob-
jects consisting of multiple magnets. Such multi-dipole objects break the
symmetry in the magnetic field otherwise present in a single dipole vector
field.

• The dipole model is also used in Paper B to derive a classifier that deter-
mines the driving direction of vehicles. This classifier is experimentally
shown to give good classification results even though the target is not a
point source, which the dipole model in fact assumes.

• In Paper C, the magnetization M (3.9) is used to model magnetic structures
present in indoor environments. The magnetization can be seen as a con-
tinuum with infinitely many magnetic dipole moments. To handle these
infinite-dimensional objects, Gaussian processes are used.



4
Concluding Remarks

In Part I, a background of the material in this thesis was provided. Chapter 1 in-
troduced the research field and its applications, Chapter 2 described the concept
of mathematical modeling by explaining three different models used through-
out the thesis and Chapter 3 provided details about the electromagnetic theory
needed to derive the models associated to magnetic fields.

The results were presented in the publications in Part II and the conclusions
are summarized below in Section 4.1. Ideas for future directions of the research
are provided in Section 4.2.

4.1 Conclusions

In Paper A, B, and C, the problem of localizing magnetic objects based on mea-
surements of their induced magnetic field was investigated. The models intro-
duced in these papers were all based on the electromagnetic theory presented in
Chapter 3. However, to derive a model that works with real data is not straightfor-
ward. Especially, taking the object extent into consideration is challenging. This
has been solved differently in each of the three papers.

In Paper A, a sensor description based on the magnetic dipole model was in-
troduced. Based on this sensor model and a sensor network of magnetometers,
both position and orientation of a small magnet can be tracked with high accu-
racy. The model was further developed to model extended magnetic objects that
consist of multiple dipoles. The proposed model was validated using real data
and compared with a high-precision optical reference system. Good tracking per-
formance was achieved in the vicinity of the sensor network.

In Paper B, a method for classifying the driving direction of a vehicle was
proposed. Similar to Paper A, the theoretical starting point was the magnetic
dipole model. However, instead of using the full dipole model for estimating
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position, orientation and velocity as in Paper A, a nonlinear transformation of
the measurement was derived. Based on the dipole model, this transformed data
has theoretically and experimentally been proven to be sensitive to the driving
direction of the vehicle, but insensitive to other scenario dependent parameters,
such as velocity, magnetic signature and target extent. Note that in contrast to
an explicit use of the dipole model, this model works excellent on large objects,
for example vehicles. The model was validated on a total number of 511 vehicles
and outperformed a standard likelihood test.

The model presented in Paper C is not restricted to the parametric dipole
model. It uses a non-parametric model called Gaussian processes to describe
extended magnetic objects and their induced magnetic field. In contrast to the
first two papers, this model is more suitable for stationary magnetic objects. The
model has been validated on both simulated and experimental data showing abil-
ity to localize and determine the geometrical shape of magnetic structures.

Gaussian processes were also used in Paper D in which a new approach for
tracking extended targets was proposed. The proposed method uses gps to model
the unknown target extent while simultaneously estimating the kinematic state
of the target. An efficient algorithm was also proposed in which the filter updates
are fully recursive and do not suffer from an increase in dimension with each
available measurement, unlike the standard gp formulation. The performance
and capabilities of the algorithm are demonstrated through simulations and real
data experiments.

In Paper E and F, a data-efficient framework was proposed that learns con-
trollers directly from pixel information. In contrast to Paper D, the model is not
based on any geometrical assumption of the system. It only assumes that there
exists a low-dimensional description of the data. Whereas the model was intro-
duced in Paper E, it was used for control in Paper F. Compared to state-of-the-art
controllers purely based on pixel information, the algorithm learns fairly quickly
and scales to high-dimensional state spaces.

This thesis ended with Paper G in which an algorithm based on Lyapunov
equations was used to discretize continuous-time stochastic dynamical models.
In particular, an extension to systems with integrators was presented, where nu-
merical evaluations showed that the proposed algorithm has advantageous nu-
merical properties for slow sampling and fast dynamics in comparison with a
standard method in the literature.

4.2 Future Work

Different directions are possible for future research related to the material pre-
sented in this thesis. These directions are divided into different application areas,
which have been analyzed in this thesis.

Magnetic tracking for human-computer interaction The area of three-dimen-
sional visualization and virtual reality has seen as tremendous growth the last
decade. Such systems require input devices to enable intuitive and high qual-
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ity computer-human interaction. Although existing techniques exist, magnetic
tracking has benefits in terms of cost, robustness and flexibility. However, many
research questions need to be solved to turn this into a high-precision localization
technique. How should robust and reliable calibration routines be designed for
this system? Could the range be increased by using an active instead of a passive
system? In what other applications could the technique be used?

Traffic surveillance Future work should focus on finding solutions for cases that
are hard to resolve, i.e., multiple vehicles, vehicles that are turning, possibly by
fusing information from other sensor modalities. Further, so far the detection
problem has not been analyzed. Here, standard methods from the literature can
be used, for example the adaptive thresholding technique presented by Cheung
and Varaiya (2007). In future work, the detection problem should be included,
resulting in a complete system for localizing vehicles in a wireless sensor net-
work. Finally, implementation in real sensor nodes should be targeted and the
performance in a real time system analyzed.

Magnetic localization and mapping in indoor environments The initial work in
this thesis has already been further developed in Solin et al. (2015), where larger
scale problems were considered using more computational efficient algorithms
for regression and using derivative measurements of the scalar potential instead
of measurements from a curl-free vector field. However, in that contribution, the
divergence-free property of the magnetic field was not exploited which we do
exploit in Paper A. As a continuation of Paper C and Solin et al. (2015), it would
be interesting to include that property as well. Further, an interesting extension
is to implement a full SLAM (simultaneous localization and mapping) framework
where the magnetic map and the position of the platform are estimated jointly.

Flexible models for extended target tracking The presented framework in Pa-
per D only considers single target tracking. Future work should focus on devel-
oping a dedicated multi-target framework for this model. To increase robustness
and avoid the approximations with the linearized filter (an Extended Kalman
filter), more exact inference techniques including Sequential Monte Carlo and
Variational Bayes should be considered. It would also be interesting to combine
the proposed model with a Probability Hypothesis Density filter, which also treat
the number of targets in a probabilistic manner. Another direction of research
is to exploit the informative model of the target extent for high-accuracy gating
and object classification.

Autonomous learning from raw pixel information Already today there exist sys-
tems that learn to autonomously control fairly complex system based on high-
dimensional measurements. For example, Mnih et al. (2015) have used deep
learning techniques to teach an agent to play different video games based on
pixel information only. However, one limitation with existing techniques is that
they do require a lot of data (millions of data points) to accomplish this task. The
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approach in Paper F addresses this issue by using a low-dimensional dynamical
model.This approach has potential to accomplish the same type of task, but with
less data. Future work should include to test these ideas on more challenging
problems. Although promising and impressive results already exist, the combi-
nation of deep learning and control is still in its infancy (LeCun et al., 2015).



Appendix





A
Derivation of Covariance Functions

for Divergence-Free and Curl-Free
Vector Fields

This appendix provides additional details to Section 2.3.6 in which two covari-
ance functions for curl-free and divergence-free vector fields are derived.

A.1 Curl-Free Vector Fields

Based on identity (3.18a) we know that a curl-free vector field H

∇ ×H = 0

can be written as the gradient of a scalar potential, such that

H = −∇ϕ ⇔ Hi = −∂ϕ
∂ri

.

By modeling the scalar potential using a gp

ϕ(r) ∼ GP (0, k(r, r′)),

we have that also H(r) is a gp

H(r) ∼ GP (0, KH(r, r′)),

for which each component of the covariance function is given by

[KH](ij)(r, r
′) = Cov

[
Hi(r), Hj (r

′)
]

= Cov
[
∂
∂ri

ϕ(r),
∂
∂rj

ϕ(r′)
]

=
∂2

∂ri∂x
′
j
k(r, r′).
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By using a squared exponential covariance function k(r, r′) = σ2
f e
− 1

2l2
‖r−r′‖2 for the

scalar potential, we obtain

∂2

∂ri∂x
′
j
k(r, r′) = l−2(δij − l−2(ri − r ′i )(rj − r ′j ))k(r, r′),

which in vector notation gives

KH(r, r′) =
1
l2


I3 −

(
r − r′

l

) (
r − r′

l

)T σ2
f e
− 1

2l2
‖r−r′‖2 .

A.2 Magnetic Vector Potential

Based on identity (3.18b) we know that a divergence-free vector field B

∇ · B = 0

can be written as the curl of a vector potential, such that

B = ∇ ×A ⇔ Bi =
∑

j,k

εijk
∂
∂rj

Ak(r),

where εijk is the Levi-Civita symbol defined in (2.46). By modeling the vector
potential with a gp

A(r) ∼ GP (0, K(r, r′)),

we have that also B(r) is a gp

B(r) ∼ GP (0, KB(r, r′)),

for which each component of the corresponding covariance function is given by

[KB](ij)(r, r
′) = Cov

[
Bi(r), Bj (r

′)
]

= Cov



∑

k,l

εikl
∂
∂rk

Al(r),
∑

m,n

εjmn
∂
∂rm

An(r′)




=
∑

k,l,m,n

εiklεjmn
∂2

∂rk∂x
′
m
Kln(r, r′).

Further, by using diagonal covariance function Kln(r, r′) = δlnk(r, r′), we have that

(KB)(ij)(r, r
′) =

∑

k,l,m,n

εiklεjmnδln
︸       ︷︷       ︸
δijδkm−δimδkj

∂2

∂rk∂x
′
m
k(r, r′)

=
∑

k,m

(δijδkm − δimδkj ) ∂2

∂rk∂x
′
m
k(r, r′).
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If we chose to model each diagonal component with a squared exponential

k(r, r′) = σ2
f e
− 1

2l2
‖r−r′‖2 , we have

[KB](ij)(r, r
′) =

∑

k,m

(δijδkm − δimδkj )l−2(δkm − l−2(rk − r ′k)(rm − r ′m))k(r, r′)

and with
∑

k,m

δijδkmδkm = 3δij ,

∑

k,m

δimδkjδkm = δij ,

∑

k,m

δijδkm(rk − r ′k)(rm − r ′m) =
∑

k

δij (rk − r ′k)2,

∑

k,m

δimδkj (rk − r ′k)(rm − r ′m) = (ri − r ′i )(rj − r ′j ),

we can further simplify the expression to

(KB)(ij)(r, r
′) = l−2


2δij − l−2δij



∑

k

(rk − r ′k)2


 + l−2(ri − r ′i )(rj − r ′j )


 k(r, r′),

which in vector notation gives

KB(r, r′) =
1
l2



(
2 −

∥∥∥∥∥
r − r′

l

∥∥∥∥∥
2)
I3 +

(
r − r′

l

) (
r − r′

l

)T σ2
f e
− 1

2l2
‖r−r′‖2 .





B
Derivation of the Magnetic Dipole

Model

This appendix derives the equation for the induced magnetic fields caused by a
magnetic dipole, which was introduced in Section 3.3.

Consider a region V with localized current density. That means, charged parti-
cles can move within the region, but neither leave it nor be added to it. According
to (3.4), this current density gives rise to an induced magnetic field outside the
region (see Figure 3.1).

From Section 3.6.2, we know that the the magnetic field B is the curl of its
vector potential A(r)

B(r) = ∇ ×A(r). (B.1)

Following (3.26), this vector field obeys the following Poisson equation

∇2A = −µ0J, (B.2)

which has the solution

A(r) =
µ0

4π

∫
J(r′)
‖r − r′‖d

3r ′ . (B.3)

Since J(r′) , 0 only in the region of the localized current density V , we have

A(r) =
µ0

4π

∫

V

J(r′)
‖r − r′‖d

3r ′ . (B.4)

Furthermore, the denominator in (B.4) can be expanded in powers of r′ . With
‖r‖ > ‖r‖′ this will be

1
‖r − r′‖ =

1
‖r‖ + ∇

( 1
‖r‖

)
· (−r′) + · · · = 1

‖r‖ +
r · r′
‖r‖3 + . . . , (B.5)
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where r = ‖r‖. If this Taylor expansion is used by (B.3), this results in

Ai(r) =
µ0

4π




1
‖r‖

∫

V

Ji(r
′)d3r ′ +

r
‖r‖3 ·

∫

V

Ji(r
′)r′d3r ′ + . . .


 . (B.6)

Due to the fact that the current density J(r) is localized and obeys the static
continuity condition ∇ · J = 0, Gauss’ theorem makes the first term in (B.6) zero.
Furthermore, it can be shown that

r ·
∫

V

r′Ji(r)d3r ′ = (m × r)i , (B.7)

where m is the magnetic dipole moment

m =
1
2

∫

V

r′ × J(r′)d3r ′ . (B.8)

The details of these steps are clearly outlined in Jackson (1998). By truncating
(B.6) and using (B.8) in (B.6), we obtain

A(r) =
µ0

4π
m × r
‖r‖3 . (B.9)

The induced magnetic field can be calculated directly by evaluating the curl
of (B.9),

B(r) =
µ0

4π
3(r ·m)r − ‖r‖2m

‖r‖5 . (B.10)

As long as ‖r‖ � ‖r′‖, the truncation of the Taylor expansion in (B.5) is a good
approximation. In other words, if the characteristic size of region V is small
in comparison to the distance from the region to the observer at point P , see
Figure 3.1, the dipole model is a valid model for the magnetic target.
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Abstract

A framework for estimation and filtering of magnetic dipoles in a
network of magnetometers is presented. The application in mind is
tracking of objects consisting of permanent magnets for controlling
computer applications, though the framework can also be applied to
tracking larger objects such as vehicles. A general sensor model for
the network is presented for tracking objects consisting of (i) a sin-
gle dipole, (ii) a structure of dipoles and (iii) several freely moving
(structures of) dipoles, respectively. A single dipole generates a mag-
netic field with rotation symmetry, so at best five degrees of freedom
(5D) tracking can be achieved, where the snr decays cubically with
distance. One contribution is the use of structures of dipoles, which
allows for full 6D tracking if the dipole structure is large enough.
An observability analysis shows that the sixth degree of freedom is
weakly observable, where the snr decays to the power of four with
distance, and that there is a 180 degree ambiguity around a specific
symmetry axis. Experimental results are presented and compared to
a reference tracking system, and four public demonstrators based on
this framework are briefly described.

1 Introduction

Magnetic localization offers many advantages in comparison to other localization
techniques in terms accuracy, robustness, and cost. The technique has for the
last decade primarily been used in applications to track medical apparatus in-
side the human body (Stathopoulos et al., 2005; Guignet et al., 2006; Wang et al.,
2006), in traffic surveillance to detect and localize ground and maritime vehi-
cles (Birsan, 2005; Kozick and Sadler, 2007a; Wahlström and Gustafsson, 2014),
and more lately in in computer gaming industry (Harrison and Hudson, 2009;
Ashbrook et al., 2011; Chan et al., 2013; Liang et al., 2012). Magnetic localization
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can provide accurate position and orientation estimates in applications for which
occlusion disqualifies vision sensors, and lack of absolute position excludes pure
IMU-based approaches. Further the magnetic field does not suffer from multi-
path and scattering effects as in radio-based solutions.

This paper considers a sensor network of vector magnetometers that is used
to determine the position and orientation of a permanently magnetized object,
for example a magnet. We suggest a filtering framework including measurement
and motion models that can be used to determine both the position and the orien-
tation of the magnet based on the magnetometer measurements. We also present
a range of applications in which this technique have been successfully imple-
mented. This extends the palette of applications mentioned above. These appli-
cations have been realized with low-graded magnetometers (a few dollars each)
that can be found in standard smartphones.

The use of stationary magnetometers to determine position and orientation
is proposed in several publications (Haynor et al., 2001; Beck, 2001; Yabukami
et al., 2000; Schlageter et al., 2001). They model the object as a magnetic dipole
moment inducing a magnetic dipole field that can be computed analytically. This
magnetic dipole moment includes both position and orientation of that object as
well as its magnetic strength. This initial work has been further elaborated by
Yabukami et al. (2002, 2003), Hu et al. (2005, 2006, 2008, 2010) and researchers at
Institute of Physiology, University of Lausanne (Stathopoulos et al., 2005; Guignet
et al., 2006). Their primary application has been to record images of the digestive
track, so-called capsule endoscopy, where a capsule equipped with a small mag-
net can be localized during its path through the tract. All of these contributions
have in common that they compute the position and orientation of the object at
each time instant separately (typically using Levenberg-Marquardt algorithm).
Sherman et al. (2007) demonstrate that these tracking systems manage to obtain
a precision of 1 mm for position and 1° in orientation within a range of 100 mm,
in that case using a network of 27 scalar magnetometers.

Birsan (2004, 2005); Kozick and Sadler (2007a,b, 2008) have used magnetome-
ters to localize ground vehicles, the latter also fusing magnetometers with acous-
tic sensors.

This contribution presents a general framework for tracking one or several
magnetic objects using a sensor network of magnetometers, extending the theory
in the aforementioned references in several aspects:

1. A general sensor model that relates an object including at least one mag-
netic dipole and a general network of magnetometers, where the model
also includes calibration parameters. Specific models for objects consisting
of a single dipole (enabling 5D pose estimation), a structure of dipoles (for
6D pose), and several separate (structures of) dipoles (allowing multiple
objects to be tracked). This is presented in Section 2. Together with these
sensor models, different orientation representations are considered. They
are described in Section 3.

2. The use of objects that consist of structures of dipoles is supposedly an orig-
inal contribution. Therefore, an observability analysis is presented, based
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on a Taylor expansion of the sensor model. The first term shows the in-
tuitive result that if the object is far away from the sensor network, the
structure will appear as one single dipole, and the orientation around the
symmetry axis of a dipole equivalent will be lost. By a proper definition of
the origin of the object, the symmetry axis can be defined easily. The second
order Taylor term shows an interesting result in that that the sensor model
is bimodal. A 180° flip of the object around the symmetry axis will give the
same Taylor term. This analysis is presented in Section 4 with additional
material in Appendix A.

3. A couple of motion models for temporal filtering. These models explore
different ways to parametrize the orientation, suitable for tracking pose in
5D and 6D, respectively. These motion models are described in Section 5.

4. Section 6 presents performance results when tracking a single and double
dipole, respectively, compared to a reference tracking system. Section 7
briefly describes four applications based on the filtering framework pre-
sented in this paper.

2 Sensor Model

In a statistical signal processing framework, measurements can be described with
a stochastic state-space model

xk+1 = Fkxk + Gkwk , wk ∼ N (0, Q), (1a)

yk = h(xk) + ek , ek ∼ N (0, R), (1b)

where yk is the measurement, xk is the state of the system, wk is the process
noise and ek is the measurement noise, all at time instant kT , T being the sample
period. The process and measurement noises are assumed to be white Gaussian
with wk ∼ N (0, Q) and ek ∼ N (0, R). The motion model (1a) is explained in
Section 5 and the sensor model (1b) is described in this section.

The measurement from a stationary vector-magnetometer ỹk can be decom-
posed into a constant bias term B0 and a time varying term h(xk), where

ỹk = B0 + h(xk) + ek . (2)

The constant bias term is in turn composed of the earth magnetic field, magnetic
distortions due the stationary magnetic environment, and sensor biases. This
bias term can be measured during a calibration phase before any magnetic object
enters the scene to then be subtracted from the measurements. This approach is
advocated in this paper and we therefore only consider the calibrated measure-
ment yk = ỹk − B0 onwards. Optionally, the bias could also be estimated jointly
with the state xk as a part of the filtering.

In this work, the time varying term represents magnetic distortions from mov-
ing objects that consist of permanent magnets. These objects are modeled with
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magnetic dipoles, where each dipole corresponds to a magnet. We present a sin-
gle dipole model in Section 2.1, continue by extending this to a multi-dipole
model in Section 2.2, and finally a multi-object model in Section 2.3. In the
model description, two coordinates systems are considered; (i) the global coor-
dinate system, which is the coordinate system of the stationary sensor network,
and (ii) the local coordinate system, which is the body-fixed coordinate system of
the moving object. For the quantities that are presented in this paper, sl , bl and
U are defined in local coordinates, whereas yk , rk , mk , qk , Rk , θj , vk , ωk and Wk
are given in global coordinates.

2.1 Single Dipole Model

A magnetic dipole produces a magnetic dipole field that can be derived from
Maxwell’s equations. This field decays cubically with the distance to the dipole.
With J magnetometers positioned at {θj }Jj=1, we obtain the following sensor model
for the jth sensor

hj (xk) = J(rk − θj )mk , where J(r) =
1
‖r‖5 (3rrT − ‖r‖2I3), (3)

where mk is the magnetic dipole moment of the magnet, rk = [r(x)
k , r

(y)
k , r

(z)
k ] is

the position in Cartesian coordinates, both given in global coordinates, and xk is
the state of the system.

The magnetic dipole moment mk ∈ R
3 has both a magnitude and a direction.

The magnetic field produced is proportional to the magnitude m = ‖mk‖ and the
orientation of the object is represented by the direction of mk . In the single dipole
model, we use mk as a part of the state vector xk to encode both the orientation
and the strength of the magnet.

Note that this orientation representation only encodes two degrees of freedom
(dof) for the orientation. In fact, only two dof are observable in (3) because the
dipole field is symmetric around mk . By applying an addition rotation around
the dipole moment mk , its direction does not change.

2.2 Multi-Dipole Model

The symmetry present in the single dipole model can be broken by considering
objects with multiple dipoles. Therefore, to obtain all three dof for the ori-
entation, a multi-dipole object is considered. It consists of L magnetic dipole
moments with a predefined and constant geometry. Since magnetic fields from
multiple sources superpose, the sensor model is constructed by adding multiple
dipole fields.

Consider the lth dipole moment to be located at position sl relative to the
center of the object with the direction bl , where ‖bl‖ = 1. Both sl and bl are
provided in local coordinates. See Figure 1 for an example of such a geometry
including two dipoles.
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b1
b2

s1 s2

x

y

z

Figure 1: The geometry of a multi-dipole object with two dipoles. The vec-
tors s1 and s2 describe the position of the two dipole moments, and the vec-
tors b1 and b2 their directions. The two magnets are in this example aligned
perpendicular to each other with the first dipole pointing towards the sec-
ond dipole. This geometry also illustrates the setup that was used in the
experiment in Section 6.2.

Each magnetic dipole moment mk,l can then be expressed with its direction bl ,
its unknown magnitude ml , and a rotation matrix Rk that relates the orientation
of the object relative to the global coordinate frame

mk,l = mlRkbl . (4)

Further, the position of dipole l is given by rk + Rksl , where Rksl is the dis-
placement of dipole l in global coordinates relative to the center of the object.
With all combined, the sensor model is given by

hj (xk) =
L∑

l=1

J(rk + Rksl − θj )mlRkbl , (5)

where rk , Rk and {ml}l=1:L are the unknown components. The parametrization of
Rk is further discussed in Section 3.

2.3 Multi-Object Multi-Dipole Model

The multi-dipole model can be further extended to a model for multiple multi-
dipole objects. As discussed above, the contributions from all objects superpose
and the corresponding sensor model is given by

hj (xk) =
M∑

i=1

L∑

l=1

J(rk,i + Rk,isl,i − θj )ml,iRk,ibl,i , (6)

where rk,i and Rk,i describe the position and the orientation of ith object, respec-
tively.

Note that neither more objects nor extended objects do result in an increased
number of measurements as otherwise common in multiple and extended target
tracking (Koch, 2008). The number of measurements depend on the number of
sensors deployed and not on the number of objects present in the scene. This
makes it significantly more difficult to track multiple objects in comparison to a
single object. For this reason, we only present experimental results for the single
dipole model (3) and the multi-dipole model (5) in Section 6. The multi-object
model is included to provide a general framework.
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3 Orientation Representations

Whereas the position is parametrized with a three-dimensional Cartesian vector
throughout this paper, different parametrizations for the orientation are consid-
ered. In this section, three different orientation representations are introduced
and compared.

3.1 Magnetic Dipole Moment

In the single dipole model (3), the magnetic dipole moment mk encodes both
the orientation and the magnitude of the dipole. This can be described with a
rotation matrix Rk giving

mk = mRkb, (7)

where b, with ‖b‖ = 1, denotes the direction of the dipole in local coordinates.
As already discussed, this orientation representation only encodes two de-

grees of freedom (dof) for the orientation. In the control literature, similar ap-
plications are referred to as pointing applications (Chaturvedi et al., 2011). In
that context, a reduced representation of the rotation matrix can be expressed
using the reduced-attitude vector γ k = Rkb. In our context, γ k , with ‖γ k‖ = 1,
describes the direction of the magnetic dipole vector in global coordinates and
the magnetic dipole moment is expressed as

mk = m · γ k . (8)

Instead of using separate parameters for m and γ k , they can be combined into
one “extended” reduced-attitude vector γ̄ k = m ·γ k ∈ R3. This parametrization is
obviously equivalent of using the parameters in the magnetic dipole vector itself

mk = γ̄ k . (9)

The assumption that ‖mk‖ shall remain constant can be incorporated in the dy-
namical model, see Section 5.2.

3.2 Unit Quaternion

In (4), a rotation matrix was used to describe the full orientation state of the
object. Since all three dof are needed, the approach discussed in the Section 3.1
does not work. We instead use quaternions.

Unit quaternions q ∈ R4, with ‖q‖ = 1, are popular for parametrizing rotation
matrices, see for example Kuipers (1999). This parametrization avoids singulari-
ties otherwise present while using Euler angles. The rotation matrix is given by
Rk = R(qk) , where the elements of R(qk) are quadratic expression in the elements
of q = [q0 q1 q2 q3]T, where

R(q) =




q2
0 + q2

1 − q2
2 + q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2
2q1q2 + 2q0q3 q2

0 − q2
1 + q2

2 − q2
3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 + 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 . (10)
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The sensor model is then given by (5) with Rk = R(qk), where rk , qk , and
{m1}l=1:L are contained in the state xk .

3.3 Extended Quaternion

By further assuming that all magnetic dipoles have the same unknown magni-
tude m, a compact representation of qk and m can be achieved. This assumption
can be relaxed by assuming that the relative magnitudes of the dipoles are known.
These relative magnitudes can then be encoded in the magnitudes of b. Note that
this assumption is not too restrictive since magnets of use are normally of the
same kind. Their relative magnitudes can be measured based on their relative
size (or weight), or assumed to have the same magnitude if they are identical.

With this assumption, (4) can, in a similar manner as for the extended reduced-
attitude vector described in Section 3.1, be rewritten as

mk,l = R(q̄k)bl , where q̄k =
√
mqk . (11)

This defines an extended quaternion q̄k that not only encodes the orientation of
the object, but also the magnitude of the magnetic dipoles. This combined with
the sensor model (5) gives

hj (xk) =
L∑

l=1

J(rk + Rksl − θj )mk,l , where Rk = R

(
q̄k
‖q̄k‖

)
, mk,l = R(q̄k)bl ,

(12)

where rk and q̄k are components of the state xk .
Note that sl needs to be rotated with a proper rotation matrix Rk because the

dipole magnitude that is encoded in q̄k should not effect the term Rksl . Therefore,
a normalization of the extended quaternion q̄k is required in that term.

A similar representation can also be used for the multi-object multi-dipole
model (6) where rk,i and q̄k,i then describe the position and the orientation of the
ith object.

3.4 Discussion and Comparison

Three different orientation representations were proposed in this section:

1. A magnetic dipole vector mk ∈ R
3 that encodes (i) two dof for orientation

and (ii) the magnitude of the magnetic dipole moment. This parametriza-
tion only works for single dipole objects, see Section 3.1.

2. A unit quaternion qk ∈ R
4 with ‖qk‖ = 1 that encodes three dof for orien-

tation. The magnitudes of the magnetic dipole moments are modeled with
separate scalars m1, . . . mL ∈ R. This parametrization works for arbitrary
multi-dipole objects, see Section 3.2.
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3. A (non-unit) quaternion q̄k ∈ R4 that encodes (iii) three dof for orientation
and (iv) the common magnitude m of all magnetic dipole moments. This
parametrization works for single dipole and multi-dipole objects where the
relative magnitudes of the dipole moments are known, see Section 3.3.

For the single dipole model (3), parametrization 1 is preferred because it only
encodes the two dof that are observable in that model. That model is also linear
in mk , which is not the case if parametrization 2 or 3 would have been used. For
the multi-dipole model (5), parametrization 2 or 3 are needed since all three dof
must be encoded.

In filtering applications that use unit quaternions for orientation represen-
tation, the quaternion needs to be normalized after each measurement update
(often in an ad-hoc manner). If we use the third orientation representation, that
normalization step can be omitted. This is because the norm of the quaternion
contains information (the magnitude of the dipoles) that should be preserved.
Therefore, if the relative magnitudes of the dipole moments are known, para-
metrization 3 is preferred since (i) no normalization step is required and (ii) less
states are needed.

Finally, note that all three parametrizations have in common that they do not
contain any singularities. In addition, mk , qk , and q̄k all have in common that
their magnitudes should remain constant. This information is encoded in the
motion models presented in Section 5.

4 Analysis

The proposed possibility to use structures of dipoles opens up applications where
full 6D tracking is possible. It is therefore important to understand the degree of
observability of the sixth degree of freedom.

The observability of the single dipole model (3) has previously been discussed
in Wahlström and Gustafsson (2014) with the conclusion that at least two three-
axis magnetometers are required to obtain observability for both the position and
the two-dimensional orientation.

To analyze the observability of the multi-dipole model (5), we do a Taylor
series expansion of the multi-dipole model (5) where we obtain

L∑

l=1

J(rk + Rksl)Rkbl ≈ J(rk)mk︸   ︷︷   ︸
(13a)

+
3
‖rk‖5


Wk −




5rTkWkrk
2‖rk‖2

+ γ


 I


rk

︸                                     ︷︷                                     ︸
(13b)

, (13)

where

mk = Rkb, Wk = RkUR
T
k ,b =

L∑

l=1

bl , U =
L∑

l=1

slb
T
l + bls

T
l , γ =

L∑

l=1

(bT
l sl). (14)

The details are outlined in Appendix A. Based on this expansion, multiple prop-
erties of the multi-dipole model can be analyzed and explained.
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The first term (13a) in the Taylor expansion is identical to the single dipole
model (3), where the total dipole moment is the sum of all moments
mk =

∑L
l=1 mk,l . On a distance far away from the object, this term dominates

and the object appears as one single dipole. As for the single dipole model, only
2 dof for the orientation are encoded in (13a). A rotation of the object around the
magnetic dipole moment mk is not observable.

The orientation around mk is instead encoded in the higher order terms. Whereas
the dipole term decays cubically ‖rk‖−3 with distance ‖rk‖, the first higher order
term (13b) decays to the power of four ‖rk‖−4. Therefore, the ability to estimate
the orientation around mk decays faster with the distance ‖rk‖ than the ability to
estimate the remaining part of the orientation state.

Further, according to Appendix A, the second term (13a) remains unchanged
for any additional 180◦ rotation around mk . Consequently, the last orientation
state is not only more difficult to estimate, it is even more difficult to distinguish
its true orientation from an orientation rotated 180◦. This results in a bimodal-
ity of the corresponding likelihood. Higher order terms in the Taylor expansion
may resolve this ambiguity, which has been found to be the case in our experi-
ments. However, the information of this ambiguity decays to the power of five
with distance.

As one particular illustration, Figure 2 shows the negative log likelihood (nll)

− log p(yk |xk) ∝ 1/2(yk − h(xk))
TR−1(yk − h(xk))

for a certain time instant k. The global minimum of the nll is denoted with x∗k .
Starting from that minimum, the angle β, corresponding to rotation around the
vector mk , is adjusted and the nll, − log p(yk |x∗k(β)), is evaluated as a function of
that angle. As a comparison, the same procedure is performed for the other two
angles corresponding to rotations around the two axis orthogonal to mk .

As shown Figure 2, the likelihood exhibits a clear bimodality for the angle β,
with two minima approximately 180◦ apart. This is in accordance with the theo-
retical analysis presented above and in Appendix A. In addition, the variations
of the nll is smaller when β is varied compared to the other two angles α1 and
α2. This is also supported by the theoretical analysis in that rotation around β is
harder to estimate than rotations around the other to axis orthogonal to mk .

5 Motion Model

The motion model (1a) describes the dynamics of the state xk . It is described with
a linear state-space model

xk+1 = Fkxk + Gkwk , wk ∼ N (0, Q), (15)

as commonly performed in target tracking applications. The state xk is divided
into position state xpos

k and orientation state xori
k . The position state includes po-

sition and velocity xpos
k =

[
rTk , vT

k

]T
, whereas the orientation state includes orien-

tation and angular velocity ωk denoted by xori
k =

[
mT
k , ωT

k

]T
or xori

k =
[
q̄T
k , ωT

k

]T
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Figure 2: Negative log likelihood (nll) − log p(yk |x∗k) as a function of the
three angles β, α1 and α2. The graph marked with squares is the nll as a
function of the angle β around the magnetic dipole moment mk . The two
angles α1 and α2 are rotations around the other two axis v1, v2 orthogonal to
mk , in the graph marked with circles. The angles β = 0, α1 = 0, and α2 = 0
correspond to the global minimum of the nll. From this global minimum,
one angle is adjusted at a time.

depending on which of the two orientation representations that we use. The state-
space is decomposed in a similar manner where

xk =
[
xpos
k

xori
k

]
, Fk =

[
Fpos 03
03 Fori

k

]
, G =

[
Gpos 03
03 Gori

k

]
, Q =

[
Qpos 03
03 Qori

]
, wk =

[
wpos
k

wori
k

]
.

We describe the motion model for xpos in Section 5.1, and the motion model
for the two representations of the orientation state in Section 5.2 and 5.3. We use
a constant velocity model for both position and orientation that we derive from
the continuous-time model.

5.1 Position State

To derive constant velocity motion model for the position, we model the velocity
v to be a Brownian motion. This can formally be written as

d
dt

v(t) = wpos(t), (16)

where w(t) is white Gaussian noise.1 Together with d
dt r(t) = v(t) this gives the

joint model

d
dt

[
r(t)
v(t)

]
=

[
03 I3
03 03

] [
r(t)
v(t)

]
+

[
03
I3

]
w(t), E[w(t)w(τ)T] = σ2

posI3δ(t − τ), (17)

1Note that white continuous-time Gaussian noise does not exist in practice, for example, because
it has infinite energy. However, we can still think of it as a w as being driven by white noise. See
Jazwinski (1970) for further details.
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where v(t) is the velocity provided in global coordinates. This model can be de-
rived from Newton’s second law of motion, where the acceleration is interpreted
as process noise, see for example Li and Jilkov (2003) for more details. By follow-
ing Jazwinski (1970), we can derive a discrete-time constant velocity model for
the position

xpos
k+1 = Fposxpos

k + Gposwpos
k , wpos

k ∼ N (0, Qpos), (18)

where

Fpos =
[
I3 T I3
03 I3

]
, Gpos =

[
T I3 03
03 I3

]
, Qpos =

σ2
pos

T

[
1
3 I3

1
2 I3

1
2 I3 I3

]
.

The derivation is also provided in, for example, Grewal and Andrews (2008).

5.2 Orientation State (Magnetic Dipole Moment)

In the first orientation representation (see Section 3.1), the orientation is encoded
by the magnetic dipole moment m. To derive the motion model for m, we con-
sider its angular velocity ω provided in global coordinates. A vector m that ro-
tates around an axis ω/‖ω‖ with the angular speed ‖ω‖ obeys the following rela-
tion

d
dt

m(t) = ω(t) ×m(t) (19a)

= −C(ω(t))m(t) = C(m(t))ω(t), (19b)

where × denotes the cross product and where

C(m) =




0 mz −my
−mz 0 mx
my −mx 0


 . (20)

In the same manner as in the previous section, we model the angular velocity
ω to be a Brownian motion

d
dt
ω(t) = w(t), (21)

where w(t) is white Gaussian noise. This gives the joint model

d
dt

[
m(t)
ω(t)

]
=

[
03 C(m(t))
03 03

] [
m(t)
ω(t)

]
+

[
03
I3

]
w(t), E[w(t)w(τ)T] = σ2

oriδ(t − τ). (22)

We assume C(m(t)) to be equal to C(m(tk)) in the interval t ∈ [tk , tk+1]. The
discrete-time version of this constant velocity model for the orientation is then in
the form

xori
k+1 = Fori

k xori
k + Gori

k wori
k , wori

k ∼ N (0, Qori), (23)
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where

xori
k =

[
mk
ωk

]
, Fori

k =
[
I3 T C(mk)
03 I3

]
, (24)

Gori
k =

[
T 2C(mk) 03

03 T I3

]
, Qori =

σ2
ori
T

[
1
3 I3

1
2 I3

1
2 I3 I3

]
.

5.3 Orientation State (Quaternion)

In the second and third orientation representation (see Section 3.2 and 3.3), the
orientation is encoded by the unit quaternion qk and the extended quaternion
q̄k , respectively. The motion model for each of them is equivalent, so only q̄k is
considered onwards. Its dynamics has a similar expression as in (19) with

d
dt

q̄(t) =
1
2
ω(t) � q̄(t) (25a)

=
1
2
S(ω(t))q̄(t) =

1
2
S̄(q̄(t))ω(t), (25b)

where the cross product in (19) is replaced with the quaternion product �, and
where S(ω) and S̄(q̄) are defined as

S(ω) =




0 −ωx −ωy −ωz
ωx 0 −ωz ωy
ωy ωz 0 −ωx
ωz −ωy ωx 0



, S̄(q̄) =




−q̄1 −q̄2 −q̄3
q̄0 q̄3 −q̄2
−q̄3 q̄0 q̄1
q̄2 −q̄1 q̄0



.

As in (21), the angular velocity ω is modeled to be driven by white Gaussian noise.
This gives a similar expression of the joint model as in (22), where

d
dt

[
q(t)
ω(t)

]
=

[
04×4

1
2 S̄(q̄(t))

03×4 03×3

] [
q̄(t)
ω(t)

]
+

[
04×3
I3

]
w(t), E[w(t)w(τ)T] = σ2

oriI3δ(t − τ).

By approximating S̄(q̄(t)) to be equal to S̄(q̄(tk)) in the interval t ∈ [tk , tk+1], we
obtain a discrete-time model in the form (23), for which we have

xori
k =

[
q̄k
ωk

]
, Fori

k =
[
I4

T
2 S̄(q̄k)

03×4 I3

]
, (26a)

Gori
k =

[
T 2

2 S̄(q̄k) 03×4
04×3 T I3

]
, Qori =

σ2
ori
T

[
1
3 I3

1
2 I3

1
2 I3 I3

]
. (26b)

5.4 Discussion

The motion models for the two orientation representations are in fact very similar.
Essentially, the cross product in (19) is replaced with a quaternion product in (25).
It should also be noted that the angular velocity ω in this section is provided in
global coordinates. To obtain the dynamics of the angular velocity ω in local
coordinates, the quaternion multiplication in (25) has to be swapped. However,
a similar reformulation does not exist for the angular velocity in (19). This states
an important difference between the two models.
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5.5 Extended Kalman Filter

Based on the state-space model derived in the previous sections, the filtering
problem can be solved using an extended Kalman filter (ekf). Given an initial
state x0 and an initial state covariance P0, the filtering can be performed following
Algorithm 1.

Algorithm 1 Extended Kalman filter with addition projection step
Initialize the estimate x̂0|−1 = x0 and P0|−1 = P0.
for k = 0 to N − 1 do

1. Perform measurement update by computing

ŷk|k−1 = h(x̂k|k−1), (27a)

Hk =
d
dxk

h(x̂k|k−1), (27b)

Sk = HkPk|k−1H
T
k + R, (27c)

Kk = Pk|k−1H
T
k S
−1
k|k−1, (27d)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1), (27e)

Pk|k = (I − KkHk)Pk|k−1. (27f)

2. Project the estimate onto the tracking volume

x̂proj
k|k = ΠC(xk|k). (28)

Further, if xk|k < C then set the velocities vk|k = 0 and ωk|k = 0 to zero

3. Perform time update by computing

x̂k+1|k = Fk x̂proj
k|k , (29a)

Pk+1|k = FkPk|kFTk + Qk . (29b)

end for

If the estimated position r̂k|k is far away from the sensor network, both h(x̂k|k)
and it derivative d

dxk
h(x̂k|k) will be small, which in turn results in an uninforma-

tive measurement update xk|k = xk|k−1. This eventually leads to divergence of
the filter. To prevent this, an additional projection step is included, see Step 2.
This step is not included in the standard ekf, but makes this specific application
more robust. By projected the filtered state xk|k onto a set of the state-space in
which the state should be contained under normal operation, this divergence can
be prevented.

In this case, the set C corresponds to a virtual box above the sensor network
with the dimensions 1.2 m × 1.2 m × 0.6 m. Any estimated position r̂k|k that is



82 Paper A Tracking Pose of Magnetic Objects Using Magnetometer Networks

(a) The sensor platform (b) The object platform

Figure 3: The sensor and object platform with Vicon markers. The sensor
platform has four three-axis magnetometers mounted in the corners of an
rectangle. The object platform consist of two magnets (encapsulated in the
two Lego blocks) aligned in orthogonal directions. That object platform was
only used in the multi-dipole experiment. Photo: Martin Stenmarck (2015).

outside this region is projected back onto this box. In addition, if any projec-
tion is needed, the velocities vk|k and ωk|k are set to zero. We also consider a
maximum value mmax of the magnetic dipole moment. This gives the restriction
‖m̂k|k‖ ≤ mmax or ‖ ˆ̄qk|k‖ ≤

√
mmax depending on which of the two orientation

representations that are used.

6 Real Data Experiments

To validate the proposed models, real data experiments were conducted. A net-
work that consists of four magnetometers (3-Axis Digital Compass IC, HMC5983,
Honeywell) was designed with a sampling frequency of 220 Hz. The sensors were
deployed in the corners of a rectangle with the dimension 30 cm × 17.5 cm. The
sensor platform is shown in Figure 3a. With this sensor platform, experiments
were conducted to validate both the single dipole model (3), and the multi-dipole
model (5). To obtain ground truth data, an optical motion capture system (Vi-
con)2 was used.

6.1 Single Dipole Experiment

The single dipole object consisted of two neodymium magnets mounted placed
upon each other, both with a diameter of 12 mm and a height of 6 mm. Markers
to be detected by the Vicon-system were attached to the object platform on which
the magnets were attached, as well as to the sensor network.

2High accuracy reference measurements are provided through the use of the Vicon real-time track-
ing system courtesy of the UAS Technologies Lab, Artificial Intelligence and Integrated Computer
Systems Division (AIICS) at the Department of Computer and Information Science (IDA), Linköping
University, Sweden. http://www.ida.liu.se/divisions/aiics/aiicssite/index.en.
shtml
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Figure 4: Experiment with a single dipole object for tracking 5 dof pose (3
dof for position and 2 dof for orientation). The estimates are displayed in
colored, marked, thick line and the ground truth in thin unmarked black
lines. Blue circle: x-coordinate/angle, red square: y-coordinate/angle, green
cross: z-coordinate.

During the experiments, the object platform was moved approximately 20 cm
above the magnetometer network in different directions close to the magnetome-
ter network.

For processing the data, the single dipole model (3) was used together with the
orientation representation described in Section 3.1. A constant velocity motion
model was used for the position, see Section 5.1, as well as for the orientation, see
Section 5.2. The process noise was set to σpos =0.1 m s−2 for the acceleration and
σori =1 rad s−2 for the angular acceleration. The covariance of the measurement
noise was estimated using stationary data without any object.

In Figure 4a, all three Cartesian components of the estimated position are dis-
played together with the ground truth measured by the Vicon system. Note that
the single dipole model is only able to estimate two dof for orientation. These
two dof can be compared with the corresponding two dof provided by the Vicon
system. This is displayed in Figure 4b.

In all essence, both the full 3D position and 2D orientation are tracked with
high accuracy. By comparing the estimated pose with the ground truth pose, the
estimation performance for both the position and orientation can be computed.

In Table 1, the performance is presented in terms of root-mean-square error
(rmse), which has been divided into variance and bias contribution; see Ap-
pendix B for how these quantities have been computed. The orientation error
was computed according to (53a). According to that table, the sensor network
can estimate position with a five millimeter accuracy in position and two of de-
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Table 1: Single dipole experiment: rmse, bias and variance for position and
orientation

Quantity rmse Bias
√

Var

Position 4.95 mm 4.90 mm 0.61 mm
Orientation 1.85◦ 1.82◦ 0.26◦

grees accuracy in orientation. In these errors, the bias is clearly the dominating
contribution.

6.2 Multi-Dipole Experiment

To acquire full position and orientation information, a multi-dipole object was
constructed. Two neodymium magnets, each with a diameter of 12 mm and a
height of 6 mm, were deployed perpendicularly on a distance 6.7 mm from each
other, see Figure 1 for an illustration of this geometry. Figure 3b shows the object
platform used in the experiment.

Three experiments were performed, each lasting approximately 100 s. For
processing the data, the multi-dipole model was used, see Section 2.2. Since the
two magnets were of the same size, their magnitudes were assumed to be equal.
Therefore, the extended quaternion q̄k , see Section 3.3, was used to model the
orientation and the unknown magnitude together with the quaternion motion
model presented in Section 5.3. The same tuning parameters as in the single
dipole experiment was used. For the first experiment, the results for both posi-
tion and orientation are presented in Figure 5. Only a fraction of the time span
is presented to make the plots readable. According to these plots, good tracking
performance was achieved for all dimensions in both position and orientation. In

Table 2: Multiple dipole experiment: rmse, bias and variance for position,
full orientation and 2D orientation.

Quantity rmse Bias
√

Var

Position 11.89 mm 11.80 mm 1.14 mm
3D Orientation 8.80◦ 8.77◦ 0.58◦
2D Orientation 4.97◦ 4.95◦ 0.37◦

Table 2, the performance is computed in terms of rmse, bias and variance in a
similar manner as for Table 1. The orientation error was computed according to
(53b) in Appendix B. In comparison with the single dipole model, the estimation
performance was twice as bad for position, and four times as bad for orientation
in comparison with the single dipole experiment in Table 1. The degraded perfor-
mance is not surprising because an additional state is estimated in comparison to
the previous model.
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Figure 5: Experiment with a multi-dipole object for tracking the full position
and orientation state (3 dof for position and 3 dof for orientation). The
estimates is displayed in colored, marked, thick line and the ground truth
in thin unmarked black lines. Blue circle: x-coordinate/angle, red square:
y-coordinate/angle, green cross: z-coordinate/angle.
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Figure 6: Orientation error for experiment 1 and 2 with and without filter
banks. Red: full 3D orientation error (53b), blue: 2D orientation error (53c).
(a): Experiment 1. (b): Experiment 2. (c): Experiment 2 using filter banks.

As discussed in Section 4, the nll − log p(yk |xk) is less sensitive to rotations
around the dipole moment mk than around any of the other two axis of rotation.
This means that the additional dof for orientation, acquired by extending the
single dipole model to a multi-dipole model, is harder to estimate than the re-
maining two dof. To analyze this, the orientation error for the renaming two dof
are computed according to (53c). Both the 2D and the 3D orientation errors are
presented in Table 2 and in Figure 6a. According to Table 2, the 3D orientation
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error is almost twice as bad in comparison to the 2D orientation error.
A second experiment with the same experimental setup was also conducted.

The orientation errors for that data set is presented in Figure 6b. As shown in that
figure, the 2D orientation error is estimated correctly with a fairly low error (red
curve). However, starting at time 40 s, the full orientation error switches between
the true and a false mode being approximately 180◦ apart. This can be addressed
to the bimodal likelihood discussed in Section 4.

To circumvent this problem, a filter bank consisting of two Extended Kalman
filters was considered where each of them was restricted to be within each of the
two modes. See for example (Gustafsson, 2012, Chapater 10) for reference on
Kalman filter banks. By evaluating the posterior of the two modes, the correct
model could be selected. This strategy was tested on the same data set as dis-
played in Figure 6b and the result is presented in Figure 6c. According to that
figure, the performance increases, however, the correct mode can still not always
be resolved. A more reliable way to resolve this ambiguity is a subject for further
research.

7 Applications

The magnetic localization technique described in this paper has multiple advan-
tages in comparison to other localization techniques, for example, it (i) only in-
cludes low-cost components, (ii) does not require line-of-sight, and (ii) has a high
accuracy in estimating both position and orientation. To show the applicability
of the technique, four different demonstrators have been realized.

7.1 Virtual Watercolors

Museums and science centers have a high need for technology enabling interac-
tive exhibits that encourage visitors to experiment and explore. In exhibits where
spatial information is important, a localization system is required. These systems
need to be intuitive for the visitors to control and interact with. In this context,
the magnetic localization technique was used in an exhibition case mimicking
water color painting, see Figure 7a. The user interacts using a regular painting
brush equipped with a permanent magnet and the painting is displayed on a
screen.

7.2 Interactive 3D Modeling

The hand-held device is also suitable for interaction and manipulation of three-
dimensional virtual objects. The hand-held device equipped with a magnet can
be used to pull, push and smoothen textures of an object, as well as moving and
turning it, see Figure 7b. Both the virtual object and the virtual device can be
observed through a head-mounted display making the interaction intuitive and
realistic.
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(a) (b) (c) (d)

Figure 7: Applications realized with the proposed technology. (a) Digi-
tal watercolors. Photo: Anders Ynnerman (2012), (b) Digital watercolors.
Photo: Olle Grahn and Isabelle Forsman (2015), (c) Digital pathology. Photo:
Linkin AB (2014), (d) Digital table hockey game. Photo: Martin Stenmarck
(2015).

7.3 Digital Pathology

The magnetic localization technique has been used to improve the workstation
that pathologists use when examining tissues. By mounting a magnet in a scalpel,
see Figure 7c, a digital record can be constructed of the actions that have been
performed. This saves time and also removes manual non-ergonomic activities.

7.4 Digital Table Hockey Game

By mounting a magnet in a puck for a table hockey game, the puck can be local-
ized in real time, and meta information can be extracted, e.g., number of goals,
see Figure 7d.

8 Conclusion and Future Work

In this paper, a framework for estimating the position and orientation of objects
consisting of one or more magnetic dipoles was presented. The problem was
cast into a statistical filtering problem, including both sensor models and mo-
tion models. The sensor models include (i) a point object model (one dipole),
(ii) an extended object model (multi-dipole object) and (iii) multiple extended
objects (multiple multi-dipole objects). Due to rotational symmetry, the point
object model can only provide five degrees of freedom for position and orienta-
tion. Except for special geometries, this symmetry is not present in the extended
object model, where all six degrees of freedom can be resolved. An analysis was
provided showing that the sixth degree of freedom is weakly observable and bi-
modal. The models were validated on real data with a high-accuracy optical refer-
ence system. With a sensor network of four three-axis magnetometers, a tracking
performance of 5 mm and 2° for model (i) and 12 mm and 9° for model (ii) was
achieved. The vast majority of these errors consist of bias.
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Future work should focus on dedicated calibration routines for magnetometer
networks. These routines may calibrate for position, orientation, bias, gain, and
skewness of the magnetometers, as well as the parameters for the mutli-dipole
geometry. With a well calibrated sensor network, the bias contribution of the
tracking performance could be significantly reduced. This would also facilitate
resolving the ambiguity present in the multi-dipole object (ii).

Appendix

A Supplementary Details for Section 4

In this appendix, we investigate ambiguities for determining the orientation of
the multi-dipole object. We consider the sensor model (5) in the form

f(ε, Rk) =
L∑

l=1

J(r + εRksl)Rkbl , (30)

where only one sensor (with position θ = 0) is considered to make the notation
easier. In this appendix, the index k = {1, 2} denotes two different instances of
rotations that will compared. Further, without loss of generality we also assume
‖q̄k‖ = 1 and denote Rk = R(q̄k/‖q̄k‖). The parameter ε determines the size of the
multi-dipole object.

We want to analyze the properties of (30) when the object is far away from
the sensor, or equivalently, if the object size is small, this means when ε→ 0. We
perform this analysis with a Taylor expansion of (30) around ε = 0. By keeping
the first two terms, we obtain

f(ε, Rk) =
∞∑

n=0

1
n!
∂n

∂εn
f(ε, Rk)

∣∣∣∣
ε=0
εn = f(0, Rk) +

∂
∂ε

f(ε, Rk)
∣∣∣∣
ε=0
ε + O(ε2) (31a)

= A(Rk)︸︷︷︸
1st term

+ B(Rk)︸︷︷︸
2nd term

ε + O(ε2). (31b)

The term A(Rk) decays as ‖r‖−3 and B(R) as ‖r‖−4 with distance ‖r‖. Higher
order terms decay as ‖r‖−5 or more. Therefore, if the object is far away from the
sensors, these two terms will dominate.

We introduce two rotation matrices R1 and R2 with

R2 = R̃R1, (32)

where R̃ is the rotation difference between R1 and R2. We now derive conditions
on the rotation difference R̃ such that A(R1) = A(R2) and B(R1) = B(R2). More
precisely, in the two following subsection we derive that

1. A(R1) = A(R2) for all r ∈ R3 when R̃m1 = m1, where m1 = R1
∑L
l=1 bl .
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2. A(R1) = A(R2) and B(R1) = B(R2) for all r ∈ R3 when R̃m1 = m1 and R̃R̃ = I ,
i.e., a 180° rotation around m1.

This means that any rotation 180° around m1 affects neither the first term, nor
the second term in the Taylor expansion (31). This results in a bimodal likelihood
where the difference between these two modes only relies on even higher order
terms in the Taylor expansion.

A.1 First Term A(Rk)

The first term in the Taylor expansion (31) is equal to the corresponding single
dipole model

A(Rk) =
L∑

l=1

J(r)Rkbl = J(r)Rkb = J(r)mk , (33)

where

mk = Rkb, and b =
L∑

l=1

bl . (34)

As for the single dipole model, only two out of three dof for orientation are ob-
servable. We perform this analysis by considering the difference A(R2) − A(R1).
If this expression is zero for some certain choice of rotation difference R̃, the two
orientations R1 and R2 cannot be resolved based on this term.

Theorem 1. Consider the single dipole term (33). Then

A(R1) = A(R2) ∀r ∈ R3 (35a)

if and only if

R̃m1 = m1, where m1 = R1

L∑

l=1

bl (35b)

and where R̃ is given by (32).

Proof: Consider

A(R2) − A(R1) = J(r)R̃R1b − J(r)R1b = J(r)(R̃m1 −m1), (36)

which is equal to zero for all r if and only if

R̃m1 = m1. (37)

Consequently, if the object is far away from the sensor, the dipole term will
dominate and the third dof for the orientation (the one that corresponds to rota-
tion around m1) will be the hardest one to estimate.
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A.2 Second Term B(Rk)

The second term of the Taylor expansion (31) can be expressed as

B(Rk) =
L∑

l=1

∂J(r)Rkbl
∂r

Rksl

=
L∑

l=1

3
‖r‖5


(bT

l R
T
kr)I + rbT

l R
T
k + Rkblr

T − 5
rrT

rTr
(bT
l R

T
kr)


Rksl

=
L∑

l=1

3
‖r‖5


Rkslb

T
l R

T
k+(bT

l sl)I+Rkbls
T
l R

T
k−

5rT(Rkslb
T
l R

T
k + RkblsTl R

T
k )r

2‖r‖2 I


r

=
3
‖r‖5


Wk − 5rTWkr

2‖r‖2 I +
L∑

l=1

(bT
l sl)I


r, (38)

where

Wk = RkUR
T
k , with U =

L∑

l=1

slb
T
l + bls

T
l . (39)

We want to analyze under which conditions B(R2) = B(R1). The analysis is
performed in the same manner as for the single dipole term by considering the
difference

B(R2) − B(R1) =
3
‖r‖5



(
R̃W1R̃

T −W1

)
−

5rT
(
R̃W1R̃

T −W1

)
r

2‖r‖2 I


r. (40)

One can easily conclude that (40) is equal to zero for all r ∈ R3 if and only if

R̃W1R̃
T −W1 = 0. (41)

Before deriving the condition on W1 and R̃ for this equality to hold, the center of
the object needs to be defined.

The position of each dipole is described (in local coordinates) as a displace-
ment sl relative to the center of the object. Obviously, this center is not unique.
We assume the center of the object has been selected such that



L∑

l=1

slb
T
l + bls

T
l




︸               ︷︷               ︸
=U

L∑

l=1

bl

︸︷︷︸
=b

= 0. (42)

If this property does not hold for the selected center of the object, a new center
can be defined using the following translation

snew
l = sl − ∆s, where ∆s =

1

bTb

(
I − bbT

2bTb

)
Ub. (43)
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By using snew
l in (42), that property is indeed fulfilled. Note that Wk has also

an eigenvalue 0 with the eigenvector mk since Wkmk = RkUR
T
kmk = RkUb = 0.

With this definition of the center of the object, the following theorem provides
the condition for (40) to be equal to zero.

Lemma 1. Consider a symmetric matrix W = W T ∈ R
3×3 and a rotation matrix

R̃ ∈ SO(3). Also assume that they have a common eigenvector m with

Wm = 0, R̃m = m. (44a)

Then

R̃W R̃T −W = 0 (44b)

if and only if R̃R̃ = I or λ1 = λ2, where λ1 and λ2 are the two non-zero eigenval-
ues of W .

Proof: Since W is symmetric, it can be written

W = QDQT, (45)

where Q is orthogonal and det(Q) = 1. Since Wm = 0, one of the diagonal compo-
nents in D is zero. We can without loss of generality order the eigenvalues such
that D = diag(λ1, λ2, 0). Since both W and R̃ share the same eigenvector m with
eigenvalue 0 and 1, respectively, we have that

QTWQ =



λ1 0 0
0 λ2 0
0 0 0


 , QTR̃Q =



c(θ) −s(θ) 0
s(θ) c(θ) 0

0 0 1


 ,

where θ corresponds to the rotation angle around m and c(θ) = cos(θ), s(θ) =
sin(θ). By applying QT from the left and Q from the right on (44b), we obtain

QTR̃W R̃TQ − QTWQ = QTR̃QDQTR̃TQ − D

=



c(θ) −s(θ) 0
s(θ) c(θ) 0

0 0 1






λ1 0 0
0 λ2 0
0 0 0







c(θ) s(θ) 0
−s(θ) c(θ) 0

0 0 1


 −



λ1 0 0
0 λ2 0
0 0 0




= (λ1 − λ2)s(θ)



−s(θ) c(θ) 0
c(θ) s(θ) 0

0 0 0


 . (46)

This expression is equal to zero if and only if λ1 = λ2 or θ = nπ, where n ∈ Z,
which implies that R̃ = R̃T.

The conclusion is now formalized in the following theorem.

Theorem 2. Consider the single dipole term (33) and the higher order term (38).
Further, assume that the center of the object has been defined such that (42) is
fulfilled. Then

A(R1) = A(R2) and B(R1) = B(R2) ∀r ∈ R3 (47)
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if and only if

R̃m1 = m1 and R̃ = R̃T, (48)

or

R̃m1 = m1 and λ1 = λ2, (49)

where , m1 = R1
∑L
l=1 bl is given by (34), R̃ is given by (32), and λ1 and λ2 are

eigenvalues of U defined in (39).

Proof: From Lemma 1, we know that A(R1) = A(R2) ∀r ∈ R
3 is fulfilled if and

only if R̃m1 = m1. For the second equality, we have

B(R2) − B(R1) =
3
‖r‖5

(
V − 5rTV r

2‖r‖2 I
)

r, (50)

with

V = R̃W1R̃
T −W1, (51)

where W1 is given by (39). Further, since Ub = 0, we have that
W1m1 = R1UR

T
1m1 = R1Ub = 0. According to Lemma 1, equation (51) is ful-

filled if and only if R̃R̃ = I or λ1 = λ2, where λ1 and λ2 are the two non-zero
eigenvalues of W1. Finally we notice that W1 = R1UR

T
1 has the same eigenvalues

as U , since R1 is orthogonal. Consequently, λ1 and λ2 are also eigenvalues of U .
This completes the proof.

Remark 1. The condition λ1 = λ2 provides a condition on the dipole geometry encoded
in U (39). The geometry should consequently not be chosen such that λ1 = λ2. Instead, it
should preferably be chosen such that these two eigenvalues are as separated as possible.

B Performance measures

This appendix gives details about the performance measure that was used in the
result section.

With the estimated position r̂k and the ground truth position r0
k , the estima-

tion error was computed as

ε
pos
k = r̂k − r0

k . (52)

The orientation error was computed differently depending on the sensor model.
For the single dipole model (3), the orientation error was computed as the angle
between the true and estimated direction of the dipole moment

εori
k = arccos




m̂T
k|kR(q0

k)b

‖m̂k|k‖‖b‖


 , (53a)
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where q0
k is the quaternion describing the true orientation. This orientation error

was used in Section 6.1.
For the multi-dipole model, the full orientation error was computed as the

shortest angle between the estimated and true quaternion as

εori,3D
k = 2 arccos



| ˆ̄qT
k|kq0

k |
‖ ˆ̄qk|k‖‖q0

k‖


 . (53b)

For the multi-dipole model, the 2D orientation error was computed in the same
manner as for the single dipole case as the angle between the true and estimated
direction of the dipole moment vector

εori,2D
k = arccos





R




ˆ̄qk|k
‖ ˆ̄qk|k‖


 b



T

R(q0
k)b


 . (53c)

The error (53b) and (53c) were used in Section 6.2.
For each of these errors, the corresponding root-mean-square error was com-

puted as

rmse =

√√√
1
N

N∑

k=1

‖εk‖2. (54)

This quantity can be decomposed in a bias and a variance part. A 4th order
Butterworth-filter with the cutoff frequency fc = 10 Hz was used to separate the
error in a low and high frequency part

εk = εlow
k + εhigh

k (55)

and the variance and bias contributions to rmse can be defined as

√
variance =

√√√
1
N

N∑

k=1

1
1 − 2T fc

‖εhigh
k ‖2, (56a)

bias =

√√√
1
N

N∑

k=1

‖εk‖2 − 1
1 − 2T fc

‖εhigh
k ‖2. (56b)
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Abstract

Traffic monitoring using low-cost 2-axis magnetometers is considered.
Though detection of metallic vehicles is rather easy, detecting the driv-
ing direction is more challenging. We propose a simple algorithm
based on a nonlinear transformation of the measurements, which is
simple to implement in embedded hardware. A theoretical justifica-
tion is provided, and the statistical properties of the test statistic are
presented in closed form. The method is compared to the standard
likelihood ratio test on both simulated data and real data from field
tests, where very high detection rates are reported, despite the pres-
ence of sensor saturation, measurement noise and near-field effects of
the magnetic field.

1 Introduction

Traffic counting along particular roads is done either manually or electronically
for the purpose of road improvement in the long term or re-routing traffic on
the shorter time scale. The electronic devices used today include piezo-electric
sensors or inductive loops under the road surface or pneumatic tubes on the road
surface. Newer developments include radar, infrared light beams or cameras. For
collecting road statistics, pneumatic tubes are today the most common solution.
Recently the safety aspect of workers deploying the tubes has been in focus Wood
et al. (2011). Another drawback of this solution is the short life-length of the
tubes, which can be as short as 48 hours (Federal Highway Administration, 2013).

Magnetometers deployed along the road-side or hidden in the lane markers is
a promising alternative, since they are cheap and small (Klein et al., 2006). Com-
pared to pneumatic tubes, solutions using magnetometers have a longer lifetime
since they are not subject to the same amount of wear and do not expose per-
sonnel to traffic when mounting and dismounting, hence improving workplace
safety.

The magnetometer is preferably part of a wireless sensor network (wsn), where
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sensor data from several magnetometers are transmitted to nearby nodes for a
centralized or decentralized implementation of detection and classification algo-
rithms (Birk et al., 2009; Cheung and Varaiya, 2007; Chinrungrueng et al., 2010).
However, such sensor nodes also bring certain challenges. Generally, the energy
budget is limited as the units are powered by batteries and/or solar panels (Gir-
ban and Popa, 2010). Furthermore, computational resources are scarce for rea-
sons such as power saving (e.g. duty-cycling of the computations or low-power
processors) or sharing of the microcontroller between different tasks (measuring,
computing, communication, etc.), see, for example, Giannecchini et al. (2004)
or Yu and Prasanna (2005). Thus, it is very important that the computation
time for each task is reduced to a minimum, which emphasizes the need for low-
complexity data processing algorithms.

One of the quantities of interest for road administrations, urban planners, or
traffic management centers is traffic flow and, associated with that, the driving
direction. Consider, for example, a single sensor monitoring a two-way two-lane
highway. In order to be able to quantify the traffic volume on the individual
lanes, the driving direction is crucial or, if one sensor for each lane is used, one
would like to exclude vehicles on the farther lane. Thus, the traffic volume that
is normally measured by a simple detector can be analyzed more thoroughly and
better conclusions for future measures such as road planning can be drawn. In
a similar setting, the driving direction can be used for detecting vehicles driving
in the wrong lane, for example while overtaking. This information in turn can be
used in order to warn upcoming traffic about a possible hazard in a cooperative
collision warning system (Hegeman et al., 2009). A third application where the
driving direction is of utmost importance is the detection of wrong-way drivers.
Wrong-way drivers are a very hazardous threat to other road users and can cause
serious accidents (Moler, 2002). Particularly on freeways, wrong-way drivers can
cause serious head-on collisions and in 2010, wrong-way drivers accounted for
3.1 % of fatal crashes in the USA, causing 1,356 fatalities (National Highway Traf-
fic Safety Administration, 2010). Thus, a system for detecting this kind of driv-
ing behavior can be of much help for authorities to detect vehicles driving in the
wrong direction early on and warning other road users about the threat.

There are a number of different methods using various types of sensors for es-
timating the driving direction of a vehicle available today. One straight-forward
approach is to use imaging sensors such as cameras or infrared laserscanners for
tracking vehicles (Zhang and Forshaw, 1997; Goyat et al., 2006). Such sensors can
provide very rich information and the driving direction of vehicles can be deter-
mined based on the estimated vehicle trajectory. However, challenging weather
or illumination conditions degrade the performance significantly. One way of
addressing this problem is to fuse the visual data with another type of sensor as
proposed in Pucher et al. (2010) where a combination of a camera and a micro-
phone array was used. While these approaches are viable and used in practice,
they are not well suited for large scale deployment (for example at every freeway
ramp) due to their requirements. Solutions more tailored for a system following
the requirements stated in the beginning are often based on two spatially sepa-
rated sensors (Cheung and Varaiya, 2007; Mimbela and Klein, 2000). However,
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Figure 1: Illustration of the signal flow. The sensor data from J sensors (S1
through SJ ) is used for detection (D1 through DJ ). Each sensor classifies the
driving direction individually (C1 through CJ ) and a last, optional fusion
step can be included to fuse these classification results. The dashed box
indicates the parts of the system considered in this paper.

the need for a second sensor can increase the cost considerably (up to twice the
cost compared to only one sensor in the worst case) and introduces other chal-
lenges such as vehicle re-identification (Sun et al., 2004; Kwong et al., 2009) or
the requirement of communication between the sensors (Pantazis and Vergados,
2007). Each of these activities will inevitably increase the energy consumption,
which is a limited resource. Furthermore, a system based on only one single sen-
sor is presumably more reliable since it does not depend on any second sensor
that could break down.

In contrast to these approaches, this paper introduces a method for classifying
the driving direction of a vehicle in a fast and efficient way addressing the initially
stated requirements of a wireless sensor node. The method is based on one single
magnetometer which measures magnetic field distortions induced by vehicles
in its vicinity. Intuitively, extracting size and speed from this signal is rather
straightforward. The basic principle is that the peak value of the measured signal
is related to the size of the car, and the duration of the response is related to the
speed of the vehicle.

However, obtaining the driving direction requires more physical insight about
the signal and this problem has not been addressed before. In its simplest form,
the proposed driving direction classification method only comprises a difference
of two inner products of two vectors as it was first shown in (Wahlström et al.,
2012). This work is an extension of these findings and provides a more thorough
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statistical analysis as well as the evaluation of the classifier using more simulation
and real measurement data. Specifically, the contributions of this work are:

• Extended version of the driving direction classification method presented
in Wahlström et al. (2012) including an analysis of its statistical properties
based on one single sensor.

• Verification of the proposed method using simulations as well as real mea-
surement data.

• Comparison of the proposed method with a standard likelihood classifica-
tion scheme.

• A sensor fusion strategy for multi-sensor scenarios.

In order to implement a complete system, also the detection of vehicles has to
be considered. This can be accomplished by using adaptive thresholds Cheung
and Varaiya (2007) which is proven to be both robust and computationally cheap.
However, in this paper, we will only consider the classification as well as the
optional fusion step and assume that the detection and association problems are
already solved (Figure 1).

The outline of this paper is as follows. The signal model describing the mag-
netic field distortion caused by a vehicle is presented in Section 2. The proposed
classifier and its statistical properties are given in Section 3 and a likelihood clas-
sifier is presented in Section 4, which will be used as a comparison to the pro-
posed algorithm. The properties are verified and discussed by using Monte Carlo
simulations in Section 5 and finally, the method is applied to real data in Sec-
tion 6, followed by conclusions in Section 7.

2 Signal Model

The magnetometer signal induced by a metallic vehicle contains rich information
which depends on both, the target trajectory as well as target specific parameters.
A typical signal is displayed in Figure 2. In this work, we are only interested
in determining the driving direction of the target. Consequently, the method
should be insensitive to other quantities such as velocity, distance between the
sensor and the trajectory, magnetic signature, and target extension.

One way of solving the problem is to approximately model the target as a
magnetic dipole. This approximation holds if the distance between the target
and the sensor is large in comparison to the characteristic magnetic length of the
target (Jackson, 1998) which is typically in the range of 1 m to 2 m for passenger
cars and 4 m and more for larger vehicles such as busses and trucks. This gives
raise to a magnetic dipole field h(t) expressed as

h(t) =
3(r(t) ·m)r(t) − ‖r(t)‖2m

‖r(t)‖5 , (1a)
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Figure 2: A metallic vehicle (a) gives rise to a magnetic field distortion (b).
The driving direction can be revealed by estimating the rotation direction of
the magnetic field components (c).

where r(t) =
[
rx(t) ry(t) rz(t)

]T
is the position of the target relative to the sen-

sor and m =
[
mx my mz

]T
is the magnetic dipole moment, which can be con-

sidered as a target specific parameter (Wahlström et al., 2010). Two components
of the magnetic field (1a) can then be measured with a 2-axis magnetometer

yk =
[
yx(kT )
yy(kT )

]
=

[
hx(kT )
hy(kT )

]
+

[
ex(kT )
ey(kT )

]

= h̄k + ek ,
(1b)

where T is the sampling time, k denotes the sampling instant, h̄k is a 2 × 1 vector
containing the x- and y-components (the first two components) of the 3×1 vector
hk = h(kT ), and ek is measurement noise assumed to be independent, identically
distributed, zero mean white Gaussian noise of the form

ek ∼ N (0, σ2I2), (1c)

where I2 is the 2 × 2 identity matrix. Furthermore, the following vector notation
will be used

Y αm:n =
[
yαm yαm+1 . . . yαn

]T
, (2)

where α ∈ {x, y}.
The model in (1) can now be used to classify the driving direction of the ve-

hicle. The two hypotheses of this binary classification problem will be denoted
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HL and HR representing that the vehicle passes the sensor from the left or from
the right, respectively. One way of doing this is by estimating the unknowns
r(t) and m from the measurement of yk and extract the direction information
from the estimated trajectory r̂(t). This can either be done in a batch approach
where a whole data batch is used at once or through object tracking using, for
example, a Kalman or particle filter as it has been done in Birsan (2004); Raki-
jas et al. (2001) and Wahlström and Gustafsson (2014). However, this is a non-
linear problem and convergence to a global optimum is not guaranteed. Further-
more, if the target is close to the sensor, a higher order model including more
parameters is needed to describe the signal accurately, for example by includ-
ing higher order moments of the magnetic field or by modeling the target as a
grid of dipoles (Wynn, 1999). Unfortunately, the computational cost of the corre-
sponding estimation problem would in the worst case grow exponentially with
the number of parameters (Boyd and Vandenberghe, 2004).

Instead, an alternative method based on computing the cross-correlation be-
tween the different channels of the measurement is suggested and evaluated in
this work. Furthermore, the proposed method will be compared to a likelihood
ratio test based on the dipole model (1). This test can be seen as a common prac-
tice procedure and is often used in detection and classification problems in all
kinds of disciplines and is thus used as a benchmark (Kay, 1998; Root, 1970).

3 Correlation-based Classifier

3.1 Method and Algorithm

It has been shown in Wahlström et al. (2012) that the driving direction informa-
tion can be obtained by computing the rotation direction of the magnetic field
vector components, which is illustrated in Figure 2c. Specifically, the sign of the
area

f ? =
∫ ∣∣∣∣∣

hx dhx

hy dhy

∣∣∣∣∣ =
∫ ∣∣∣∣∣

hx(t) dhx(t)/dt
hy(t) dhy(t)/dt

∣∣∣∣∣ dt (3)

is the same as the sign of the area spanned by the position vector r(t). Using
discrete time measurements, (3) can be approximated by

f1 =
N−1∑

k=1

∣∣∣∣∣
hxk (hxk+1 − hxk)/T
hyk (hyk+1 − hyk)/T

∣∣∣∣∣ T =
N−1∑

k=1

(hxkh
y
k+1 − hykhxk+1), (4)

which corresponds to the sum of the triangles spanned by two adjacent samples
of the trajectory, see Figure 3a. Note that since all the triangles are completely
enclosed in the true trajectory, f1 systematically underestimates the true area f ? .
Using (4) and the measurement model (1b) the proposed correlation-based driv-
ing direction classifier is summarized in Algorithm 1, which is an extension of
the earlier results in (Wahlström et al., 2012). Note that using the vector notation
in (2), subtractions and inner products of vectors are used in order to calculate (5)
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Algorithm 1 Correlation-based driving direction classification

1. Calculate the test statistic

f̂p =
1
p

(
(Y x

1:N )TY y
(1+p:N+p) − (Y y

1:N )TY x
(1+p):N+p

)
(5a)

with Yαm:n as defined in (2) and p the correlation lag (parameter).

2. Determine the driving direction by testing the sign of (5a)

f̂p
HR
≷
HL

0. (5b)

3. Estimate the variance of the test statistic

σ̂2
f̂p

=
σ2

p2

(
(Y x

1+p:N+p − Y x
1−p:N−p)T(Y x

1+p:N+p − Y x
1−p:N−p)

+ (Y y
1+p:N+p − Y y

1−p:N−p)T(Y y
1+p:N+p − Y y

1−p:N−p)
)
− 2N
p2 σ

4.

(5c)

4. Estimate the error probability

P̂E =
1
2

erfc



|f̂p |√
2σ̂f̂p


 . (5d)

which is very beneficial for efficient implementation. Also, the algorithm is only
parametrized by one single averaging parameter p introduced in (5a) which can
be chosen as described in Section 3.3 below. The properties of the proposed algo-
rithm are derived in the following section.

3.2 Properties

Given the algorithm as introduced in Algorithm 1, its properties are shown and
derived in this section. Note that the assumption

h̄k = 0 for k ≤ 0 ∨ k > N, (6)

that is, that the magnetic signal has decayed to zero within the given window of
N samples (however, ek is non-zero) is made throughout the remainder of the
paper.
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Correlation with Lag p = 1

The natural choice for the averaging parameter p introduced in (5a) is to use
p = 1 since it is essentially directly replacing the true magnetic field vector h̄k
in (4) with its noisy counterpart yk as

f̂1 =
N∑

k=1

(yxky
y
k+1 − yykyxk+1), (7)

which can be interpreted as being the difference of the cross-correlations between
yx and yy with lag 1 and −1 respectively. Since the measurement noise is assumed
to be zero mean and i.i.d. (1c), it can be shown that the estimator (7) is unbiased

E

[
f̂1

]
= E



N∑

k=1

(yxky
y
k+1 − yykyxk+1)


 =

N∑

k=1

E

[
yxky

y
k+1 − yykyxk+1

]

=
N∑

k=1

hxkh
y
k+1 − hykhxk+1 = f1.

(8)

Further, the variance of (7) is given by

σ2
f̂1
, Var

(
f̂1

)
= E

[
(f̂1 − E[f̂1])2

]

= E

[( N∑

k=1

(hxk + exk)(h
y
k+1 + eyk+1) − (hyk + eyk)(h

x
k+1 + exk+1) − (hxkh

y
k+1 − hykhxk+1)

)2]

= E

[( N∑

k=1

hxke
y
k+1 + hyk+1e

x
k − hykexk+1 − hxk+1e

y
k + eyk+1e

x
k − exk+1e

y
k

)2]
.

(9)
Analyzing the sum in (9) it can be seen that every eαk appears twice in the

whole sum, once scaled by hβk+1 and once by −hβk−1 (where the superscript β de-
notes the in-plane component perpendicular to α). Making use of this and (6)
yields

σ2
f̂1

= E

[( N∑

k=1

(hyk+1 − hyk−1)exk − (hxk+1 − hxk−1)eyk + eyk+1e
x
k − exk+1e

y
k

)2]

= σ2
N∑

k=1

∥∥∥(h̄k+1 − h̄k−1)
∥∥∥2

+ 2Nσ4.

(10)

From (10) it is seen that the variance is increased by the norm of the (approxi-
mate) gradient of the magnetic field vector ∇hk ≈

∥∥∥(h̄k+1 − h̄k−1)
∥∥∥ /2 as well as the

window length. Finally, note that the distribution of f̂1 is given by f̂1 ∼ N (f , σ2
f̂1

)

as N →∞ as shown in Proposition 1 in Appendix A using p = 1.
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hk

hk+1

h(t)

(a) The quantity f1 in (4)
corresponds to the sum
of the triangles spanned
by two adjacent samples
of the trajectory.

yk+1

yk

··
·

··
·

(b) The estimator f̂1
sums over the black
solid line triangles
whereas f̂2 averages
over the colored dashed
triangles.

Figure 3: Geometrical interpretation of the es-
timators.

p(f̂1)

p(f̂p)

f10

Figure 4: Comparison of the
probability density functions of
the estimators f̂1 and f̂p. The
expected value of f̂p is biased
towards zero compared to f̂1,
however, the error probability
(shaded areas) is much smaller.

Correlation with Lag p > 1

As shown above, the variance for p = 1 scales badly if the noise is large since the
second term in (10) scales with σ4. It is thus desirable to reduce this effect. This
can be achieved by using an averaging estimator with lag p > 1 in order to reduce
the noise sensitivity. Instead of calculating the triangular area of two neighboring
measurement points k and k + 1 on the trajectory, larger area segments between
the points k and k+p are considered (Figure 3b). This yields the cross-correlation
estimator with lag p

f̂p =
1
p

N∑

k=1

(yxky
y
k+p − yykyxk+p) (11)

by conducting similar calculations as in (8) it is straightforward to show that for
p , 1

E

[
f̂p

]
=

1
p

N∑

k=1

hxkh
y
k+p − hykhxk+p

︸                      ︷︷                      ︸
,fp

, f1 (12)

and (11) is thus a biased estimator of (4). However, since only the sign of f1 is of
interest, this is acceptable. The variance is given by

σ2
f̂p
, Var(f̂p) = E

[
(f̂p − E[f̂p])2

]

= E

[(
1
p

N∑

k=1

(hxk + exk)(h
y
k+p + eyk+p) − (hyk + eyk)(h

x
k+p + exk+p) − (hxkh

y
k+p − hykhxk+p)

)2]

= E

[(
1
p

N∑

k=1

hxke
y
k+p + hyk+pe

x
k − hykexk+p − hxk+pe

y
k + eyk+pe

x
k − exk+pe

y
k

)2]
. (13)
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As in (9)-(10), the coefficients for eαk can be grouped which gives

σ2
f̂p

= E

[(
1
p

N∑

k=1

(hyk+p − hyk−p)exk − (hxk+p − hxk−p)eyk + eyk+pe
x
k − exk+pe

y
k

)2]

=
σ2

p2

N∑

k=1

∥∥∥h̄k+p − h̄k−p
∥∥∥2

+
2N
p2 σ

4.

(14)

From (14) it is seen that the variance is greatly reduced compared to (10). The
second term scales with 1/p2 compared to the second term in (10). As for the
unbiased estimator f̂1, the distribution of f̂p converges to the normal distribution
f̂p ∼ N (fp, σ

2
f̂p

) where fp is the mean value as illustrated in (12) (see Proposition

1 in Appendix A).
The averaging effect is illustrated in Figure 4. Assuming that the true value f1

is positive, the expected value of the averaging estimator is moved towards zero
due to the bias. However, the averaging reduces the variance and thus the total
error probability (the shaded area under the probability density function up to
zero) is reduced significantly.

In practice, it is of interest to estimate the error probability coupled to the
estimate f̂p obtained from (11). For that reason, the variance of (11), which is
given in (14), is of interest. Noting that

E

[∥∥∥yk+p − yk−p
∥∥∥2

]
= E

[
(yxk+p − yxk−p)2 + (yyk+p − yyk−p)2

]

and letting zαk = yαk+p − yαk−p it follows that zαk ∼ N (hαk+p − hαk−p, 2σ2). Thus,

E

[(
zxk

)2
+

(
zyk

)2
]

= (hxk+p − hxk−p)2 + 2σ2 + (hyk+p − hyk−p)2 + 2σ2

and finally

E

[∥∥∥yk+p − yk−p
∥∥∥2

]
=

∥∥∥h̄k+p − h̄k−p
∥∥∥2

+ 4σ2. (15)

Using (14) and (15) we can then estimate Var(f̂p) as follows

σ̂2
f̂p

=
σ2

p2

N∑

k=1

(
‖yk+p − yk−p‖2 − 4σ2

)
+

2N
p2 σ

4

=
σ2

p2

N∑

k=1

‖yk+p − yk−p‖2 −
2N
p2 σ

4.

(16)

The probability that the sign of the estimated f̂p is wrong compared to the
sign of fp is given by

Pr
(
sgn(f̂p) , sgn(fp)

)
=

1
2

erfc




∣∣∣fp
∣∣∣

√
2σf̂p


 . (17)
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Since neither the true fp nor σ2
f̂p

are known, the estimated values f̂p and σ̂2
f̂p

can be used instead. The estimated error probability (17) then becomes

P̂E =
1
2

erfc



|f̂p |√
2σ̂f̂p


 , (18)

which can be evaluated numerically. Note, however, that (18) has a slightly differ-
ent meaning than (17). It indicates the probability of fp having a different sign
compared to the given f̂p.

3.3 Parameter Tuning

The lag p introduced in (11) will improve the classification result as explained
in Section 3.2. Our objective is to choose a value p which minimizes the overall
estimated error probability (18). In theory this could be done for each detection
separately. However, that would require a non-linear search in the parameter p
for each detection, which does not meet the needs for a computationally efficient
implementation. Instead we will minimize the mean of the estimated error prob-
abilities from a training set of estimation data l = 1, 2, . . . , L and use this value p
afterwards. Given a set of estimation data (Y1:N )1:L we compute p as

p = arg min
p

1
L

L∑

l=1

P̂E,l = arg min
p

L∑

l=1

erfc



|f̂p,l |√
2σ̂f̂p,l


 . (19)

After finding this value p, all future classifications can be performed by using
Algorithm 1 and the given value for p.

3.4 Sensor Fusion

Information from multiple sensors can be fused together in order to arrive at a
joint-classification of multiple sensors. The fusion rule (49) for Bernoulli random
variables as derived in Appendix B is used in order to reach a joint decision of
the driving direction of J sensors as follows. Let pj be the probability that the car
is passing the sensor from left to right (hypothesis HL true) which is given by

pj = Pr(HL|f̂p,j , σ̂f̂p,j ) =
1
2

erfc




f̂p,j√
2σ̂f̂p,j


 . (20)

A Bernoulli random variable k with

p(k|pj ) = pkj (1 − pj )1−k for k ∈ {0, 1} (21)

can now be used to represent the probability of each hypothesis where the value
k = 0 is assigned to HR and k = 1 to HL. Finally, using (49) (see Appendix B)
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and (21) yields the sensor fusion decision rule given by

Pr(HL|p) =

∏J
j=1 pj

∏J
j=1(1 − pj ) +

∏J
j=1 pj

HL
≷
HR

1
2
, (22)

where p =
[
p1 . . . pJ

]T
. Equation (22) can also be rewritten as

Pr(HL|p) =

∏J
j=1 Pr(HL|f̂p,j )

∏J
j=1 Pr(HR|f̂p,j ) +

∏J
j=1 Pr(HL|f̂p,j )

, (23)

which can be interpreted as the joint probability for all sensors indicating HL at
the same time, normalized by the sum of the same and its complementary event,
that is, all sensors indicating HR at the same time.

Notice that the classification is performed in a distributed manner by first
computing the ratios pj in each sensor according to (20), and then, these values
are fused according to (23).

4 Likelihood Test

In order to benchmark the proposed driving direction classification algorithm
proposed in Section 3, a generalized likelihood ratio test based on the measure-
ment model (1) is derived in this section which is then compared to the proposed
method in the following sections.

4.1 Single Sensor

Consider a vehicle passing the sensor with a constant velocity and constant lateral
distance. The position rk can be rewritten as

rk = r(kT ) =



v(kT − tcpa)

ry

0


 , (24)

where v is the vehicle speed, tcpa is the closest point of approach time, and ry the
lateral distance between the target and the sensor.

It can be safely assumed that most of the vehicles will adhere to the known
speed limit vlimit for a given road and thus, vehicles passing the sensor can be
classified according to the following two hypotheses:

HL : θ?1 =
[
vlimit ry1

]T
, (25a)

HR : θ?2 =
[
−vlimit ry2

]T
, (25b)

where θ?i is the hypothesis parametrization which is known. The lateral distances
ry1 and ry2 are derived from the road geometry. For example, in a traffic counting
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scenario, they would correspond to the distances to the closer and farther lane,
respectively. On the other hand, when detecting wrong-way drivers on a freeway
ramp, they would be equal. The hypothesis HL corresponds to a vehicle passing
the sensor from left to right and HR to a vehicle passing the sensor from right to
left.

The remaining parameters

θ =
[
mx my mz tcpa

]T
(26)

in (1a) are all unknown (opposite to θ? which holds the known parameters deter-
mined as described above) and the measurement model can be rewritten as

h̄k(θ
?
i , θ) =

[
1 0 0
0 1 0

]
·
(
3rkrTk + ‖rk‖2I3

)

‖rk‖5
m, (27)

where the position rk is a function of the parameters ryi , vi and tcpa as given
by (24). The measurement model is linear in the unknown vehicle dependent
parameters m and non-linear in tcpa. These have to be estimated before the ac-
tual likelihood test can be performed. This can be done by using a maximum
likelihood estimator which yields a generalized likelihood ratio test (glrt) (Kay,
1998).

The joint probability density function for all N vector samples is given by

p(Y1:N ; θ?i , θ) =
N∏

k=1

p(yk ; θ
?
i , θ)

=
1

(2πσ2)2N/2
exp

(
− 1

2σ2

N∑

k=1

‖yk − h̄k(θ
?
i , θ)‖22

)

=
1

(2πσ2)2N/2
exp

(
− 1

2σ2 ‖Y1:N − H1:N (θ?i , θ)‖22
)
,

(28)

where the measurement samples are stacked as

Ym:n =
[
Y x
m:n

T Y y
m:n

T
]T
, (29)

Y αm:n is as defined in (2), and equivalently for H1:N . The maximum likelihood
estimator (Kay, 1998) for the parameters θ is then simply

θ̂ i = arg max
θ

p(Y1:N ; θ?i , θ) for i = 1, 2. (30)

where the estimate θ̂ i depends on the hypothesis θ?i .
Once the estimation θ̂ i is obtained, the likelihood ratio can be calculated as

l =
p(Y1:N ; θ?1 , θ̂1)

p(Y1:N ; θ?2 , θ̂2)

HL
≷
HR

1. (31)



112 Paper B Classification of Driving Direction Using Magnetometers

If l > 1, the hypothesis HL is more likely to be true and HR otherwise. Using (28)
and (31), the log-likelihood ratio is given by

λ = log(l)

= − 1
2σ2

∥∥∥Y1:N − H1:N (θ?1 , θ̂1)
∥∥∥2

2
+

1
2σ2

∥∥∥Y1:N − H1:N (θ?2 , θ̂2)
∥∥∥2

2

HL
≷
HR

0
(32)

and the decision rule becomes

λ̃1
HL
≷
HR
λ̃2 (33)

with
λ̃i = −

∥∥∥Y1:N − H1:N (θ?i , θ̂ i)
∥∥∥2

2
. (34)

Note that the two test statistics λ̃1 and λ̃2 are easily calculated. However, the
parameter estimation step to be executed still requires solving a (separable) non-
linear problem. Hence, this method is not well tailored for implementation in
systems with limited computational power since it requires an iterative solver
which might not converge to the global optimum. Finally, the likelihood algo-
rithm is summarized in Algorithm 2.

Algorithm 2 Generalized likelihood ratio test driving direction classification

1. Estimate the model parameters θ as defined in (26) for the hypotheses
{HL,HR} using the maximum likelihood estimator

θ̂ i = arg max
θ

p(Y1:N ; θ?i , θ) for i = 1, 2 (35a)

with θ?i as defined in (25).

2. Calculate the test statistic

λ = log(l)

= − 1
2σ2

∥∥∥Y1:N − H1:N (θ?1 , θ̂1)
∥∥∥2

2
+

1
2σ2

∥∥∥Y1:N − H1:N (θ?2 , θ̂2)
∥∥∥2

2

(35b)

with Y1:N and H1:N(θ?i , θ̂ i) as defined in (29).

3. Determine the driving direction by testing the sign of (35b)

λ
HL
≷
HR

0. (35c)

4.2 Sensor Fusion

If there is data from more than one sensor available, the likelihood test can take
advantage of all this information in order to make a well-balanced decision. Let
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θj be the parameters and Y1:N,j be the measurements for the jth sensor. Then the
joint PDF for all measurement is given by

p(Υ ; θ?i ,Θ) =
J∏

j=1

p(Y1:N,j ; θ
?
i , θj ), (36)

where Υ =
[
Y1:N,1

T Y1:N,2
T . . . Y1:N,J

T
]T

and Θ =
[
θ1

T θ2
T . . . θJ

T
]T

. The
overall likelihood ratio and decision rule is then given by

lJ =
p(Υ ; θ?1 , Θ̂1)

p(Υ ; θ?2 , Θ̂2)
=

∏J
j=1 p(Y1:N,j ; θ

?
1 , θ̂1,j )

∏J
j=1 p(Y1:N,j ; θ

?
2 , θ̂2,j )

HL
≷
HR

1, (37)

which results in the log likelihood

λJ = log(lJ )

=
J∑

j=1

1

2σ2
j

λ̃1,j −
J∑

j=1

1

2σ2
j

λ̃2,j =
J∑

j=1

1

2σ2
j

(
λ̃1,j − λ̃2,j

) HL
≷
HR

0.
(38)

Finally, (38) can be rewritten as

J∑

j=1

1

σ2
j

λ̃1,j
HL
≷
HR

J∑

j=1

1

σ2
j

λ̃2,j . (39)

Notice that the classification is performed in a distributed manner by first
computing the ratios λ̃i,j in each sensor according to (34), and then, these values
are fused according to (39).

5 Simulation

Before applying the classifier derived in the previous section on real data, a sim-
ulation will be used to visualize and validate the properties of the proposed esti-
mator. In the end of this section, the proposed classifier is also compared to the
generalized likelihood test presented in Section 4.

Consider a simulation setup with a vehicle heading in positive x-direction,

starting at r1 =
[
−5 1 0

]T
and ending at rN =

[
5 1 0

]T
divided into N = 100

data points in between. Furthermore, consider a magnetic dipole moment of

m =
[
1 1 1

]T
. We will simulate this example with different levels of the signal

to noise ratio (snr), which is defined as

snr = 10 log10




1
N

∑N
k=1 ‖h̄k‖2
σ2


dB, (40)

where σ2 is the variance of the measurement noise.
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Figure 5: Simulation results of the estimator (a) and its estimated variance
(b) for a scenario with snr = −10 dB and p = 15.

5.1 Estimate and Variance Estimate

In (12) and (14) expressions for the mean fp = E

[
f̂p

]
and variance σ2

f̂p
=

E

[
(f̂p − fp)2

]
of the estimators are given. These expressions are verified by per-

forming 1,000 Monte Carlo simulations for the presented example with differ-
ent noise realization for each run. The result is presented in Figure 5a with
snr = −10 dB and p = 15 together with the theoretical distribution of the esti-

mator f̂p ∼ N
(
fp, σ

2
f̂p

)
.

According to the result, the theoretical distribution corresponds well to the
empirical one. Furthermore, note that the estimate is biased E

[
f̂p

]
, f1, as al-

ready stated in (12). We can also conclude that the Gaussian assumption of the
estimator distribution is indeed valid.

Each sequence of data does not only provide us with the estimate (11), but
also with an estimate of its variance (16). In Figure 5b, this estimated variance is
compared with the true variance, using the same 1,000 Monte Carlo simulations
as previously. According to this result, the variance estimate seems to be unbiased
as expected from the derivation.

5.2 Dependency of PE on SNR and p

In (17) a scheme for computing the error probability is proposed by knowing the
true mean and variance of the estimator. This value has been compared with the
actual error classification rate by performing 1,000 Monte Carlo simulations for
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Figure 6: Classification performance as a function of the lag p for different
snr. The solid line is the theoretical performance PE according to (17) and
the dashed line the average error probability of the 1,000 Monte Carlo sim-
ulations.

different values of p and snr. The result is provided in Figure 6 and the theoreti-
cal values display a good agreement with the simulations. Also the classification
performance increases with higher snr which is natural.

Furthermore, this result also shows the classification improvement of the
cross-correlation method by choosing a lag p > 1. Also note, that for the cho-
sen simulation scenario, there is an optimal p ≈ 15 which is fairly independent
of the snr. However, this will depend on the magnetic moment of the vehicle m,
the trajectory rk , and the data length N .

5.3 Comparison with Likelihood Test

As a reference, the proposed classifier can be compared to the likelihood test pre-
sented in Section 4. Again, 1,000 Monte Carlo simulations with p = 15 for the
correlation classifier and the true values for v1, v2, ry1 and ry2 for the likelihood
test were run. Figure 7 shows the error rates for the two classifiers as functions of
the snr. As can be expected, both classifiers perform well for high snrs , down
to about −5 dB where the error rates start to increase until the point of “tossing
a coin” somewhere below −20 dB is reached. It should be noted, however, that
the correlation classifier requires an snr of about 5 dB higher than the likelihood
classifier in order to achieve the same classification rate. This is not very surpris-
ing since the likelihood test is expected to be the optimal test for this scenario
since the likelihood test is performed under the same model and model param-
eter as have been used in the simulation. However, it will be shown that the
likelihood test is more sensitive to violations of the model assumptions such as
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Figure 7: Classification performance compared with the likelihood test as a
function of the snr.

dipole model, speed, or trajectory, which were used to derive the glrt. These
results are presented in the next Section.

6 Experimental Results and Discussion

The simulations in the preceding section indicate that the proposed classifier
works according to the expectations from its derivation. This section will now
show how the classifier performs on real data where a bigger amount of uncer-
tainty and challenges are to be expected.

6.1 Experiment Setup

In order to verify the proposed algorithm, real world experiments have been con-
ducted on a two-way country road with moderate traffic density and a speed
limit of 90 km/h. Two commercially available 2-axis magnetometers (Honeywell
HMC6042, Honeywell (2007)) sampling at 100 Hz were deployed on both sides
of the road as illustrated in Figure 8. The traffic was measured during three sepa-
rate periods for a total of 158 minutes. In total 362 vehicles traveling south-north
(close to sensor 1) and 305 vehicles traveling north-south (close to sensor 2) were
measured.

In addition, a video recording was conducted along with the magnetometer
measurements. From the video recording the time when the vehicles were in
front of the sensor (passing time) as well as their driving directions were man-
ually determined in order to establish a ground truth. From this ground truth,
a 1.5 s sequence of the magnetometer signal centered around the true passing
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Figure 8: Illustration of the experiment setup showing the two sensors on
each side of the road as well as the driving directions.

time for each vehicle was extracted from the raw measurement data. These data
sequences were then used in order to evaluate the direction classification algo-
rithms as presented in the previous sections. In this way, the detection problem
does not affect the comparison of the two classification algorithms.

Note that the two sensor setup is only used for increasing the amount of data
and for evaluating the presented fusion framework. The presented classifier in
its simplest form still only needs one sensor for classifying the driving direction.

6.2 Results

As indicated above, the ground truth data was used in order to measure the per-
formance of the two classifiers. For each passage, a 1.5 s long time window from
the magnetometer signal was extracted and the driving direction was determined.
For the likelihood classifier introduced in Section 4, the chosen parametrization
was as follows:

HL : θ?1 =
[
25 m/s 3.5 m

]

HR : θ?2 =
[
−25 m/s 6.5 m

]

which corresponds to the actual road geometry and speed limit at the place where
the measurements were performed. The correlation classifier was tuned using
the tuning algorithm described in Section 3.3 using the first measurement set (71
vehicles close to sensor 1 and 85 vehicles close to sensor 2) resulting in p = 11.

Finally, the two algorithms were run on the remaining two datasets and the
results are shown in Table 1. As it can be seen in the table, the correlation classi-
fier performs very well. For the vehicles passing close to the sensor, only one out
of the 511 vehicles is misclassified. As expected due to the lower snr compared
to vehicles passing close to the sensor, the performance is worse for the vehicles
passing on the lane farther from the sensor. Here, in total 57 vehicles are wrongly
classified.



118 Paper B Classification of Driving Direction Using Magnetometers

Ta
b
le

1:
R

es
u

lt
s

of
ap

p
ly

in
g

th
e

d
ri

vi
ng

d
ir

ec
ti

on
cl

as
si

fi
ca

ti
on

to
th

e
m

ea
su

re
m

en
td

at
a.

Fo
r

ex
am

p
le

,2
90

ou
to

f
th

e
29

1
ve

hi
cl

es
tr

av
el

in
g

so
u

th
-n

or
th

w
er

e
cl

as
si

fi
ed

co
rr

ec
tl

y
by

th
e

co
rr

el
at

io
n

cl
as

si
fi

er
u

si
ng

th
e

m
ea

su
re

m
en

ts
of

se
ns

or
1.

D
ir

ec
ti

on
#

V
eh

ic
le

s
Se

n
so

r
1

Se
n

so
r

2
Fu

si
on

C
or

re
la

ti
on

L
ik

el
ih

oo
d

C
or

re
la

ti
on

L
ik

el
ih

oo
d

C
or

re
la

ti
on

L
ik

el
ih

oo
d

So
u

th
-N

or
th

a
29

1
29

0
27

8
26

5
21

5
28

3
27

3
N

or
th

-S
ou

th
b

22
0

18
9

16
4

22
0

21
0

21
1

20
7

To
ta

l
51

1
47

9
44

2
48

5
42

5
49

4
48

0

a C
lo

se
to

se
ns

or
1

b C
lo

se
to

se
ns

or
2



6 Experimental Results and Discussion 119

Table 2: Results of applying the driving direction classification to the mea-
surement data. For example, 710 out of the 722 vehicles which are more
then 2 seconds separated from the closest vehicle, were classified correctly
by the cross-correlation based classifier.

Distance to closest vehicle # Vehicles Correlation Likelihood

More than 2 s 722 710 642
Less than 2 s 300 254 225

Also the likelihood classifier performs well for vehicles close to the sensor
but not quite as well as the cross-correlation classifier. 23 vehicles are wrongly
classified for the case where the vehicles pass close to the sensor and 132 – around
twice as many as for the correlation classifier – are wrongly classified for vehicles
passing far from the sensor.

The incorrect classifications can be divided into the following three main
sources of error which affect the two classifiers differently:

1. If multiple vehicles are present at the same time, the single target assump-
tion made in the dipole model (1a) is violated. This situation occurs if two
vehicles heading in different directions are passing each other in front of
the sensors or if a train of vehicles is passing the sensors with short distance
between the vehicles.

2. For large vehicles, the dipole model (1a) is also violated. This is because
the dipole model does not assume any geometrical extent of the vehicle.
Furthermore, for very big vehicles this will give raise to a saturated signal
as displayed in Figure 2, which clearly violates the assumption in (1a).

3. Finally, if the snr is poor the classification result will become worse as also
concluded in the simulations in Section 5.

In order to quantify the impact of the first source of error on the two classifiers,
the available data was first split into two groups – one group where the vehicles
are more than 2 seconds separated from each other and one group where the
vehicles are less than 2 seconds separated from each other. Each vehicle gives rise
to two data sets since we have two sensors. Therefore, in total 511 × 2 = 1, 022
data sets are considered here. The classification results for these two groups are
presented in Table 2. According to these results both classifiers are degraded
when the single target assumption is violated, however the likelihood test suffers
more from this violation than the correlation classifier does.

Furthermore, when the distance between the vehicles is larger than 2 seconds
and the single target assumption applies, the correlation classifier also performs
better than the likelihood test. In order to further investigate these differences,
this group of data has been grouped into 8 classes of different snr levels, each
class having an interval of 5 dB. In Figure 9 the classification result for these
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Figure 9: Classification performance compared with the likelihood test as a
function of snr.

groups is presented as a function of the snr, which was computed as

snr = 10 log10




1
N

∑N
k=1 ‖h̄k‖2
σ2


dB ≈ 10 log10




1
N

∑N
k=1 ‖yk‖2 − σ2

σ2


dB,

where σ2 is the variance of the measurement noise.
According to Figure 9 the correlation classifier performs better than the like-

lihood test for all present snr levels. Also notice that the correlation classifier
has a zero error rate where snr ' 10 dB, which the likelihood does not. As a
matter of fact, the likelihood test performs even worse for snr ' 25 dB corre-
sponding to large vehicles close to the sensor. As explained above, this is because
large vehicles violate the point target assumption, which the dipole model (1a) is
based upon. However, it is important to note that the performance of the correla-
tion classifier is not affected by these model violations since it does not use that
model explicitly, but only one property of it and thus, the second source of error
only affects the likelihood classifier. According to the experimental results, this
property is still valid even in a near field scenario since we still have excellent
classification results, even for high snrs .

It is instructive to compare the classification performance evaluated on real
data in Figure 9 with the performance on simulated data in Figure 7. When
evaluating the classification on simulated data, the likelihood classifier performs
better than the correlation classifier does. However, for real data the likelihood
classifier is heavily disadvantaged and it performs worse than the correlation
classifier due to the reasons discussed above.

Finally, the last two columns in Table 1 show the results for sensor fusion
where the classification of both sensors were taken into account. Clearly, the over-
all performance is improved; the total number of correct classifications including
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vehicles on both, the closer and farther lane, is larger than for the case when only
one sensor was used. Note that it appears as if the fusion results were worse when
comparing it to, for example, the results of sensor 1 and vehicles travelling in the
south-north direction. However, this is a biased comparison since one preselects
the cases favorable for sensor 1 by looking at the isolated results for the south-
north direction. The important result is the overall performance where the fused
result is better than that of the individual sensors.

6.3 Discussion

As the results in the preceding sections indicate, the proposed driving direction
classifier performs very well and generally outperforms the likelihood classifier.
The challenges encountered in the previous section are discussed in more detail
in this section.

The first problem was related to scenarios with multiple vehicles in the scene.
This violates the single target assumption, which both classifiers are based upon.
The likelihood test could be extended to handle this case by modifying the model
(27) to include multiple dipoles, which requires even more parameters to esti-
mate. For the proposed correlation classifier such an extension is not straightfor-
ward since the feature has been extracted under the single target assumption and
is otherwise not valid. This might be considered as a limitation of this classifica-
tion method.

However, in case of multiple targets both classifiers most likely will classify
according to the vehicle with the highest snr. Since the snr decays cubically
with the distance to the magnetic source, see (1), the vehicle with the highest
snr is most likely the one closest to the sensor. However, this assumption might
not always be valid. In Figure 10 a scenario with two vehicles of different sizes
is presented where the classification result for the sensor closest to the smallest
vehicles can not be resolved with the present algorithm, since both vehicles affect
the sensor signal in the same order of magnitude. This also reveals the robustness
of the proposed algorithm in cluttered environments. If the magnitude of the
clutter is lower than the magnitude of signal induced by the vehicle, the driving
direction will most likely be classified correctly. Due to the cubically decay in
snr as a function of distance, only clutter in the immediate vicinity of the sensor
will be a potential problem. The same reasoning would be valid for the detection
performance as well. However, as explained previously, the detection problem is
not analyzed further in this work.

A possibility of handling multiple vehicles in the scene is to design a more
elaborate post-processing strategy in a multisensor scenario. For example, in-
stead of just fusing the individual classifications from two sensors on opposite
sides of the road as proposed in Section 3.4, one could inspect the uncertainty of
the two classifications more thoroughly. If both sensors classify an event in the op-
posite driving directions with a high certainty, this could be an indication of two
vehicles passing each other in front of the sensors. Further, in a more extensive
multi-sensor scenario, the detection and classification from each sensor could be
associated and processed to perform tracking in a multitarget-multisensor sce-
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nario (Bar-Shalom and Li, 1995). In such scenarios the possibility to fuse infor-
mation from other sensor types can also be analyzed.

The second problem for the correlation classifier was related to poor signal-
to-noise ratios. Obviously, this is a problem that affects any algorithm to some
extent; the important aspect is at which level the degradation becomes critical.
Taking the experimental results in Figure 9 into account, one sees that even at
an snr as low as 0 dB, the classification error rate is below 10 %. This indicates
that the correlation classifier performs relatively well even in these conditions.
Nevertheless, it is apparent that the snr can not be arbitrarily low.

Furthermore, a disadvantage of the proposed method is the fact that large
averaging windows (large p) will cause problems at high speeds (compared to the
sampling rate). If a vehicle passes the sensor very fast, only few points of the loop
trajectory will be measured. Averaging over these few points will have unwanted
effects and it might happen that the estimation becomes wrong. However, note
that the correlation classifier behaves better in general since no assumption on
the vehicle trajectory and/or speed was made, compared to the likelihood test in
Section 4. Clearly, the likelihood test could also be extended to take variations in
these parameters into account, however, at a cost of higher complexity.

Finally, it is important to obtain an indication about whether the classification
was successful or not for the two problematic cases for the correlation classifier.
For the case of signals with poor snr, this is again reflected in the classification’s
uncertainty (that is, in the variance of the feature f̂p). For multiple vehicles, the
only remedy is to rely on the data of multiple sensors as indicated above.

7 Conclusions

By using measurements from a 2-axis magnetometer, a fast and efficient method
for classifying the driving direction of a vehicle has been proposed. Its properties
were first analyzed theoretically and then verified by using Monte Carlo simula-
tions before it was applied to real measurement data from commercially available
sensor. The method was also compared to a generalized likelihood ratio test and
it was shown how the method can be extended to incorporate data from multiple
independent sensor nodes in a sensor network.

The results show that the performance of the proposed method is very good
for vehicles passing on the lane close to the sensor where more than 99 % of all ve-
hicles were classified correctly (sample size: 511 vehicles). As it can be expected,
performance degrades as the signal-to-noise ratio decreases which reflects in the
fact that the classification rate for vehicles on the lane farther from the sensor
dropped to approximately 89 %. Comparing this method to the generalized like-
lihood ratio test, it is seen that the latter is outperformed in every aspect. It is very
likely that one particular reason for this behavior is the fact that one or more of
the assumptions (for example, dipole model, speed, or trajectory) made to derive
the glrt are violated. The biggest difficulties arise in cases where two vehicles
meet right in front of the sensor. Apparently, the vehicle generating the stronger
field distortion will dominate the signal and the second vehicle is shadowed.
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(a) Two meeting vehicles
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(b) Signal from sensor 1 (closer to the camera)

0 0.5 1 1.5 2

−2

0

2

t [s]

y
[µ
T
]

yx

yy

−2 −1 0

−1

0

1

yx [µT]

y
y
[µ
T
]

(c) Signal from sensor 2 (farther from the camera)

Figure 10: A scenario is presented with vehicles of different sizes meeting in
front of the sensors. Sensor 2 will classify according to the driving direction
of the larger close-by white vehicle (c), whereas the classification result for
sensor 1 is ambiguous since the the smaller close-by white vehicle and the
farther larger vehicle affect the signal with the same magnitude.

The proposed algorithm as presented in this work is restricted to work on sin-
gle target scenarios, where possible extensions to handle multiple targets have
been discussed. Future work should focus on developing these ideas further and
evaluate them on real data. Furthermore, the proposed method will be imple-
mented in a real sensor platform and the performance in a real time system will
be analyzed.
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Appendix

A Distributions

Proposition 1. Consider the estimator f̂p given by (11) and the measurement
signal yk as in (1b) and (1c). Then, the estimator f̂p is distributed according to

f̂p ∼ N (fp, σ
2
f̂p

) when N →∞ (41)

where fp and σ2
f̂p

are given by (12) and (14), respectively.

Proof: As stated above, the mean and variance of f̂p have been derived in (12)
and (14). What remains to show is that f̂p is normal distributed. Starting by
expanding the original expression for f̂p yields

f̂p =
1
p

N∑

k=1

(yxky
y
k+p − yykyxk+p)

=
1
p

N∑

k=1

(hxk + exk)(h
y
k+p + eyk+p) − (hyk + eyk)(h

x
k+p + exk+p)

=
1
p

N∑

k=1

hxkh
y
k+p + hxke

y
k+p + exkh

y
k+p + exke

y
k+p − (hykh

x
k+p + hyke

x
k+p + eykh

x
k+p + eyke

x
k+p).

(42)
Similar to (13)–(14), the sum in (42) can now be rearranged so that all the

deterministic coefficients of eαk are gathered together:

f̂p =
1
p

N∑

k=1

hxkh
y
k+p−hykhxk+p+(hyk+p−hyk−p)exk −(hxk+p−hxk−p)eyk+eyk+pe

x
k −exk+pe

y
k . (43)

Distributing the sum to the individual terms finally gives

f̂p =
1
p

N∑

k=1

(hxkh
y
k+p − hykhxk+p) +

1
p

N∑

k=1

(hyk+p − hyk−p)exk

− 1
p

N∑

k=1

(hxk+p − hxk−p)eyk +
1
p

N∑

k=1

eyk+pe
x
k −

1
p

N∑

k=1

exk+pe
y
k .

(44)

Since ek ∼ N
(
0, σ2

)
, the second and third term in (44) will also be normal dis-

tributed. Furthermore, since all ex1, . . . , e
x
N , e

y
1, . . . , e

y
N are independent, the overall

variance is simply the sum of the individual variances for each variable and the
distributions for these two terms are

N

0,

σ2

p2

N∑

k=1

(hyk+p − hyk−p)2


 and N


0,

σ2

p2

N∑

k=1

(hxk+p − hxk−p)2


 . (45a)
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The last two terms in (44) are sums of normal product distributed variables. The
variance for each such variable is

Var(eyk+pe
x
k) = Var(eyk+p)Var(exk) = σ2σ2 = σ4 (45b)

and since eyk+pe
x
k are all independent and σ4 < ∞, the Central Limit Theorem (see,

for example, Billingsley (1995)) yields

1
p

N∑

k=1

eyk+pe
x
k
d−→ N

(
0,
Nσ4

p2

)
and

1
p

N∑

k=1

eyke
x
k+p

d−→ N
(
0,
Nσ4

p2

)
(45c)

as N →∞.
Consequently, f̂p is a sum of one deterministic constant and four zero mean

normal distributed variables and since a sum of (possibly dependent) normal
distributed variables is also normal distributed we have that

f̂p ∼ N (fp, σ
2
f̂p

) when N →∞. (46)

B Fusion of Conditional Bernoulli Random Variables

Given multiple conditional PDFs p(x|y1), . . . , p(x|yJ ) it is of interest to find the
joint-conditional PDF p(x|y1, . . . , yJ ). Using Bayes rule and assuming that all
y1, . . . , yJ are statistically independent given the true x (conditional indepen-
dence) yields

p(x|y1, . . . yJ ) =
p(y1, . . . , yJ |x)p(x)
p(y1, . . . , yJ )

= p(x)

∏J
j=1 p(yj |x)

p(y1, . . . , yJ )

and using Bayes’ rule on each p(yj |x) gives

p(x|y1, . . . , yJ ) =
p(x)

p(y1, . . . , yJ )

J∏

j=1

p(x|yj )p(yj )

p(x)
=

∏J
j=1 p(yj )

p(x)J−1p(y1, . . . , yJ )

J∏

j=1

p(x|yj ).

Assuming the uninformative prior p(x) ∝ 1 yields that p(x|y1, . . . , yJ ) ∝∏J
j=1 p(x|yj ) and thus

p(x|y) =
1
η

J∏

j=1

p(x|yj ) where η =
∫

D

J∏

j=1

p(x|yj )dx, (47)

with y =
[
y1 y2 . . . yJ

]T
and η being a normalization constant.
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Using (47) for a set of Bernoulli random variables described by the PDF

p(k|pj ) = pkj (1 − pj )1−k for k ∈ 0, 1, (48)

where pj is the probability of success, the fused PDF becomes

p(k|p) =

∏J
j=1 p

k
j (1 − pj )1−k

∏J
j=1(1 − pj ) +

∏J
j=1 pj

. (49)
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Abstract

Starting from the electromagnetic theory, we derive a Bayesian non-
parametric model allowing for joint estimation of the magnetic field
and the magnetic sources in complex environments. The model is a
Gaussian process which exploits the divergence- and curl-free prop-
erties of the magnetic field by combining well-known model compo-
nents in a novel manner. The model is estimated using magnetome-
ter measurements and spatial information implicitly provided by the
sensor. The model and the associated estimator are validated on both
simulated and real world experimental data producing Bayesian non-
parametric maps of magnetized objects.

1 Introduction

The magnetic field has for a long time been used in navigation for providing
seafarers and merchants as well as orienteers and migrating birds with heading
information. In indoor environments this navigation task is challenged by the
magnetic distortions caused by the ferromagnetic structure in buildings. How-
ever, these distortions can also provide position information using a magnetic
map of the environment, either by navigating within a precomputed map or by
performing simultaneous localization and mapping (slam). This requires good
models of the magnetic field which will be investigated more deeply in this work
by addressing the electromagnetic theory. The relation between the magnetic
sources and their induced magnetic field is well understood and was already for-
mulated by Maxwell (1865), see also Jackson (1998). However, little work has
been done incorporating this knowledge into a statistical framework suitable for
estimating magnetic fields in complex magnetic environments based on noisy
data. We present a Bayesian nonparametric model (a particular Gaussian pro-
cess) capable of modeling the magnetic field as well as the magnetic sources, see
Figure 3. Our model exploits the divergence- and curl-free properties of the mag-
netic field inherited by the electromagnetic theory.

Gaussian processes (Rasmussen and Williams, 2006) have previously been
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used for modeling magnetic fields in an indoor environment to enable slam (Val-
livaara et al., 2010, 2011). Their navigation platform is equipped with a three
axis magnetometer and the positioning is aided with odometry. However, in con-
trast to our work, the model of the magnetic map does not incorporate knowledge
from Maxwell’s equations and is not able to estimate the location of the magnetic
sources. The same model has been investigated further by Kemppainen et al.
(2011). Gaussian processes have recently also been used for slam in a scalar po-
tential field (Murphy and Godsill, 2012). However, we consider multiple vector
fields rather than one scalar potential field in this work. Vissière et al. (2007) also
use the magnetic disturbances to improve imu-based position estimation. That
work uses the restrictions induced by the electromagnetic theory, but does not
construct any magnetic map and does not localize the magnetic sources. (Chung
et al., 2011) uses only four tilt-compensated magnetometers to accomplish indoor
localization. The magnetic map is captured in advance consisting of a collection
of magnetic signatures. The localization is performed using magnetic map fin-
gerprints, where the performance is enhanced by the multiplicity of the magne-
tometers. Also fusion of magnetic field anomalies and laser has been investigated
(Zhang and Martin, 2011).

This work only addresses the modeling aspects of the magnetic field and the
magnetic sources. The localization problem we consider separately (Kok et al.,
2013), but the model is also suitable for being used in the applications presented
above. The contributions of this work are:

• A Gaussian process model which in a novel manner exploits the divergence-
and curl-free properties of the magnetic field.

• The model enables the magnetic field and the magnetic sources to be esti-
mated jointly.

• Interference with both magnetic field measurements and spatial informa-
tion is possible.

• We validate the model using both simulations and real world experimental
data.

The divergence- and curl-free properties of a vector field have previously been
used for estimating fluid flows using Gaussian processes (Macêdo and Castro,
2008). However, to the best authors’ knowledge this has previously not been
used in modeling magnetic fields.

2 Magnetic Fields

A magnetic field is a mathematical construction used for describing forces in-
duced by magnetic materials and electric currents. For each point in space the
magnetic field can be described using a vector and as such it is a vector field.
There are two different, but closely related ways to describe the magnetic field,
denoted with the symbols B and H, where boldface denotes vector-valued quan-
tities.
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These fields can not be any two arbitrary vector fields, but need to obey phys-
ical laws, which in their most general form are known as Maxwell’s equations
(Jackson, 1998). By assuming absence of free currents and time-dependent ef-
fects, these equations will reduce to

∇ · B = 0, (1a)

∇ ×H = 0, (1b)

which means that the B-field is divergence-free and the H-field is curl-free. Fur-
ther, these two fields are coupled as

M =
1
µ0

B −H, (2)

where M is the magnetization describing our magnetic environment and µ0 is
the vacuum permeability, which is a physical constant having the value µ0 =
4π × 10−7V s A−1 m−1. These fields will be illustrated with the following example.
More details on the derivation can be found in Jackson (1998).

Example 1: Uniformly magnetized sphere
Consider a sphere with a uniform permanent magnetization as depicted in Fig-

ure 1c. By solving (1) and (2) for this special geometry we will end up in a dipole
field outside the sphere as depicted in Figure 1a and 1b. Note that the B- and the
H-field will be identical (up to the proportional constant µ0) outside the sphere,
which follows directly from (2) using M = 0. However, inside the sphere the B-
and the H-field will be aligned in opposite directions in order to ensure that the
B-field is divergence-free (no sources or sinks) and that the H-field is curl-free
(no swirls).

(a) B-field (b) H-field (c) M-field

Figure 1: The B-, H- and M-field of a uniformly magnetized sphere. The
B-field is here normalized with µ0.

By using (1)-(2) and prior knowledge of the magnetic environment, a number
of things can be concluded, which will be used in Section 4 when modeling the
magnetic fields:
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1. Additional information In all non-magnetic materials the magnetization is
equal to zero, M = 0. This is especially true in locations where we measure
the magnetic field, since air is non-magnetic. Due to physical constraints
the sensor cannot be inside a magnetic material and we know that M = 0 at
these positions. This additional information will be used in our framework
as an extra measurement. Sensor fusion with other sensors such as camera
and laser range sensor, providing even richer information of where M = 0,
is possible. However, this is not considered in this work.

2. External field Most environments of interest consist of an external homo-
geneous field B0 or H0, usually the earth magnetic field or a slight defor-
mation of it. Due to the linearity of the field equations (1), this external
field can be superimposed throughout all space, where (2) gives the rela-
tion B0 = µ0H0. We will therefore later model the B- and the H-field to
have a common, but unknown mean.

3. Smoothness If M(u) = 0 in a neighborhood of u, the field equations (1) will
ensure that B and H are infinitely continuously differentiable at u. This
gives the magnetic field a “smooth" character and the magnetic field at
u1 will be very similar to the magnetic field at u2 if u1 and u2 are close.
This property motivates us to employ Gaussian processes in modeling these
fields, as will be explained in the next section.

3 Gaussian Processes

A Gaussian process (gp) (Rasmussen and Williams, 2006) is a stochastic process
suitable for modeling spatially correlated measurements. gps can be seen as a
distribution over functions

f(u) ∼ GP
(
µ(u), K(u,u′)

)
, (3)

where the process is uniquely defined with its mean function µ(u) and covariance
function K(u,u′).

The gp is a generalization of the multivariate Gaussian probability distribu-
tion in the sense that the function values evaluated for a finite number of inputs
u1, . . . ,uN are normally distributed




f(u1)
...

f(uN )



∼ N (µ, K), where µ =




µ(u1)
...

µ(uN )



, K =




K(u1,u1) · · · K(u1,uN )
...

...
K(uN ,u1) · · · K(uN ,uN )



. (4)

3.1 Mean Function

In this work we will consider a constant, but unknown mean function µ(u) = β,
where we put a Gaussian prior on the mean

f(u) ∼ GP
(
β, K(u,u′)

)
, where β ∼ N (0, σ2

β I). (5a)
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By integrating out the parameter β, this can be reformulated as a zero mean gp

f(u) ∼ GP
(
0, K(u,u′) + σ2

β I
)
. (5b)

3.2 Vector-Valued Covariance Functions

The covariance function (a.k.a. kernel) is the crucial component when modeling
using a gp. This function encodes the assumptions we make on the functions to
be learned. For modeling smooth functions (as desired in Item 3 in Section 2)
with scalar output the most common choice is the squared exponential (se) co-
variance function

K(u,u′) = k(u,u′) = σ2
f e
− ‖u−u′ ‖2

2l2 , (6)

where σf is the expected amplitude and l the expected length-scale of the func-
tion we want to learn. This covariance function can be extended for learning
functions with multiple outputs as presented below. Learning functions with
multiple outputs has recently attracted more attention. A review can be found in
Álvarez et al. (2012), which discusses different kernels for learning vector-valued
functions.

Diagonal Squared Exponential Covariance Function

The most obvious extension of (6) to multiple outputs is to model each compo-
nent fi(u) separately using a scalar se covariance functions resulting in a diagonal
se kernel

K(u,u′) = σ2
f e
− ‖u−u′ ‖2

2l2 · Iny , (7)

where ny is the dimension of the output. The kernel (7) can be extended to have
different hyperparameters l and σf for each output dimension. This kernel was
used by Vallivaara et al. (2010) and Vallivaara et al. (2011) in modeling the mag-
netic field of an indoor environment. However, this kernel does not allow for the
possibility of modeling correlations between the different components fi(u). Spe-
cially, it does not produce functions which necessarily obey the field equations
(1). This is made possible by the two covariance functions introduced below.

Divergence- and Curl-Free Covariance Functions

A kernel for learning divergence-free vector fields was first introduced by Nar-
cowich and Ward (1994). Based on the scalar se kernel (6), this kernel reads

KB(u,u′) = σ2
f e
− ‖u−u′ ‖2

2l2 ·


(

u − u′

l

) (
u − u′

l

)T
+

(
ny − 1 − ‖u − u′‖2

l2

)
Iny


 (8)
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which ensures that all functions sampled from a gp with such a kernel will be
divergence-free. Similarely, Fuselier Jr (2006) introduced a kernel for learning
curl-free vector fields, where the extension of (6) reads

KH(u,u′) = σ2
f e
− ‖u−u′ ‖2

2l2


Iny −

(
u − u′

l

) (
u − u′

l

)T . (9)

The interested reader can refer to Fuselier Jr (2006); Macêdo and Castro (2008);
Baldassarre et al. (2010) for more analysis and discussion on these two kernels.

3.3 Regression

gps are also capable of handling noisy measurements yk of the function f(uk). We
consider the measurement model

yk = f(uk) + ek , ek ∼ N (0,Σ), (10)

where ek has the interpretation of being measurement noise. Our objective is
to use a set of measurements together with their corresponding inputs {uk , yk |k =
1, . . . , N } to learn the function values for other test inputs f∗ = [f(u∗1)T . . . f(u∗N∗ )

T]T.
In the same manner as in (4) the joint distribution for the measurements y =[
yT

1 . . . yT
N

]T
and the test output f∗ is

[
y
f∗

]
∼ N

(
0,

[
K(U,U ) + IN ⊗ Σ K(U,U∗)

K(U∗, U ) K(U∗, U∗)

])
, (11)

where ⊗ denote the Kronecker product,

K(U,U∗) =




K(u1,u∗1) . . . K(u1,u∗N∗ )
...

...
K(uN ,u∗1) . . . K(uN ,u∗N∗ )




(12)

and similarly for the other matrices K(U,U ), K(U∗, U ) and K(U∗, U∗). From the
joint Gaussian distribution p(y, f∗) in (11) the conditional distribution p(f∗|y) can
easily be computed as

f∗|y ∼ N (µf∗ ,Σf∗ ), (13a)

µf∗ = KT∗ K−1
y y, Σf∗ = K∗∗ − KT∗ K−1

y K∗, (13b)

where K = K(U,U ), K∗ = K(U,U∗), K∗∗ = K(U∗, U∗) and Ky = K(U,U ) + IN ⊗ Σ.

3.4 Estimating Hyperparameters

The hyperparameters of the covariance function K(u,u′) and the measurement
noise covariance matrix Σ can be estimated from the data {uk , yk |k = 1, . . . N , },
which makes the learning of the function values f∗ completely data driven in
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the sense that no tuning parameters are needed. This will be accomplished by
maximizing the log marginal likelihood log p(y, |U, θ), where θ denote the hyper-
parameters of K(u,u′) and Σ. From (11) we have that y|U, θ ∼ N (0, Ky), which
gives

log p(y|U, θ) = −1
2

yTK−1
y y − 1

2
log |Ky| −

nyN

2
log 2π. (14)

Following Rasmussen and Williams (2006), the gradient of the log marginal like-
lihood w.r.t. the hyperparameters can be computed as

∂
∂θj

log p(y|U, θ) =
1
2
tr

(
(ααT − K−1

y )
∂Ky

∂θj

)
, (15)

where α = K−1
y y. This enables an efficient gradient based optimizing routine for

maximizing (14). In this work the bfgs method (Nocedal and Wright, 1999) has
been used.

4 Modeling

The gp framework will now be combined with the electromagnetic theory to con-
struct a model for jointly estimating the B- and the M-field using a three-axis
magnetometer. We assume that the measurements of the magnetic field are cor-
rupted with Gaussian noise

yB,k = fB(uk) + eB,k , eB,k ∼ N (0, σ2
n I3), (16a)

where yB,k is a three-axis magnetometer measurement transformed into world
coordinates and fB(uk) is a function being equal to the B/µ0-field (the B-field
normalized with µ0) at location uk . As discussed in Item 1 in Section 2 we also
know that the M-field is zero at location uk , where the measurement yB,k was col-
lected. This information is incorporated by considering a noise free measurement
yM,k = 0 with the following measurement equation

yk,M = fM(uk) = fB(uk) − fH(uk), (16b)

where fM(uk) and fH(uk) are functions corresponding to the M- and the H-field
and where we have used the coupling given by (2). Note that this coupling is the
key equation for our model since it enables us to jointly estimate the B-field as
well as the M-field in contrast to prior work.

We put this into a statistical framework by considering fB and fH (and con-
sequently also fM via (16b)) to be gps. Following the discussion in Item 2 in
Section 2 we consider fB and fH to have a common constant mean function (corre-
sponding to the earth magnetic field) and we use the covariance functions given
in (8) and (9) to preserve the divergence- and curl-free properties of fB and fH
according to the field equations (1). This gives

fB ∼ GP
(
β, KB(u,u′)

)
, fH ∼ GP

(
β, KH(u,u′)

)
, (16c)

β ∼ N (0, σ2
β I3), (16d)
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where we have used a Gaussian prior on the unknown mean β.
The model (16) can be reformulated into the standard model description out-

lined in Section 3

yk = f(uk) + ek , (17a)

f(u) ∼ GP
(
0, K(u,u′)

)
, ek ∼ N (0,Σ), (17b)

by augmenting the measurements and the noise covariance matrices

yk =
[

yB,k
yM,k

]
and Σ =

[
σ2
n I3 03
03 03

]
(17c)

as well as the outputs of the functions that we want to learn

f(u) =
[

fB(u)
fM(u)

]
=

[
I3 03
I3 −I3

] [
fB(u)
fH(u)

]
∼ GP (0, K), (17d)

where K = K(u,u′). The augmented function f : R
3 → R

6 will then have the
covariance function

K =
[
KB + σ2

β I3 KB

KB KB + KH

]
, (17e)

where the relation f(u) ∼ GP (0, K)⇒ Cf(u) ∼ GP (0, CKCT) has been used as well
as (5) to reformulate this as a zero mean gp. Finally, we encode
θ , [log σ2

f log l2 log σ2
β log σ2

n ], where the logarithm ensures the positiveness

of σ2
f , l2, σ2

β and σ2
n .

5 Results

The ability of the proposed model to model magnetic fields will be evaluated by
using a simulated data set as well as a real world data set. The results will be
reported in this section.

5.1 Simulated Experiment

The setup with a uniformly magnetized sphere presented in Example 1 is used
to estimate the B-, H- and M-field given in Figure 1. Consider a sphere cen-
tered at the origin with radius 3 m having a uniform magnetization of M =[
0 1 0

]T
A m−1. In total N = 50 training inputs are chosen from a region out-

side the sphere and inside a square with dimension 10 m × 10 m aligned with
the xy-plane, which also is centered at the origin. For each training input the
corresponding training output is computed using the true field perturbed with
Gaussian noise having a standard deviation of σn = 0.01. The test inputs are
chosen from a grid xy-plane with an interval of 0.75 m. The estimated magnetic
field at these test inputs is then compared with the true magnetic fields. Both
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the se kernel (7) and the proposed kernel (17) are applied to the data, where the
hyperparameters for each kernel are estimated as described in Section 3.4. The
results are given in Figure 2.

Both the se kernel and the proposed kernel (17) are able to reproduce the
character of the true B-field as given in Figure 1a. By comparing the estimated B-
field with the true B-field, the proposed covariance function is only slightly better
with a root mean square error of 0.33 A m−1, whereas the corresponding number
for the se covariance function is 0.38 A m−1. However, the great advantage with
the proposed covariance function is its ability to estimate the M-field as shown in
Figure 2c, which resembles the true M-field in Figure 1c. Both the location of the
magnetic source and the direction of its magnetization are correctly captured.
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(a) Estimated B-field
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(c) Estimated M-field

Figure 2: Estimated fields induced by a uniformly magnetized sphere (see
Example 1) using our proposed kernel (17) (blue) and the se kernel (6)
(green) together with the training data (red).

(a) Estimated shape of table (b) Real shape of table

Figure 3: Estimated magnetic content in a table turned upside down.
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5.2 Real World Experiment

A real world experiment was conducted in a magnetic environment consisting
of a table with metal frame turned upside down as displayed in Figure 3b. A
three axis magnetometer has been used to measure the magnetic field at various
locations around that table and the position and the orientation of the magne-
tometer unit was measured using an optical reference system (Vicon). The mag-
netometer measurements were then transformed into world coordinates using
the orientation provided by the reference. This data has been downsampled to
2 Hz to reduce the number of data points. Together with the position estimate
from the reference this comprises the training data as displayed in Figure 4. For
this dataset the hyperparameters have not been estimated but rather tuned to
σf = 0.3, l = 0.15, σb = 1 and σn = 0.3 for reasons discussed below. In Figure 3a
the region of the M-field which exceeds 30% of the maximal estimated M-field
is displayed. This estimated magnetic map has visual similarities with the real
table in Figure 3b. All four table legs can be distinguished as well as the frame
on which the table top is attached.
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Figure 4: The training data in the real world experiment seen from above
together with the trajectory that the magnetometer has followed.

The proposed gp (as any other stationary gp) is restricted to using the same
set of hyperparameters for all data. This is problematic in environments which
have different characteristic length scales and signal amplitudes in different re-
gions in space. When estimating the hyperparameters in the proposed manner
using data collected in such environments, the result might not be sound. The
hyperparameters have therefore been considered as tuning parameters.
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6 Conclusion and Future Work

We have introduced a Bayesian nonparametric model for jointly estimating both
the magnetic field and the magnetic sources. The model is based on a vector-
valued stationary Gaussian process (gp) with a covariance function exploiting
the divergence- and curl-free properties of the magnetic field derived from the
electromagnetic theory. The model has been compared with a component-wise
gp proposed by Vallivaara et al. (2010) for modeling magnetic fields. In the com-
parison only a small improvement in estimation performance could be reported.
However, the great advantage of the proposed method is its ability to also model
the magnetic sources in a nonparametric manner, which has been illustrated us-
ing both simulated and real world data.

In future work we will extend our nonparametric model to handle more com-
plex environments. One promising idea is to use a multiplicity of gps governed
by a hierarchical Dirichlet process (Teh et al., 2006). Our final target is a full
slam framework.
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Abstract

In this paper, we propose using Gaussian processes to track an ex-
tended object or group of objects, that generates multiple measure-
ments at each scan. The shape and the kinematics of the object are
simultaneously estimated, and the shape is learned online via a Gaus-
sian process. The proposed algorithm is capable of tracking different
objects with different shapes within the same surveillance region. The
shape of the object is expressed analytically, with well-defined confi-
dence intervals, which can be used for gating and association. Further-
more, we use an efficient recursive implementation of the algorithm
by deriving a state space model in which the Gaussian process regres-
sion problem is cast into a state estimation problem.

1 Introduction

Target tracking involves estimating the kinematics of an unknown number of ob-
jects in a surveillance region based on a set of measurements collected by one or
multiple sensors. In the most common formulation of the problem, each object
is considered to be a point source, and the measurements are assumed to be gen-
erated from the vicinity of the object’s center. This assumption will simplify, for
example, the computation of the possible association hypothesis between the es-
timated targets and the available measurements. Thanks to the increasing avail-
ability of computational resources, more complex models can now be used for
defining object(s), and the inference techniques for such models are drawing con-
siderable interest.

In extended target tracking models, each target is assumed to have an extent
from which the measurements are generated. The extent of a target can be mod-
eled as a circle, ellipse, rectangle or other simple shapes (Koch, 2008; Feldmann
et al., 2011; Granström et al., 2011). Several models have been proposed in the
literature for extended object tracking.

A Bayesian approach was first proposed in Koch (2008) for elliptical extended
targets, where the inverse Wishart distribution is used as a prior for the unknown
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elliptical target extent. However, in this model, there exists a coupling between
the target extent and the target kinematic state, which is restrictive. This issue
was later addressed in Feldmann et al. (2011), where an approximate inference
method was proposed for using random matrices in extended target tracking. In
Orguner (2012), an approximate measurement update that relies on a variational
Bayes approximation was proposed for the random matrix-based extended target
tracking. Two different random matrix-based models were proposed in Lan and
Li (2012a). The extension of these models to multiple ellipses was presented in
Lan and Li (2012b). In a recent report (Granström and Orguner, 2014), a new pre-
diction update for random matrix-based extended target models was proposed.
The method proposed in that work focuses on the time update, and the possible
rotation of the target extent is taken into account. In Granström et al. (2011),
rectangular and elliptical extended objects were considered, and an extended
Kalman filter was used for inference. The target extent can also be defined as a
parametric surface generating measurements (Baum and Hanebeck, 2009, 2011).
Trackers for the more general class of star-convex shapes were introduced by
Baum and Hanebeck (2009) and further discussed in Sun et al. (2012), Baum
(2013) and Baum and Hanebeck (2014). Image-based contour trackers have also
been proposed and discussed in the literature. Among the different parameter-
izations of the contour, B-splines have been the most common. Using Kalman
filters for tracking both the shape and position of such contours has been pro-
posed (Blake et al., 1993, 1995; Li et al., 2004). However, particle filter solutions
are preferred to achieve robust trackers (Isard and Blake, 1998; Li et al., 2003).

In this article, we propose using Gaussian processes (gps) to model the bound-
ary of an unknown object. gps have been widely used by the machine learn-
ing, statistics, and signal processing communities for identification, classifica-
tion, and regression (Rasmussen and Williams, 2006) because of their tractable
posterior computation and attractive analytical properties. The model proposed
herein is flexible enough to represent a large variety of shapes and provides an
analytical representation of the objects’ extents. The boundaries and the mea-
surement predictions are more precise than rough elliptical approximations. We
believe that the assumptions of point targets or elliptical extents are restrictive
and that tracking objects with unknown and complex shapes is becoming more
important with the increasing accuracy and resolution of the sensors. The ability
to learn and track unknown shapes also provides better accuracy and a priori
information for the detection algorithms in which the measurements (features of
interest) are extracted from raw sensor data, e.g., images. Accurate knowledge of
the object’s shape, which is summarized into an analytical expression, is also a
critical element for target tracking algorithms in which the association between
the measurements and the targets has a crucial role on the performance of the
tracker. Furthermore, the ability to learn the shapes of the targets can be used for
classifying and extracting the attribute information of the targets.
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2 Target Extent Model

In conventional tracking methods, targets are considered to be point sources that
result in sensor detections. Moreover, in most cases, they are assumed to gen-
erate at most one measurement per scan (Bar-Shalom and Fortmann, 1987). In
contrast to these traditional assumptions, we will assume that each target can
generate multiple measurements from multiple sources on its extent, e.g., multi-
ple reflection points can be detected on the same object by a radar. The object
extent can be modeled as a simple geometric primitive, such as a rectangle or an
ellipse. In this study, the target extent will be described via star-convex shapes. A
set S(xk) is called star-convex if each line segment from the center to any point is
fully contained in S(xk). By definition, convex sets are subsets of star-convex sets.
The contour of star-convex shapes can be described in polar coordinates with a
radial function r = f (θ) that maps the angle to the radius, which is convenient
for representing and learning abstract shapes. An example shape is shown in
Figure 1.
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Figure 1: Description of star-convex shapes using a radial function r = f (θ).

Based on the star-convex description, two different measurement models will
be considered in this work

1. Target contour model: The measurement equation for the noisy detections
originating from the target contour can be written as

yk,l = rk + p(θk,l)f (θk,l) + ek,l , (1)

where rk is the target position at time index k; {yk,l}nkl=1 are the nk measure-
ments collected at time index k; {θk,l}nkl=1 denote the angles describing the
origin of these measurements on the target contour; ek,l ∼ N (0, R) repre-
sents the zero-mean measurement noise, which is assumed to be Gaussian
with covariance R; and p(θk,l) is an orientation vector defined as

p(θk,l) ,
[
cos(θk,l)
sin(θk,l)

]
. (2)
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2. Target surface model: If the measurements are assumed to originate from
the interior of the target region, the model (1) can be extended by consider-
ing

yk,l = rk + sk,lp(θk,l)f (θk,l) + ek,l , (3)

where the scaling component is sk,l ∈ [0, 1].

By augmenting a parametrized version of the unknown radial function r = f (θ)
with the target position rk and its kinematics, in Section 5, we will derive a state
space model that enables the simultaneous estimation of the target position and
its shape. An orientation state ψk will also be added to track orientation changes
of the target. The surface model is further described in Section 8. Additionally,
note that by parameterizing star-convex shapes in this manner, the target position
rk and target contour f (θ) will not be unique. Different combinations of rk and
f (θ) can provide the same target contour.

Star-convex shapes have been introduced in the context of target tracking by
Baum and Hanebeck (2009) and further elaborated in Sun et al. (2012), Baum
(2013) and Baum and Hanebeck (2014). In all these contributions, a Fourier se-
ries expansion was used to parametrize the unknown radial function f (θ). This
approach provides great flexibility and is also a standard choice for describing
periodic signals. However, in a stochastic setting, this approach has a number
of limitations. In this work, we will instead investigate the use of gps to model
the radial function. In contrast to the Fourier series expansion in its basic form,
the gp is a probabilistic model that allows the specification of the posterior distri-
bution of the learned function in a natural way. Furthermore, it is defined in the
spatial domain rather than in the frequency domain, which enables local learning
of the target contour. In other words, while learning the observable parts of the
target extent, the uncertainty around the unobserved sections can be maintained,
which provides more accurate gates for future observations.

Unfortunately, the gp regression is a batch (off-line) method that requires all
the data to be available prior to the inference. To enable the simultaneous esti-
mation of the kinematic state and the extent, we will seek approximations and
formulate the gp model as a state space model. By augmenting this state space
model with the state space description of the kinematic states (position, orienta-
tion and velocities), an extended Kalman filter is used to simultaneously estimate
all parameters. Prior to introducing the details of this special inference technique,
the standard gp regression and its extension will be explained in the following
section.

Throughout this paper, scalars or scalar-valued functions are denoted with
non-bold symbols, e.g., θ, vectors or vector-valued functions are denoted with
bold symbols, e.g., y, and matrices are denoted with capitalized symbols, e.g., P .
Furthermore, Cartesian coordinates are denoted using Sans-serif font, e.g., x and
y, to distinguish them from other variables.
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3 Gaussian Processes

A Gaussian process (gp) (Rasmussen and Williams, 2006) is a stochastic process
suitable for modeling spatially correlated measurements. gps can be considered
a distribution over functions. This distribution is uniquely defined with its mean
function µ(u) and covariance function k(u, u′) of a function f (u) as

µ(u) = E[f (u)], (4a)

k(u, u′) = E[(f (u) − µ(u))(f (u′) − µ(u′))T], (4b)

and the Gaussian process is denoted as

f (u) ∼ GP
(
µ(u), k(u, u′)

)
, (5)

where u is the function input.
The gp is a generalization of the multivariate Gaussian probability distribu-

tion in the sense that the function values evaluated for a finite number of inputs
u1, . . . , uN are normally distributed




f (u1)
...

f (uN )



∼ N (µ, K), where µ =




µ(u1)
...

µ(uN )



, K =




k(u1, u1) · · · k(u1, uN )
...

...
k(uN , u1) · · · k(uN , uN )



. (6)

In this work, our model will be formulated with a zero-valued mean function.
The following description will be based on that assumption. However, the formu-
lation can easily be generalized to a non-zero mean function; see Rasmussen and
Williams (2006) for further details.

3.1 Gaussian Process Regression

The gpmodel is primarily used to incorporate training data to learn an unknown
function. Consider the following measurement model

yk = f (uk) + ek , ek ∼ N (0, R), (7)

where yk is a noisy measurement of the function f (·) at the training input uk
and ek is the measurement noise. The objective is to use a set of measurements

y ,
[
y1 . . . yN

]T
together with their corresponding inputs u ,

[
u1 . . . uN

]T

to learn the function values f ,
[
f (uf

1) . . . f (uf
N f )

]T
for other test inputs uf ,

[
uf

1 . . . uf
N

]T
. In the same manner as in (6), the joint distribution for the mea-

surements y and the function values f is

[
y
f

]
∼ N

(
0,

[
K(u,u) + IN ⊗ R K(u,uf)

K(uf,u) K(uf,uf)

])
, (8)
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where ⊗ denotes the Kronecker product and

K(u,uf) =




k(u1, u
f
1) . . . k(u1, u

f
N f )

...
...

k(uN , u
f
1) . . . k(uN , u

f
N f )



. (9)

From the joint Gaussian distribution p(y, f) in (8), the conditional distribution
p(f|y) can easily be computed as

p(f|y) = N (Ay, P ), (10a)

where

A = K(uf,u)K−1
y , (10b)

P = K(uf,uf) − K(uf,u)K−1
y K(u,uf), (10c)

Ky = K(u,u) + IN ⊗ R. (10d)

To compute (10b)-(10c), a Cholesky decomposition of Ky is preferred rather than
computing its matrix inversion explicitly because it is faster and numerically
more stable.

3.2 Recursive Gaussian Process Regression

In many applications (for example, target tracking), all the measurements may
not be available as a batch, but they might be collected sequentially in time. In
such cases, one should aim for recursive solutions for efficient implementation
and online inference. In this setting, at each time index k, we are interested in
computing the posterior p(f|y1:k) online. For such applications, it is not feasible
to use the standard gp regression as presented in the previous section because of
the following two reasons:

First, the formulation in (10) is a batch formulation in which all data y1:k are
needed to perform inference and cannot be used to update the posterior recur-
sively. Second, the complexity of the regression problem increases cubically with
the number of measurements, which is not feasible for an online implementation.
We are therefore aiming for an approximate recursive update of the posterior.

In the literature, a few methods have been proposed for recursive gp regres-
sion. In Osborne (2010), the recursive implementation is based on a sequential
update of the Cholesky factor of the matrix Ky . In this manner, the full Cholesky
decomposition does not have to be recomputed each time a new measurement is
received. Hartikainen and Särkkä (2010) formulate the gp as a state space model
and solve the regression problem with a Kalman filter. This approach only works
for one-dimensional inputs, and the measurements are required to be processed
in a sequential order with respect to the input dimension. In Huber (2013, 2014),
the gp is approximated with a finite number of basis points, which are updated
by further approximations.
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In this work, we present a recursive method that resembles the one in Huber
(2014). Similar to Huber (2013), we explicitly define the recursions as a state
space model to which we can apply a Kalman filter. This state space description
will be beneficial in extended target tracking because it can be reformulated for
augmentation with other state space models, for example, a model that describes
the dynamics of target position and target orientation.

We interpret the test inputs uf to be the basis points and f to be their corre-
sponding outputs. By applying Bayes law consecutively on the posterior p(f|y1:N ),
we obtain

p(f|y1:N ) ∝ p(yN |f, y1:N−1)p(f|y1:N−1) ∝ · · · p(yk |f, y1:k−1) · · · p(f)
︸                    ︷︷                    ︸

∝p(f|y1:k )

, (11)

which results in the following recursion

p(f|y1:k) ∝ p(yk |f, y1:k−1) × p(f|y1:k−1). (12)

posterior ∝ likelihood × prior

We will now approximate f to be conditionally independent of the past mea-
surements y1:k−1, which means that f will be the sufficient statistic of all the past
measurements

p(yk |f, y1:k−1) ≈ p(yk |f). (13)

This approximation would be exact if the input values for y1:k−1 were a subset of
the input values for f, and it would be a good approximation if the input values
for y1:k−1 were close to those of f relative to the characteristic length scale of
the covariance function. In our application, the inputs are angles in the interval
[0, 2π]. Because this interval is bounded, it can be adequately covered by a small
number of basis points placed equidistantly within that interval.

As in (8), the measurement yk and the function values f are jointly Gaussian
[
yk
f

]
∼ N

(
0,

[
k(uk , uk) + R K(uk ,uf)
K(uf, uk) K(uf,uf)

])
. (14)

Furthermore, we formulate the likelihood and the initial prior in the same man-
ner as (10)

p(yk |f) = N
(
yk ; H

f
kf, Rf

k

)
, (15a)

p(f) = N
(
0, P f

0

)
, (15b)

with

Hf(uk) =K(uk ,u
f)[K(uf,uf)]-1, (16a)

Rf(uk) = k(uk , uk)+R−K(uk ,u
f)[K(uf,uf)]-1K(uf, uk),

P f
0 =K(uf,uf). (16b)
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By exploiting the structure of this likelihood, the recursive regression can be
computed by implementing a Kalman filter on the following state space model

xf
k+1 = xf

k , (17a)

yk = Hf(uk)x
f
k + ef

k , ef
k ∼ N

(
0, Rf(uk)

)
, (17b)

xf
0 ∼ N

(
0, P f

0

)
, (17c)

where xf
k = f =

[
f (uf

1) . . . f (uf
N f )

]T
is interpreted as the state.

The state space model not only enables efficient inference but also allows us to
design the model for various purposes. First, a dynamical behavior can be added
to the extent very easily. In the case where the unknown function changes over
time, a process noise term can be added to the dynamics as follows:

xf
k+1 = Ffxf

k + wk , wk ∼ N
(
0, Qf

)
, (18)

with

Ff = e−αT I, Qf =
(
1 − e−2αT

)
K(uf,uf). (19)

The parameter α ≥ 0 will determine the speed of the dynamics and can be consid-
ered a forgetting factor. With α = 0, all measurements that have been collected
will be of equal importance, and as α increases, less weight is given to older
measurements. The choice of dynamics in (19) ensures that the stationary state
covariance is K(uf,uf), regardless of the α value, because

P = FfP (Ff)T + Qf ⇒ P = K(uf,uf). (20)

Furthermore, the state space description will allow us to augment the model
with other state space models for joint estimation. This will be presented in Sec-
tion 5, where the kinematic state is augmented with the target extent.

4 Target Contour GP Model

As described earlier, our aim is to describe the target contour using a gp model.
The input to the model is therefore chosen to be the polar angle θ = u, and
the output is the radius r = y, as shown in Figure 1b. The required mean and
covariance functions that define the gp model will be described in the following
subsections.

4.1 Mean Function

In this work, we will consider a constant but unknown mean function µ(θ) = r,
which is interpreted as being the mean radius of the target contour.

f (θ) ∼ GP
(
r, k(θ, θ′)

)
, where r ∼ N

(
0, σ2

r

)
. (21a)
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Figure 2: Periodic covariance function ktot(θ, θ′) given in (25). The kernel is
used for modeling the covariance of the radial extent.

By integrating out the parameter r, the same model can be reformulated as a zero
mean gp

f (θ) ∼ GP
(
0, k(θ, θ′) + σ2

r ). (21b)

4.2 Covariance Function

The covariance function is the crucial component when modeling a gp. This
function encodes the assumptions that we make on the functions to be learned.
The most common choice is the squared exponential (se) covariance function
(Rasmussen and Williams, 2006)

k(θ, θ′) = σ2
f e
− |θ−θ′ |2

2l2 , (22)

where σ2
f is the prior variance of the signal amplitude and l is the length scale

of the function that we want to learn. This covariance function provides high
correlations for two radial distances f (θ) and f (θ′) if their corresponding angles
θ and θ′ are close to each other and less correlation if they are further apart.

To encode the periodicity of f (·) in terms of the angle θ, (22) is slightly modi-
fied as

k(θ, θ′) = σ2
f e
−

2 sin2
( |θ−θ′ |

2

)

l2 , (23)

which can be derived using a non-linear mapping of the input (MacKay, 1998).
With this modification, f (θ) and f (θ + 2π) will be perfectly correlated as desired
because

ρ(f (θ), f (θ + π)) =
k(θ, θ + 2π)√

k(θ, θ)
√
k(θ + 2π, θ + 2π)

= 1. (24)

Finally, the contribution from the mean function as described in Section 4.1
is included in the covariance function, resulting in

ktot(θ, θ
′) = σ2

f e
−

2 sin2
( |θ−θ′ |

2

)

l2 + σ2
r . (25)



158 Paper D Extended Target Tracking Using Gaussian Processes

The final covariance function is shown in Figure 2. By design, the model
function has a periodicity of 2π because ktot(θ+2π, θ′) = ktot(θ, θ′). Additionally,
note that the radius for different angles is always positively correlated, and the
correlation increases if the angular distance is shorter. Furthermore, because we
treat the radius r as a random variable, this approach will allow us to describe
objects of various sizes.

4.3 Further Extensions

The covariance function (25) will be used throughout the results section in this
work. However, to illustrate the flexibility of the gp modeling, some examples
will be presented below on how further assumptions on the target shape could
be included.

Symmetric Model

For many targets, there are symmetry assumptions on the shape of the target.
Designing the covariance function to have a period of π rather than 2π gives

k(θ, θ′) = σ2
f e
− sin2(|θ−θ′ |)

2l2 . (26)

By using this covariance function, only the functions where f (θ) = f (θ + π) will
be learned. Such an assumption will be valid for target shapes that do possess
two lines of symmetry (symmetric left-right and back-forward). This would, for
example, be valid for shapes S1 and S2 in Figure 4 but not for shape S3.

Conservative Model

If we know that the target has a certain predefined radius r0, such information
can be incorporated using a non-zero mean Gaussian prior on r ∼ N (r0, σ2

r ) in
(21), giving

f (θ) ∼ GP
(
r0, k(θ, θ′) + σ2

r ). (27)

Furthermore, by selecting σr and σf to be small, the target radius can be kept
close to radius r0, resulting in a conservative and robust version of the algorithm.
This property can be desired in high clutter scenarios or when the measurements
are coming from the target surface, where the measurements are less informative
compared to contour measurements. Moreover, note that to handle a non-zero
mean µ(θ) = r0 , 0, the gp regression presented in Sections 3.1 and 3.1 has
to be changed accordingly. In particular, this requires performing a non-zero
initialization such that xf

0 ∼ N (µf
0, P0), where µf

0 = [r0, . . . , r0]T.

Explicit Basis Functions

The mean target shape does not necessarily have to be a circle. As a further
extension, a set of fixed basis functions h(θ) with coefficients β can be used to
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specify the mean function

g(θ) = f (θ) + h(θ)Tβ, (28a)

where

f (θ) ∼ GP
(
0, k(θ, θ′)

)
and β ∼ N (b, B). (28b)

Such a model indicates that the target shape can be described with a parametric
model given by h(θ)Tβ, with the residual being modeled with a gp. In a manner
similar to that used in Section 4.1, by integrating out the coefficients β, we obtain

g(θ) ∼ GP
(
h(θ)Tb, k(θ, θ′) + h(θ)TBh(θ′)

)
. (28c)

5 Augmented State-Space Model

In this section, we will derive the augmented state space model, consisting of the
dynamic equation, the measurement equation, and the initial state covariance in
the form

xk+1 = Fxk + wk , wk ∼ N (0, Qk) , (29a)

yk,l = hk,l(xk) + ek,l , ek,l ∼ N
(
0, Rk,l

)
, (29b)

x0 ∼ N
(
µ0, P0

)
, (29c)

for joint estimation of the target extent xf
k and the target state x̄k . We will de-

fine the target position rk , the target orientation ψk and the optional additional
state x∗k separately within the target state vector because they are required in the
update equations. Consequently, we consider the augmented state vector

xk ,
[
x̄Tk (xf

k)
T
]T
, where (30a)

x̄k ,
[
(rk)T ψk (x∗k)

T
]T
. (30b)

The optional additional state x∗k denotes the remaining state variables. In this
work, it corresponds to the kinematic state of the target (velocity and angular
velocity).

5.1 Measurement Model

Each measurement yk,l is associated with an angle θGk,l that depends on its angular
location relative to the target position rk

θGk,l(rk) = ∠(yk,l − rk). (31a)

This angle can also be described in the local target coordinate frame using the
target orientation state ψk

θLk,l(rk , ψk) = θGk,l(rk) − ψk ; (31b)
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Figure 3: Each measurement yk,l is associated with an angle θk,l relative to
the target center rk . This angle can either be expressed in global coordinates
θGk,l or local coordinates θLk,l , where xG/yG and xL/yL are the basis vectors
of the two coordinate systems, respectively, and ψk is the target orientation
angle.

see Figure 3 for a graphical illustration of this geometry. Note that the angles
depend on the unknown target position rk and the unknown target orientation
ψk .

The angles can now be used in (1) to describe the relation between the mea-
surement and the state as

yk,l = rk + pk,l(rk)f
(
θLk,l(rk , ψk)

)
+ ēk,l , (32a)

where ēk,l ∼ N (0, R) is the measurement noise. By combining (2) and (31a), the
orientation vector can be expressed as

pk,l(rk) = p
(
θGk,l(rk)

)
=

yk,l − rk
‖yk,l − rk‖

. (33)

Note that the radial function f (·) describes the target extent in the local coor-
dinate frame and the angles θLk,l(rk , ψk) are the input arguments of that function.

By using the state space description of the gp as derived in Section 3.2, the
standard measurement equation can be written as follows:

yk,l = rk + pk,l(rk)
[
Hf

(
θLk,l(rk , ψk)

)
xf
k + ef

k,l

]
+ ēk,l

= rk + H̃l(rk , ψk)x
f
k︸               ︷︷               ︸

=hk,l (xk )

+ pk,l(rk)e
f
k,l + ēk,l

︸              ︷︷              ︸
=ek,l

(34a)

= hk,l(xk) + ek,l , ek,l ∼ N
(
0, Rk,l

)
, (34b)
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where the measurement model and the new measurement noise covariance are
given by

H̃l(rk , ψk) = pk,l(rk)H
f
(
θLk,l(rk , ψk)

)
, (34c)

hk,l(xk) = rk + H̃l(rk , ψk)x
f
k , (34d)

Rk,l = pk,lR
f
k,lp

T
k,l + R, (34e)

pk,l = pk,l(rk), Rf
k,l = Rf

(
θLk,l(rk , ψk)

)
. (34f)

Note that since the measurement noise is already included in (34e), the measure-
ment noise variance in (16b) can be omitted.

5.2 Motion Model

The target state x̄k = [(rk)T, ψk , (x∗k)
T]T is described with a linear state space

model

x̄k+1 = F̄x̄k + w̄k , w̄k ∼ N
(
0, Q̄

)
, (35a)

x̄0 ∼ N
(
µ̄0, P̄0

)
, (35b)

as commonly performed in target tracking applications.
Together with the dynamical description of the target extent in (18), we con-

struct an augmented description of the dynamics.

xk+1 = Fxk + wk , wk ∼ N (0, Q) , (36a)

x0 = N
(
µ0, P0

)
, (36b)

where

xk =
[
x̄k
xf
k

]
, F =

[
F̄ 0
0 Ff

]
, Q =

[
Q̄ 0
0 Qf

]
, µ0 =

[
µ̄0
0

]
, P0 =

[
P̄0 0
0 P f

0

]
, (37)

where P f
0 is given by (16b), and Ff and Qf are given by (19). The matrices F̄ and

Q̄ are given later in Section 9.2.

5.3 Discussion

In Huber (2014), further augmenting the state with hyper-parameters is pro-
posed. Such an approach may be suitable for a vanilla problem because the
hyper-parameter tuning of gpmodels primarily requires batch processing of the
measurements and multiple iterations. Unfortunately, in a problem such as on-
line target tracking, neither processing the batch data nor performing iterations
is feasible. Furthermore, the uncertainties in a target tracking problem arise from
many sources, such as target dynamics model mismatch, false alarms, missed de-
tections, and clutter measurements. Moreover, in ETT, the centroid of the target
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extent is also unknown and needs to be estimated. Hence, under these uncertain-
ties, we believe that it is more feasible to assume an expected size and length scale
for a target rather than online tuning. Later, in the results section, it is shown that
both in simulations and real data, targets of different size can be tracked using
the same set of hyper-parameters.

6 Inference

An efficient implementation is essential in many target tracking applications. The
state space model (29) derived in the previous section allows us to utilize the
standard inference techniques to compute the posterior distribution of the target
state vector. In this work, we will use an extended Kalman filter (ekf). To recur-
sively update the posterior, we will construct an augmented model in which all
measurements {yk,l}nkl=1 within one scan are augmented

yk =
[
yT
k,1, · · · , yT

k,nk

]T
, (38a)

Rk = diag[Rk,1, · · · , Rk,nk ], (38b)

hk(xk) =
[
hk,1(xk)T, · · · , hk,nk (xk)

T
]T
. (38c)

The corresponding state space description is given as follows:

xk+1 = Fxk + wk , wk ∼ N (0, Q) , (39a)

yk = hk(xk) + ek , ek ∼ N (0, Rk) , (39b)

x0 ∼ N
(
µ0, P0

)
. (39c)

An estimate x̂k can now be computed using a nonlinear filtering technique. In
this work we have used an extended Kalman filter, see Appendix A for the re-
quired recursions. Note that these recursions require a gradient of the measure-
ment function dh(xk )

dxk
, which can be computed analytically; see Appendix B.

7 Predictive Likelihood and Gating

In the presence of clutter and/or multiple targets, a gating step could optionally
be included to reject the measurements that are unlikely to originate from the tar-
get. By using the gpmodel, the predictive likelihood and gates for the predicted
measurements can be computed by using the standard Kalman filter equations
(Blackman and Popoli, 1999, Chapter 6.3). We start by computing the predictive
likelihood, which is available in analytical form

yk,l ∼ p(yk,l |y1:k−1) = N
(
ŷk|k−1,l , Sk,l

)
, (40a)
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where

Sk,l = Hk,lPk|k−1H
T
k,l + Rk,l , (40b)

Hk,l =
d
dxk

hk,l(xk)|xk=x̂k|k−1
, (40c)

ŷk|k−1,l = hk,l(x̂k|k−1), (40d)

where hk,l and Rk,l are defined in (34d) and (34e). The gating is performed by
comparing the statistics of the residual vector, ỹ1:k−1,l , yk,l − ŷ1:k−1,l , with a
threshold ρ,

ỹT
1:k−1,lSk,l ỹ1:k−1,l ≷ ρ. (41)

The analytical expression of the target extent provides gates for future measure-
ments that incorporate target shape information.

8 Surface Model using Scaling Parameter

The presented model can also be extended to address measurements that origi-
nate from an interior point of a target extent rather than the contour. The mea-
surements originating inside the target boundary are modeled by including a
scaling parameter sk,l for each measurement, similar to Sun et al. (2012); Baum
et al. (2010b). The measurement equation (34a) can therefore be modified as

yk,l = rk + sk,lH̃l(rk , ψk)x
f
k , ek,l ∼ N

(
0, Rk,l

)
, (42)

where sk,l is a random variable on the interval [0,1]. With the assumption that the
measurement source is uniformly distributed over the star-convex region, Baum
and Hanebeck (2014) have shown that the squared scaling factor is uniformly
distributed

s2k,l ∼ U [0, 1]. (43)

The mean and variance of sk,l can be computed analytically

µs = E(sk,l) =
2
3
, (44a)

σ2
s = Var(sk,l) = E(s2k,l) − (E(sk,l))

2 =
1

18
. (44b)

To be able to use a Kalman filter for inference, the scaling factor is approximated
by a Gaussian random variable that has the same first two moments,

sk,l
approx.∼ N

(
µs, σ

2
s

)
. (45)

The measurement model can now be modified as

yk,l = rk+µsH̃l(rk , ψk)x
f
k︸                 ︷︷                 ︸

=h̃l (xk )

+ (sk,l−µs)H̃l(rk , ψk)xf
k+ek,l︸                            ︷︷                            ︸

=ẽk

= h̃l(xk) + ẽk,l , ek,l ∼ N
(
0, R̃k,l

)
, (46a)
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where the measurement model and the measurement noise covariance are given
by

h̃l(xk) = rk + µsH̃l(rk , ψk)x
f
k , (47a)

R̃k,l = Rk,l + σ2
s H̃k,lx

f
k(x

f
k)

TH̃T
k,l , (47b)

H̃k,l = H̃l(rk , ψk). (47c)

By substituting the measurement function (34d) with (46a), the algorithm can be
modified to track extended targets where the measurements are coming from the
surface rather than the contour. In addition, note that (34d) will be equal to (46a)
for the following choice of parameters, µs = 1 and σ2

s = 0.

9 Results

In this section, we evaluate the performance of the proposed method and com-
pare it with relevant extended target models in the literature. The evaluation is
performed through both simulations and real data experiments, and the corre-
sponding results are reported in Section 9.2 and Section 9.3, respectively. For
the scenarios in which the measurements originate from the target contour, the
model described in Section 5 has been used. For the scenarios in which the mea-
surements originate from the target surface, the extended model introduced in
Section 8 has been used.

9.1 Alternative Models

Random Matrix Model

The proposed algorithm is compared with a standard random matrix-based ex-
tended target tracker (Feldmann et al., 2011), denoted here as RM. RM approx-
imates the posterior distribution of the kinematic state x̄k ∈ R

nx and the target
extent by using the normal inverse Wishart distribution as follows:

p(x̄k , Xk |y1:k) ≈ p(x̄k |y1:k)p(Xk |y1:k) (48)

= N (x̄k ; m̄k|k , P̄k|k) × IW (Xk ; νk|k , Vk|k),

where m̄k|k , P̄k|k are the mean vector and the covariance matrix of the estimated
kinematic state at time index k. Xk is the symmetric positive definite matrix,
which represents the elliptical extent, and IW (X; ν, V ) denotes an inverse Wishart
distribution defined over the matrix X ∈ S++ with scalar degrees of freedom ν
and parameter matrix V ∈ S++; see (Gupta and Nagar, 1999, Definition 3.4.1).
The corresponding measurement likelihood for the measurements yk,l ∈ R

ny for
a linear model is

p(yk,l |x̄k , Xk) = N (yk,l ;Ck x̄k , zXk + R), (49)
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where R is the measurement noise covariance matrix and Ck is the nx × ny mea-
surement matrix. The scaling factor z is used in this work to account for the
difference between the assumed normal distribution of the measurement sources
and the actual uniform distribution over the target region or the target contour.

In the experiments, we employ an exponential forgetting factor in the time
update of the sufficient statistics νk|k and Vk|k , which is shown to provide the
maximum entropy distribution for the prediction when the transition density for
the target extent is unknown but the change in the prediction density is upper
bounded by a Kullback Leibler distance (see (Özkan et al., 2013, Theorem 1)).
This will help the elliptical model to adapt itself for possible orientation changes
in the examples. The time update for the sufficient statistics of the target extent
is performed as follows.

νk|k−1 = λνk−1|k−1, (50a)

Vk|k−1 = λVk−1|k−1, (50b)

where λ is the forgetting factor.

Random Hypersurface Model using Fourier Series

The proposed model is also compared with a star-convex model based on a Fourier
series expansion of the radial function (Baum and Hanebeck, 2009), which was
previously described in Section 2. Here, the model will be denoted as RHF. An
implementation that is available online1 has been used in the simulations.

9.2 Simulations

Several simulations have been performed to evaluate the performance of the pro-
posed model in comparison with the RM and RHF models introduced above. In
Section 9.2, moving targets or different shapes are considered, where we compare
the proposed model with the RM model, and in Section 9.2, stationary targets of
different sizes are considered, where the proposed model is compared with the
RHF model. All simulation experiments were performed 100 times with different
realizations of the measurement noise and measurement origin at each simula-
tion. The presented numbers are the average of these 100 Monte Carlo runs.

Moving Target

We test the algorithm on moving objects with different shapes. A rectangular
(S1), a cross-shaped (S2) and a triangular (S3) object are simulated to generate
measurements. A trajectory, which is a combination of linear paths and turns, is
generated. The objects first move on a linear path then make a turn and again fol-
low a linear path, always with a velocity of 0.1 m s−1. Note that the constant veloc-
ity assumption is no longer valid during the turns, but the algorithm is required
to be robust enough to handle such model mismatches, which are encountered in

1www.cloudrunner.eu/algorithm/12/random-hypersurface-model/version/2/
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most tracking applications. Furthermore, the objects make a rotation during the
turns, which has to be tracked by the algorithm. The same set of parameters is
used for all different objects to illustrate the robustness and flexibility of the gp
model.

A constant velocity model is used for both the position and the orientation of
moving targets. However, other dynamics, also non-linear, could be considered
as well. By using the well-known time-discrete version of the constant velocity
model, the state dynamics equation (35a) will be

F̄ =
[
1 T
0 1

]
⊗ I3, Q̄ =



T 3

3
T 2

2
T 2

2 T


 ⊗




σ2
q 0 0

0 σ2
q 0

0 0 σ2
qψ



,

where σ2
q and σ2

qψ
are the process noise variances for position and angle, respec-

tively. The process noise standard deviations σq = 0.01 and σqψ = 0.001 have
been used for position and angle, respectively, and α = 0.0001 has been used for
the target extent dynamics. For the proposed model, the hyper-parameters of the
Gaussian process have been set to σr = 2, σf = 2 and l = π/4; the measurement
noise variance has been set to R = 0.12I2; and the sampling time has been set to
T = 1.

The performance of the target extent estimation is evaluated based on the
Intersection-Over-Union (iou) measure. This is a similarity measure used in, for
example, computer vision to compare object shapes for similarity (Alexe et al.,
2012). The iou measure has also been used for evaluation in an extended target
tracking context (Granström et al., 2011). If the true target covers region R0 and
the estimated target covers region R̂, then the ioumeasure is defined as the ratio
of the areas for the intersection and the union of these two regions

iou(R̂, R0) =
area(R̂ ∩ R0)

area(R̂ ∪ R0)
. (51)

By construction, iou(R̂, R0) ∈ [0, 1], where the value 1 corresponds to a perfect
match between these two regions and the value 0 corresponds to the worst possi-
ble match, i.e., the regions are not even overlapping.

The performance of the target position is evaluated using the root-mean-square
error

RMSE(r̂, x0) =

√√√
1
N

N∑

k=1

(r̂k − r0,k)
2, (52)

where r0,k is the true position at time instance k.
For the RM model, we use the scaling factor z = 1/4 in scenarios where the

measurements originate from the target surface and z = 1/2 if they originate from
the target contour to obtain an unbiased estimate of the target extent; see Baum
et al. (2010a) for further details.
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Measurement origin Target contour Target surface
Target shape S1 S2 S3 S1 S2 S3
Example result (Fig.) 4a 4c 4e 4b 4d 4f

Proposed model 0.13 0.12 0.71 0.76 0.88 1.40
Random matrix (RM) 0.33 0.31 0.76 0.25 0.28 0.28

Table 1: Root-mean-square error [m] of the target position in the simulated
scenario using different shapes and target extent models. The numbers are
averaged over 100 MC runs.

Measurement origin Target contour Target surface
Target shape S1 S2 S3 S1 S2 S3
Example result (Fig.) 4a 4c 4e 4b 4d 4f

Proposed model 0.93 0.86 0.86 0.84 0.73 0.64
Random matrix (RM) 0.79 0.57 0.62 0.80 0.61 0.63

Table 2: The mean value of Intersection-Over-Union (iou) between the true
and the estimated target regions in the simulated scenario using different
shapes and target extent models. The numbers are averaged over 100 MC
runs.

The number of measurements at each scan is Poisson distributed. An average
of 10 measurements are generated in each scan. In the first set of simulations,
the measurements are uniformly distributed over the target contour, and in the
second set, the measurements are uniformly distributed over the target surface.
The RMSE values for the position estimates are presented in Table 1, and the iou
values of the extent estimates are presented in Table 2. In Figure 4, an example
of one MC run for each of the setups is presented. The measurements from a few
scans are also illustrated.

As shown in Table 2, the proposed model is better at estimating the target
extent than the RM model. This result is expected because the RM model is re-
stricted to elliptical shapes, whereas the proposed model can handle any star-
convex shape. If the measurements originate from the target surface, the im-
provement in iou is rather small. This is particularly the case for shapes S1 and
S3, which can be fairly well approximated with an ellipse. However, for shape S2,
the improvement is more significant.

If the measurements originate from the target contour, the proposed model
outperforms the RM model in estimating both the target extent and target posi-
tion. The structure of the measurements in this setting can be utilized by the
proposed model, which is not the case for the RM model. However, if the mea-
surements originate from the target surface (see right part of Table 2), the RM
model performs better in position estimation. This can also be observed in Fig-
ure 4b, 4d and 4f, where the position estimates of the proposed method do not
match the true trajectory during the turns. The main reason for the differences in
the performances is that there is less structured information that can be exploited
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(a)Target shape: S1. Measurement origin:
Target contour
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(b) Target shape: S1. Measurement ori-
gin: Target surface
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(c) Target shape: S2. Measurement origin:
Target contour
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(d) Target shape: S2. Measurement ori-
gin: Target surface
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(e) Target shape: S3. Measurement origin:
Target contour
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(f) Target shape: S3. Measurement origin:
Target surface

Figure 4: Example results for tracking different moving targets where
the measurements originate from the target contour in the left column
((a),(c),(e)) and from the target surface in the right column ((b),(d),(f)). True
target (dashed black line) is compared with the proposed method (blue con-
tour and with confidence region in gray and blue trajectory) and the RM
model (red ellipse and trajectory). The blue line co-centered with the target
represents the estimated orientation, and the measurements are depicted as
black stars. Five snapshots out of the 500 scans are presented.
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Figure 5: Target orientation estimate for the scenario illustrated in Figure 4f.

by the gpmodel in the surface measurements than in the contour measurements.
The RM model uses the mean of the measurements when updating the target po-
sition estimates. In scenarios where the measurement mean contains information
about the target centroid, the RM method will have an advantage. Another fac-
tor is that the target center is not uniquely defined for a star-convex shape, and
this results in a bias in the centroid estimates of the gp model. Therefore, the
iou is a more relevant performance measure because it is invariant to the target
center. However, if the target is symmetric, the covariance function presented in
Section 4.3 can be used.

In Figure 5, the orientation estimate is shown for the target in Figure 4f. The
proposed model is able to estimate not only the target position and extent, but
also the target orientation accurately. Such an estimate is not provided by the RM
model, and therefore, the proposed model provides a more detailed description
of the target trajectory than the RM model.

Stationary Target

In total, 100 measurements from the surface of a stationary cross-shaped target
have been generated. The target shape is the same as the one implemented in the
code for the RHF model; see Section 9.1. To evaluate the ability of the proposed
method to estimate targets of different sizes, three different sizes of the target
shape have been considered. The tuning parameters for the RHF model, as given
in the code, have been tailored for medium-sized targets. For the proposed model,
the same hyper-parameters of the Gaussian process have been chosen as in the
previous simulation. In Figure 6a-6c, the results for the three target sizes are
presented.

Table 3 presents the iou averaged over 100 MC runs. The results indicate that
the RHF model performs slightly better for the medium-sized target presented in
Figure 6b. However, the low initial covariance of the Fourier coefficients makes
the RHF model unable to estimate the shapes of other target sizes, as shown in
Figure 6a and 6c.

In Figure 6d-6f, a larger initial covariance has been used to decrease the im-
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(c) Target width: 12 m
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(d) Target width: 0.75 m
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(e) Target width: 3 m
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(f) Target width: 12 m

Figure 6: Example results for estimating the extent of stationary targets of
different sizes. True target (dashed black line) is compared with the pro-
posed method (blue line and with confidence region in gray) and the RHF
model (red line). The measurements are indicated with black stars. In Fig-
ures (a)-(c), the same initial standard deviation for the Fourier coefficients
in the RHF model has been chosen, as provided in the code available online,
whereas in Figures (d)-(f), a four-fold greater initial standard deviation has
been chosen.

pact of the prior on the performance for the RHF model, denoted here as RHFb.
However, no stable estimates are achieved, as shown in Figure 6d-6f. Conse-
quently, the authors were not able to find a set of tuning parameters for the
RHF model that worked well for data from all these three targets, whereas the
proposed model estimates reasonable target shapes in all three of these cases.

In fact, the estimated radius for the RHF model is occasionally negative. The
same behavior has also been observed and reported in Sun et al. (2012), where
inequality constraints on these parameters were suggested. Although this can
also theoretically occur for the proposed model, the simulations indicate that
this occurs considerably less frequently for the proposed model than for the RHF
model.

Computation Time

Because the proposed solution is implemented with a standard extended Kalman
filter, the computational demand is fairly low. The state dimension for 50 basis
points is dim(xk) = dim(rk) + dim(ψk) + dim(x∗k) + dim(xf) = 2 + 1 + 3 + 50 = 56,

and the analytical expressions for the derivatives ∂h(x)
∂x are available. The com-
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Target size (width) 0.75 m 3 m 12 m
Example result Figure 6a/6d Figure 6b/6e Figure 6c/6f

Proposed model 0.39 0.66 0.52
Fourier coef. model (RHF) 0.09 0.68 0.25
Fourier coef. model (RHFb) 0.15 0.54 0.36

Table 3: The Intersection-Over-Union (iou) between the true and the esti-
mated target regions in the simulated scenario using different targets sizes
and extended target models. The numbers are averaged over 100 MC runs.

putational demand does not increase over time because the algorithm is fully re-
cursive. All simulations are run in Matlab(R) R2013b on a standard laptop with
an Intel(R) Core(TM) i5-2520M 2.50 GHz platform with 8 GB of RAM. One mea-
surement update and one time update require 2.3 ms for the proposed method,
0.5 ms for RM, and 3.5 ms for the RHF model on average.

9.3 Real Data Experiments

In this section, we aim to illustrate the capabilities of the algorithm on real data.
We will use a data set presented in Granström and Orguner (2012); Granström
et al. (2012), where only a single type of object is considered. In this data set, a
laser range sensor is used to collect data from multiple objects of different sizes
and shapes. The sensor measured the range every 0.5° over a 180° surveillance
region. The sensor is assumed to be located at the origin of a hemisphere, and ev-
ery detection closer than 15 m is converted to Cartesian positions. The sampling
time for a full 180° scan is 0.2 s. From the data set, three scenarios have been
extracted, and the results are presented in Sections 9.3 and 9.3. In all scenarios,
the hyper-parameters of the Gaussian process have been set to σr = 1, σf = 1 and
l = π/8, and the measurement noise variance has been set to R = 0.1I2. The pro-
cess noise standard deviations σq = 2.5 and σqψ = 0.5 have been used for position
and angle, respectively, as has α = 0.001 for the target extent dynamics.

Miscellaneous Object Tracking

In Scenarios 1 and 2, we consider multiple maneuvering objects of different shapes
(cars, bicycles and pedestrians), which enter and exit a surveillance region. The
objects of interest are significantly different from each other. A snapshot of mea-
surements originating from the objects are shown in Figure 7. Note that the prob-
lem addressed in this work is tracking a single extended target given the associ-
ated measurements. Here, we combined the proposed filter with a simple multi-
target tracking approach for illustrating the output of the algorithm for different
targets within the same scene without requiring any extra target-dependent pa-
rameter tuning.

We use a simple target tracking algorithm, where every measurement is asso-
ciated with the nearest target if the measurement falls into the gate of the target.
We used the gating strategy described in Section 7, where the gate threshold is
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Figure 7: Laser range sensor measurements corresponding to a car (on the
left), a bicycle (top-right corner) and a pedestrian.

chosen to ensure that 99 percent of the target-originated measurements fall into
the target’s gate. The remaining measurements (which are not associated with
any of the existing tracks) are simply clustered according to their mutual dis-
tances, and a new track is generated from each cluster.

In Figures 8 and 9, we present two different scenarios. In these figures, mul-
tiple snapshots of the measurements and the output of the gp tracker are super-
imposed together. The centroid of the object, its orientation, the estimated target
extent and the confidence region of the extent are plotted as the output of the
tracker.

In Scenario 1, four targets move in the scene. Multiple snapshots from the sce-
nario are split into two sub-figures and plotted in Figure 8. In this scenario, one
car is moving from left to right, one bicycle is moving in the opposite direction,
one pedestrian (at the top) is walking in the top to bottom direction, and another
pedestrian makes an L-shaped move close to the origin of the scene. The snap-
shots corresponding to frames {1, 6, 16, 27} are plotted in Figure 8a, and those
corresponding to frames {28, 42, 52} are plotted in Figure 8b. The snapshots are
chosen for the sake of clearer illustration, where the initial and final stages of the
tracks are shown and the overlaps between the snapshots are kept to a minimum.
In the scenario, the car and the bicycle pass each other while moving in opposite
directions. During the transition, the bicycle is fully occluded by the car in mul-
tiple consecutive scans, as it blocks the line of sight of the range sensor, thereby
preventing any possible detection. The pedestrian moving toward the bottom of
the figure is also occluded by the car between scans 20 and 30. The prior for the
target extent is the same for all objects at the initialization, which is chosen to be
a circle with a radius of 2 m. Note that at the beginning of the scenario, the uncer-
tainty in the target extent is large for all targets, and it decreases in time as more
measurements are collected from the targets. Furthermore, one can also observe
that the uncertainty region of the car’s extent decreases around the observable
section of the car where the reflections occur, and the uncertainty for the unob-
servable section is maintained due to a lack of observations. During the occlu-
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(a) Scenario 1: Part I
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(b) Scenario 1: Part II

Figure 8: Scenario 1: Four targets moving in the scene. One car, moving from
left to right, is shown in blue; one bicycle, moving in the opposite direction,
is shown in red; one pedestrian (at the top), walking toward the bottom of the
figure, is shown in green; and another pedestrian, who makes an L-shaped
move at the bottom of the figure, is shown in magenta. The arrows indicate
the direction of the targets’ movements. For each target, the estimated con-
tour is plotted with a solid line, the confidence region is plotted as a shaded
area, and the measurements are shown as star-shaped markers. Figure ((a))
and ((b)) show the first and the second half of the scenario, respectively.
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sions, the uncertainty regions of the occluded objects increase because the filters
are not updated by measurements; only the time update is performed. Once
these objects can be detected again, the uncertainty decreases. The gp tracker is
successful in tracking all different objects with their extent and orientation. Note
that all filters are using the same prior and parameters. No additional tuning of
hyper-parameters is required.

In Scenario 2, one car is moving from left to right and two pedestrians walk
in the top to bottom direction, as shown in Figure 9. The pedestrians leave the
scene during the scenario. Note that at the end of the scenario, only a few mea-
surements are detected from only one edge of the car, and the algorithm success-
fully associates those detections with the back of the car and updates its extent
and centroid accordingly. A typical approach that would discard the extent struc-
ture and attempt to represent the target with an approximate shape would fail to
correctly estimate the centroid, which is presented explicitly in the next scenario.

Partially Observable Objects

In Scenario 3, we illustrate the performance of the model in a maneuvering object
scenario; see Figure 10. We compare the output of the proposed method with that
from the RM and the RHF models. The hyper-parameters of the gp are kept the
same as in the previous subsection. The forgetting factor for the RM model, λ, is
selected to be 0.99. The standard deviation of the Fourier coefficients is chosen
as before for the RHF model. Manual tuning is attempted for this model, but no
significant performance gain is achieved. This is because the errors arise from
the fact that the model does not account for the rotation of the objects. In the sce-
nario, one vehicle makes a right turn starting from the top of the Figure 10 while
moving in the top to bottom direction. Throughout the scenario, the full target
extent is never observable; however, the gp model is able to estimate the observ-
able extent and predicts a higher uncertainty around the unobserved section of
the target. The RM model tracks the centroid of the measurements rather than
the centroid of the target, as expected. The performances of the RM and RHF
models are limited because neither of these algorithms is capable of tracking the
orientation of a target. The orientation of the partially observed target, before
and after the turn, is successfully tracked by the gpmodel.

Finally, in Figure 11, the performance of the proposed method is evaluated on
Scenario 3 using the symmetric assumption induced by the covariance function
proposed in (26). This covariance function assumes that the radial distance has a
period of π, f (θ) = f (θ+π). This allows us to obtain a low uncertainty of sections
of the target contour that has not yet been seen because of the symmetry that we
impose. If such assumptions are valid, even better overall tracking performance
could be expected. An investigation of such extensions should be addressed in
future work.
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Figure 9: Scenario 2: Three targets moving in the scene. One car, moving
from right to left, is shown in green; one pedestrian (at the top) walking
toward the bottom of the figure is shown in blue; and another pedestrian is
shown in magenta.
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Figure 10: Scenario 3: A vehicle making a right turn starting from the top
of the figure. Outputs of the proposed (blue), the RM (black) and the RHF
(green) models are plotted together.
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Figure 11: Scenario 3 (symmetric covariance function): Same data as in Fig-
ure 10, where the symmetric covariance function (26) has been used.
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10 Conclusion

In this work, we propose a new approach for extended target tracking. The pro-
posed method uses gps to model the unknown target extent while simultaneously
estimating the kinematic state of the target. We provide an efficient algorithm in
which the filter updates are fully recursive and do not suffer from an increase in
dimension with each available measurement, unlike the standard gp formulation.
The performance and capabilities of the algorithm are demonstrated through sim-
ulations and real data experiments. The algorithm provides an analytical rep-
resentation of the unknown target extent, which can be used for high-accuracy
gating and object classification in future works.

Appendix

A Extended Kalman Filter Update

After initializing the estimate x̂0|−1 = µ0 and P0|−1 = P0, measurement and time
update are applied sequentially for each scan.

Measurement Update

The standard EKF measurement update equations for (39) are

ŷk|k−1 = hk(x̂k|k−1), (53a)

Hk =
d
dxk

hk(xk)|xk=x̂k|k−1
, (53b)

Sk = HkPk|k−1H
T
k + Rk , (53c)

Kk = Pk|k−1H
T
k S
−1
k , (53d)

x̂k|k = x̂k|k−1 + Kk(yk − ŷk|k−1), (53e)

Pk|k = Pk|k−1 + KkHkPk|k−1. (53f)

These recursions require a gradient of the measurement function dh(xk )
dxk

, which
can be computed analytically; see Appendix B. Note that we compute the full
derivatives of (34) with respect to rk and ψk , requiring analytical expressions of
dθG(r)
dr and dk(θ,θ′)

dθ to be combined with the chain rule. This results in a precise
and correct state update, enabling estimation of the target orientation, which
otherwise would not have been possible.
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Time Update

Furthermore, in accordance with the EKF recursions, the time update equations
are as follows:

x̂k+1|k = Fx̂k|k−1, (54a)

Pk+1|k = FPk|k−1F
T + Q. (54b)

B Partial Derivatives

The derivative in (53b) can be divided into the following submatrices

Hk =
dhk(xk)
dxk

=
d
dxk

[
hk,1(xk)T, . . . ,hk,nx (xk)

T
]T
, (55a)

d
dxk

hk,l(xk) =
[
dhk,l (xk )
drk

dhk,l (xk )
dψk

dhk,l (xk )
dxf

k

]
, (55b)

where each of them is given by

dhk,l(xk)
drk

= I +
∂pk,l(w)

∂w

∣∣∣∣
w=rk

Hf
(
θLk,l(rk , ψk)

)
xf
k

+ pk,l(rk)
∂Hf(u)
∂u

∣∣∣∣
u=θLk,l (rk ,ψk )

∂θGk,l(w)

∂w

∣∣∣∣
w=rk

xf
k , (56a)

dhk,l(xk)
dψk

= −pk,l(rk)
∂Hf(u)
∂u

∣∣∣∣
u=θLk,l (rk ,ψk )

xf
k , (56b)

dhk,l(xk)

dxf
k

= pk,l(rk)H
f
(
θLk,l(rk , ψk)

)
, (56c)

where

∂θGk,l(w)

∂w
=

1
‖yk,l−w‖2

[
yyk,l−wy, −(yxk,l−wx)

]
, (57a)

∂pk,l(w)

∂w
=

(yk,l−w)(yk,l−w)T

‖yk,l −w‖3 − 1
‖yk,l −w‖ I, (57b)

∂Hf(u)
∂u

=
∂K(u,uf)

∂u
[K(uf,uf)]−1, (57c)

∂K(u,uf)
∂u

=
∂
∂u

[
ktot(u, u

f
1) . . . ktot(u, u

f
N f )

]
, (57d)

∂ktot(u, u
f
i )

∂u
= − 1

l2
sin(u − uf

i )k(u, uf
i ). (57e)
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Abstract

Modeling dynamical systems is important in many disciplines, such
as control, robotics, or neurotechnology. Commonly the state of these
systems is not directly observed, but only available through noisy
and potentially high-dimensional observations. In these cases, system
identification, i.e., finding the measurement mapping and the transi-
tion mapping (system dynamics) in latent space can be challenging.
For linear system dynamics and measurement mappings efficient so-
lutions for system identification are available. However, in practical
applications, the linearity assumption does not hold, requiring non-
linear system identification techniques. If additionally the observa-
tions are high-dimensional (e.g., images), nonlinear system identifi-
cation is inherently hard. To address the problem of nonlinear sys-
tem identification from high-dimensional observations, we combine
recent advances in deep learning and system identification. In partic-
ular, we jointly learn a low-dimensional embedding of the observation
by means of deep auto-encoders and a predictive transition model in
this low-dimensional space. We demonstrate that our model enables
learning good predictive models of dynamical systems from pixel in-
formation only.

High-dimensional time series include video streams, electroencephalography
(EEG) and sensor network data. Dynamical models describing such data are de-
sired for forecasting (prediction) and controller design, both of which play an
important role, e.g., in autonomous systems, machine translation, robotics and
surveillance applications. A key challenge is system identification, i.e., finding a
mathematical model of the dynamical system based on the information provided
by measurements from the underlying system. In the context of state-space mod-
els this includes finding two functional relationships between (i) the states at dif-
ferent time steps (prediction/transition model) and (ii) states and corresponding
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measurements (observation/measurement model). In the linear case, this prob-
lem is well studied, and many standard techniques exist, e.g., subspace meth-
ods (Van Overschee and De Moor, 1996), expectation maximization (Shumway
and Stoffer, 1982; Ghahramani, 1998; Gibson and Ninness, 2005) and prediction-
error methods (Ljung, 1999). However, in realistic and practical scenarios we
require nonlinear system identification techniques.

Learning nonlinear dynamical models is an inherently difficult problem, and
it has been one of the most active areas in system identification for the last
decades (Ljung, 2010; Sjöberg et al., 1995). In recent years, sequential Monte
Carlo (SMC) methods have received attention for identifying nonlinear state-space
models (Schön et al., 2011), see also the recent survey (Kantas et al., 2014). While
methods based on SMC are powerful, they are also computationally expensive.
Learning nonlinear dynamical models from very high-dimensional sensor data
is even more challenging. First, finding (nonlinear) functional relationships in
very high dimensions is hard (un-identifiability, local optima, overfitting, etc.);
second, the amount of data required to find a good function approximator is
enormous. Fortunately, high-dimensional data often possesses an intrinsic lower
dimensionality. We will exploit this property for system identification by find-
ing a low-dimensional representation of high-dimensional data and learning pre-
dictive models in this low-dimensional space. For this purpose, we need an
automatic procedure to find compact low-dimensional representations/features.
Doretto et al. (2003) implemented a subspace identification routine to model dy-
namical textures from high-dimensional pixel data. Whereas that method relies
on a linear dimensionality reduction method, we will consider nonlinear map-
pings from the high-dimensional data to the low-dimensional features.

The state of the art in learning parsimonious representations of high-
dimensional data is currently defined by deep learning architectures, such as
deep neural networks (Hinton and Salakhutdinov, 2006), stacked/deep auto-
encoders (Vincent et al., 2008) and convolutional neural networks (LeCun et al.,
1998), all of which have been successfully applied to image, text, speech and
audio data in commercial products, e.g., by Google, Amazon and Facebook. Typi-
cally, these feature learning methods are applied to static data sets, e.g., for image
classification. The auto-encoder gives explicit expressions of two generative map-
pings: (i) an encoder g−1 mapping the high-dimensional data to the features, and
(ii) a decoder g mapping the features to high-dimensional reconstructions.

In this paper, we combine feature/representation learning and dynamical sys-
tems modeling to obtain good predictive models for high-dimensional time se-
ries, e.g., videos. In particular, we use deep auto-encoder neural networks for
automatically finding a compact low-dimensional representation of an image. In
this low-dimensional feature space, we use a neural network for modeling the
nonlinear system dynamics. An simplified illustration of our approach is shown
in Figure 1. An encoder g−1 maps an image yk at time step k to a low-dimensional
feature zk . In this feature space, a prediction model f maps the feature forward
in time to zk+1. The decoder g can generate a predicted image yk+1 at the next
time step. This framework needs access to both the encoder g−1 and the decoder
g, which motivates our use of the auto-encoder as dimensionality reduction tech-
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Image at time k
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Prediction
model

Image at time k+1Feature at time k Feature at time k+1
zk xk xk+1 zk+1

g-1 gf

Figure 1: Combination of deep learning architectures for feature learning
and prediction models in feature space. A camera observes a robot approach-
ing an object. A good low-dimensional feature representation of an image is
important for learning a predictive model if the camera is the only sensor
available.

nique. Crucially, the embedding and the predictive model in feature space are
learned jointly.

The contributions of this paper are (i) a model for learning a low-dimensional
dynamical representation of high-dimensional data, which can be used for long-
term predictions; (ii) experimental evidence demonstrating that joint learning
of the parameters in the latent embedding and in the predictive model in latent
space can increase the performance compared to separate training.

1 Model

We consider a dynamical system where control inputs are denoted by u and ob-
servations are denoted by y. In this paper, the observations are pixel informa-
tion from images. We assume that a low-dimensional latent variable z exists that
compactly represents the relevant properties of y. Since we consider dynamical
systems, a low-dimensional representation z of a (static) image y is insufficient to
capture important dynamic information, such as velocities. Thus, we introduce
an additional latent variable x, the state. In our case, the state xk contains features
from multiple time steps (e.g., k − 1 and k) to capture velocity (or higher-order)
information. Therefore, our transition model does not map features at time k − 1
to time k (as illustrated in Figure 1), but the transition function f maps states xk
and control inputs uk to states xk+1. The full dynamical system is given as the
state-space model

xk+1 = f(xk ,uk ; θ) + wk(θ), (1a)

zk = h(xk ; θ) + vk(θ), (1b)

yk = g(zk ; θ) + ek(θ), (1c)

where each measurement yk can be described by a low-dimensional feature rep-
resentation zk (1c). These features are in turn modeled with a low-dimensional
state-space model in (1a) and (1b), where the state xk contains the full informa-
tion about the state of the system at time instant k, see also Figure 2 (left). Here
wk(θ), vk(θ) and ek(θ) are sequences of independent random variables and θ
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(a) General graphical model
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(b) Approximate prediction model

Figure 2: (a): The general graphical model: Each data point yk has a low-
dimensional representation zk , which is modeled using a state-space model
with hidden state xk and control input uk . (b): The approximate prediction
model: The predicted feature ẑk|k−1 is a function of the n past features zk−n
to zk−1 and n past control inputs uk−n to uk−1. Each of the features zk−n to
zk−1 is computed from high-dimensional data yk−n to yk−1 via the encoder
g−1. The predicted feature ẑk|k−1 is mapped to predicted high-dimensional
data via the decoder g.

are the model parameters. The control inputs uk will be important in controller
design, which is further elaborated upon in Wahlström et al. (2015).

1.1 Approximate Prediction Model

To identify parameters in dynamical systems, the prediction-error method will
be used, which requires a prediction model. In general, it is difficult to derive
a prediction model based on the nonlinear state-space model (1), and a closed-
form expression for the prediction is only available in a few special cases (Ljung,
1999). However, by approximating the optimal solution, a nonlinear autoregres-
sive exogenous model (narx) (Ljung, 1999) can be used

ẑk|k−1(θM) = f(zk−1,uk−1, . . . , zk−n,uk−n; θM), (2)

where f is a nonlinear function, in our case a neural network and θM is the cor-
responding model parameters. The model parameters in the nonlinear func-
tion are normally estimated by minimizing the sum of the prediction errors
‖zk − ẑk|k−1(θM)‖. However, as we are interested in a good predictive perfor-
mance for the high-dimensional data y rather than for the features z, we trans-
form the predictions back to the high-dimensional space and obtain a prediction
ŷk|k−1 = g(ẑk|k−1; θD), which we use in our error measure.

An additional complication is that we do not have access to the features zk .
Therefore, before training, the past values of the time series have to be replaced
with their feature representation z = g−1(y; θE), which we compute from the pixel
information y. Here, g−1 is an approximate inverse of g, which will be described
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︸           ︷︷           ︸
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Figure 3: An auto-encoder consisting of an encoder g−1 and a decoder g.
The original image yk = [y1,k , · · · , yM,k]T is mapped into its low-dimensional
representation zk = [z1,k , · · · , zm,k]T = g−1(yk) with the encoder, and then
back to a high-dimensional representation ŷk|k−1 = g(ẑk|k−1) by the decoder
g, where M � m.

in more detail the next section. This gives the final prediction model

ŷk|k−1(θE, θD, θM) = g(ẑk|k−1(θE, θM); θD), (3a)

ẑk|k−1(θE, θM) = f(zk−1(θE),uk−1, . . . , zk−n(θE),uk−n; θM),

zk(θE) = g−1(yk ; θE), (3b)

which is also illustrated in Figure 2 (right). The corresponding prediction error
will be

εP
k (θE, θD, θM) = yk − ŷk|k−1(θE, θD, θM). (4)

1.2 Auto-Encoder

We use a deep auto-encoder neural network to parameterize the feature mapping
and its inverse. It consists of a deep encoder network g−1 and a deep decoder

network g. Each layer i of the encoder neural network g−1 computes y(i+1)
k =

σ (Aiy
(i)
k +bi), where σ is an activation function and Ai and bi are free parameters.

The control input to the first layer is the image, i.e., y(1)
k = yk . The last layer is the

low-dimensional feature representation of the image zk(θE) = g−1(yk ; θE), where
θE = [. . . , Ai ,bi , . . . ] are the parameters of all neural network layers. The decoder
g consists of the same number of layers in reverse order, see Figure 3, and can be
considered an approximate inverse of the encoder g, such that ŷk|k(θE, θD) ≈ yk ,
where

ŷk|k(θE, θD) = g(g−1(yk ; θE); θD) (5)
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is the reconstructed version of yk . The encoder and decoder are trained jointly to
minimize the reconstruction error

εR
k (θE, θD) = yk − ŷk|k(θE, θD), (6)

and the parameters θD, θE of g and g−1, respectively, can be coupled to constrain
the solution to some degree (Vincent et al., 2008).

The auto-encoder suits our system identification problem well, since it pro-
vides an explicit expression of both the mapping g as well as its approximate
inverse g−1, which we need for the predictions in (3a).

2 Training

To summarize, our model contains the following free parameters: the parameters
for the encoder θE, the parameters for the decoder θD and the parameters for the
prediction model θM. To train the model, we employ two cost functions, the sum
of the prediction errors (4),

VP(θE, θD, θM) =
∑N

k=1
‖εP
k (θE, θD, θM)‖2, (7a)

and the sum of the reconstruction errors (6),

VR(θE, θD) =
∑N

k=1
‖εR
k (θE, θD)‖2. (7b)

Generally, there are two ways of finding the model parameters: (i) separate
training and (ii) joint training of the auto-encoder and the prediction model, both
of which are explained below.

2.1 Separate Training

Normally when features are used for learning dynamical models, they are first
extracted from the data in a pre-processing step. In a second step the prediction
model is estimated based on these features. In our setting, this corresponds to
sequentially training the model using two cost functions (7a)–(7b): We first learn
a compact feature representation by minimizing the reconstruction error

(
θ̂E, θ̂D

)
∈ arg min

θE,θD

VR(θE, θD), (8a)

and, subsequently, train the prediction model by minimizing the prediction error

θ̂M = arg min
θM

VP(θ̂E, θ̂D, θM), (8b)

with fixed auto-encoder parameters θ̂E, θ̂D. The gradients of these cost func-
tions with respect to the model parameters can be computed efficiently by back-
propagation. The cost functions are then minimized by the bfgs algorithm (No-
cedal and Wright, 2006).
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2.2 Joint Training

An alternative to separate training is to minimize the reconstruction error and
the prediction error jointly by considering the optimization problem

(
θ̂E, θ̂D, θ̂M

)
= arg min
θE,θD,θM

(VR(θE, θD) + VP(θE, θD, θM)) , (9)

where we jointly optimize the free parameters in both the auto-encoder θE, θD
and the prediction model θM. Again, back-propagation is used for computing
the gradients of this cost function. Note that in (9) it is crucial to include not only
the prediction error VP, but also the reconstruction error VR. Without this term
the multi-step ahead prediction performance will decrease because predicted fea-
tures are not consistent with features achieved from the encoder. The multi-step
ahead predictive performance is crucial to design a controller for this system
(Wahlström et al., 2015).

2.3 Initialization

With a linear activation function the auto-encoder and principal component anal-
ysis (pca) are identical Bourlard and Kamp (1988), which we exploit to initial-
ize the parameters of the auto-encoder: The auto-encoder network is unfolded,
each pair of layers in the encoder and the decoder are combined, and the corre-
sponding pca solution is computed for each of these pairs. We start with high-
dimensional image data at the top layer and use the principal components from
that pair of layers as input to the next pair of layers. Thereby, we recursively
compute a good initialization for all parameters of the auto-encoder. Similar
pre-training routines are found in Hinton and Salakhutdinov (2006), in which a
restricted Boltzmann machine is used instead of pca.

3 Results

We report results on identification of the nonlinear dynamics of a planar pendu-
lum (1-link robot arm) and the torque as control input. In this example, we learn

the dynamics solely based on pixel information. Each pixel y(i)
k is a component

of the measurement yk = [y(1)
k , . . . , y

(M)
k ]T and assumes a continuous gray-value

in [0, 1]. In Wahlström et al. (2015) an model predictive controller is used to
compute the control inputs, whereas we in this work use random control inputs.

We simulated 500 frames of a pendulum moving in a plane with 51 × 51 =
2 601 pixels in each frame. To speed up training, the image input has been re-
duced to dim(yk) = 50 prior to model learning (system identification) using pca.
With these 50 dimensional inputs, four layers have been used for the encoder g−1

as well as the decoder g with dimension 50-25-12-6-2. Hence, the features have
dimension dim(xk) = 2. The order of the dynamics was chosen as n = 2 to cap-
ture velocity information. For the prediction model f we used a two-layer neural
network with a 6-4-2 architecture.
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Figure 4: A typical image sequence and corresponding prediction results
(validation data), computed according to (10). The top rows show nine con-
secutive ground truth image frames from time instant k to k + 8. The second
and the third rows display the corresponding long-term ahead predictions
based on measured images up to time k for both joint (center) and separate
training (bottom) of the model parameters.

We evaluate the performance in terms of long-term predictions where we as-
sumed that a sequence of open-loop torques was given. These predictions are
constructed by concatenating multiple 1-step ahead predictions. More precisely,
the p-step ahead prediction ŷk+p|k = g(ẑk+p|k) is computed iteratively as

ẑk+1|k = f(ẑk|k ,uk , . . . ), (10a)

. . .

ẑk+p|k = f(ẑk+p−1|k ,uk+p−1|k , . . . ), (10b)

where ẑk|k = g−1(yk) are the image features at time k.
The predictive performance on an exemplary image sequence of the valida-

tion data of our system identification models is illustrated in Figure 4. The top
row shows the ground truth images, the center row shows the predictions based
on a model using joint training (9), the bottom row shows the corresponding
predictions of a model where the auto-encoder and the predictive model were
trained sequentially according to (8). The model that jointly learns all param-
eters yields a good predictive performance for both one-step ahead prediction
and multiple-step ahead prediction. Compared to this, the predictive perfor-
mance of the model that learns features and the dynamics separately is worse.
Although the auto-encoder does a perfect job (left-most frame, 0-step ahead pre-
diction), already the (reconstructed) one-step ahead prediction is dissimilar to
the ground-truth image. This is also shown in Table 1 where the reconstruction
error is equally good for both models, but for the prediction error we manage
to get a better value using joint training than using separate training. Let us
have a closer look at the model based on separate training: As the auto-encoder
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Table 1: Prediction error VP and reconstruction error VR for separate and
joint training.

Training VP VR

Joint training (9) 0.0011 0.0011
Separate training (8) 0.0051 0.0011
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(b) Separate learning

Figure 5: The feature space z ∈ [−1, 1] × [−1, 1] is divided into 9 × 9 grid
points. For each grid point the decoded high-dimensional image is dis-
played. The features corresponding to the training (red) and validation (yel-
low) data are displayed. Feature spaces found by joint (left) and separate
(right) parameter learning.

performs well, the learned transition model is the cause of bad predictive per-
formance. We believe that the auto-encoder found a good feature representation
for reconstruction, but this representation was not ideal for learning a transition
model.

Figure 5 displays the “decoded” images corresponding to the latent represen-
tations using joint and separate training, respectively. After joint training the
relevant features line up in a circular shape, such that a relatively simple pre-
diction model is sufficient to describe the dynamics. However, for the separate
training such an advantageous structure of the feature values are not obtained.
Separate training extracts the low-dimensional features without context, i.e., the
knowledge that these features constitute a time series.

In this particular data set, the data points clearly reside on one-dimensional
manifold, encoded by the pendulum angle. However, a one-dimensional feature
space would be insufficient since this one-dimensional manifold is cyclic, see
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Figure 6: Fitting quality (11) for joint and separate learning of features and
dynamics for different prediction horizons p. The fit is compared with the
naive prediction ŷk|k−p = yk−p, where the most recent image is used and a
linear subspace-ID method.

Figure 5, compare also with the 2π period of an angle. Therefore, we have used a
two-dimensional latent space.

To analyze the long-term predictive performance of both training methods,
we define the fitting quality as

FITp = 1 −
√

1
NM

∑N

k=1
‖yk − ŷk|k−p‖2. (11)

As a reference, the predictive performance is compared with a baseline prediction
using the previous frame at time step k − p as the prediction at k as ŷk|k−p = yk−p.

The result for a prediction horizon ranging from p = 0 to p = 8 is displayed in
Figure 6. Clearly, joint learning (blue) outperforms separate learning in terms of
predictive performance for prediction horizons greater than 0. Even by using the
last available image frame for prediction (const. pred., brown), we obtain a better
fit than the model that learns its parameter sequentially (red). This is due to the
fact that the dynamical model often predicts frames, which do not correspond to
any real pendulum, see Figure 4, leading to a poor fit. Furthermore, joint training
gives better predictions than the naive constant prediction. The predictive perfor-
mance slightly degrades when the prediction horizon p increases, which is to be
expected. Finally we also compare with the subspace identification method (Van
Overschee and De Moor, 1996) (black, starred), which is restricted to linear mod-
els. Such a restriction does not capture the nonlinear, embedded features and,
hence, the predictive performance is sub-optimal.

4 Discussion

From a system identification point of view, the prediction-error method, where
we minimize the one-step ahead prediction error, is fairly standard. However,
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in a control or reinforcement learning setting (Wahlström et al., 2015), we are
primarily interested in good predictive performance on a longer horizon to do
planning. Thus, we have also investigated to include a multi-step ahead predic-
tion error in the cost (4). These models achieved similar performance, but no
significantly better prediction error could be observed either for one-step ahead
predictions nor for longer prediction horizons.

Instead of computing the prediction errors in image space, see (4), we can
compute errors directly in feature space. However, this will require an extra
penalty term to avoid trivial solutions that map everything to zero, resulting in a
more complicated and less intuitive cost function.

Although joint learning aims at finding a feature representation that is suit-
able for modeling the low-dimensional dynamical behavior, the pre-training ini-
tialization as described in Section 2.3 does not. If this pre-training yields feature
values far from “useful” ones for modeling the dynamics, joint training might not
find a good model.

The autoencoder structure has to be chosen before the actual training starts.
Especially the dimension of the latent state and the order of the dynamics have
to be chosen by the user, which requires some prior knowledge about the system
to be identified. In our examples, we chose the latent dimensionality based on
insights about the true dynamics of the problem. In general, a model selection
procedure will be preferable to find both a good network structure and a good
latent dimensionality.

5 Conclusions and Future Work

We have presented an approach to nonlinear system identification from high-
dimensional time series data. Our model combines techniques from both the sys-
tem identification and the machine learning community. In particular, we used a
deep auto-encoder for finding low-dimensional features from high-dimensional
data, and a nonlinear autoregressive exogenous model was used to describe the
low-dimensional dynamics. The framework has been applied to a identifying the
dynamics of a planar pendulum from image pixels. The proposed model exhibits
good long-term predictive performance, and a major advantage has been identi-
fied by training the auto-encoder and the dynamical model jointly compared to
training them sequentially.

Possible directions for future work include (i) robustify learning by using de-
noising autoencoders (Vincent et al., 2008) to deal with noisy real-world data; (ii)
apply convolutional neural networks, which are often more suitable for images;
(iii) continue the work in Wahlström et al. (2015) using the model for learning
controllers purely based on pixel information; (iv) investigate Sequential Monte
Carlo methods for systematic treatments of such nonlinear probabilistic models,
which are required in a reinforcement learning setting.

In a setting where we make decisions based on predictions, such as opti-
mal control or model-based reinforcement learning, a probabilistic model is
often needed for robust decision making as we need to account for model er-
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rors (Schneider, 1997; Deisenroth et al., 2015). An extension of our model to a
probabilistic setting is non-trivial since random variables have to be transformed
through the neural networks, and their exact probability density functions will
be intractable to compute. Sampling-based approaches or deterministic approxi-
mate inference are two options that we will investigate in future.
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Abstract

Data-efficient learning in continuous state-action spaces using very
high-dimensional observations remains a key challenge in developing
fully autonomous systems. In this paper, we consider one instance of
this challenge, the pixels to torques problem, where an agent must
learn a closed-loop control policy from pixel information only. We
introduce a data-efficient, model-based reinforcement learning algo-
rithm that learns such a closed-loop policy directly from pixel in-
formation. The key ingredient is a deep dynamical model that uses
deep auto-encoders to learn a low-dimensional embedding of images
jointly with a predictive model in this low-dimensional feature space.
Joint learning ensures that not only static but also dynamic properties
of the data are accounted for. This is crucial for long-term predictions,
which lie at the core of the adaptive model predictive control strategy
that we use for closed-loop control. Compared to state-of-the-art re-
inforcement learning methods for continuous states and actions, our
approach learns quickly, scales to high-dimensional state spaces and
is an important step toward fully autonomous learning from pixels to
torques.

1 Introduction

The vision of fully autonomous and intelligent systems that learn by themselves
has influenced AI and robotics research for many decades. To devise fully au-
tonomous systems, it is necessary to (1) process perceptual data (e.g., images)
to summarize knowledge about the surrounding environment and the system’s
behavior in this environment, (2) make decisions based on uncertain and incom-
plete information, (3) take new information into account for learning and adapta-
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Image at time k
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Prediction
model

Image at time k+1Feature at time k Feature at time k+1
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g-1 gf

Figure 1: Illustration of our idea of combining deep learning architectures
for feature learning and prediction models in feature space. A camera ob-
serves a robot approaching an object. A good low-dimensional feature rep-
resentation of an image is important for learning a predictive model if the
camera is the only sensor available.

tion. Effectively, any fully autonomous system has to close this perception-action-
learning loop without relying on specific human expert knowledge. The pixels to
torques problem (Brock, 2011) identifies key aspects of an autonomous system:
autonomous thinking and decision making using sensor measurements only, in-
telligent exploration and learning from mistakes.

We consider the problem of learning closed-loop policies (“torques”) from
pixel information end-to-end. A possible scenario is a scene in which a robot is
moving about. The only available sensor information is provided by a camera, i.e.,
no direct information of the robot’s joint configuration is available. The objective
is to learn a continuous-valued policy that allows the robotic agent to solve a task
in this continuous environment in a data-efficient way, i.e., we want to keep the
number of trials small. To date, there is no fully autonomous system that convinc-
ingly closes the perception-action-learning loop and solves the pixels to torques
problem in continuous state-action spaces, the natural domains in robotics.

A promising approach toward solving the pixels to torques problem is Re-
inforcement Learning (rl) (Sutton and Barto, 1998), a principled mathematical
framework that deals with fully autonomous learning from trial and error. How-
ever, one practical shortcoming of many existing rl algorithms is that they re-
quire many trials to learn good policies, which is prohibitive when working with
real-world mechanical plants or robots.

One way of using data efficiently (and therefore keep the number of exper-
iments small) is to learn forward models of the underlying dynamical system,
which are then used for internal simulations and policy learning. These ideas
have been successfully applied to rl, control and robotics by Schmidhuber (1990);
Atkeson and Schaal (1997); Bagnell and Schneider (2001); Contardo et al. (2013);
Pan and Theodorou (2014); Deisenroth et al. (2015); Pan and Theodorou (2014);
van Hoof et al. (2015); Levine et al. (2015), for instance. However, these meth-
ods use heuristic or engineered low-dimensional features, and they do not easily
scale to data-efficient rl using pixel information only because even “small” im-
ages possess thousands of dimensions.

A common way of dealing with high-dimensional data is to learn low-
dimensional feature representations. Deep learning architectures, such as deep
neural networks (Hinton and Salakhutdinov, 2006), stacked auto-encoders (Ben-



1 Introduction 201

gio et al., 2007; Vincent et al., 2008), or convolutional neural networks (LeCun
et al., 1998), are the current state of the art in learning parsimonious represen-
tations of high-dimensional data. Deep learning has been successfully applied
to image, text and speech data in commercial products, e.g., by Google, Amazon
and Facebook.

Deep learning has been used to produce first promising results in the context
of model-free rl on images: For instance, Mnih et al. (2015) present an approach
based on Deep-Q-learning, in which human-level game strategies are learned au-
tonomously, purely based on pixel information. Moreover, Lange et al. (2012) pre-
sented an approach that learns good discrete actions to control a slot car based on
raw images, employing deep architectures for finding compact low-dimensional
representations. Other examples of deep learning in the context of rl on image
data include Cuccu et al. (2011); Koutnik et al. (2013). These approaches have
in common that they try to estimate the value function from which the policy
is derived. However, neither of these algorithms learns a predictive model and
are, therefore, prone to data inefficiency, either requiring data collection from
millions of experiments or relying on discretization and very low-dimensional
feature spaces, limiting their applicability to mechanical systems.

To increase data efficiency, we therefore introduce a model-based approach
to learning from pixels to torques. In particular, exploit results from Wahlström
et al. (2015a) and jointly learn a lower-dimensional embedding of images and a
transition function in this lower-dimensional space that we can use for internal
simulation of the dynamical system. For this purpose, we employ deep auto-
encoders for the lower-dimensional embedding and a multi-layer feed-forward
neural network for the transition function. We use this deep dynamical model to
predict trajectories and apply an adaptive model-predictive-control (MPC) algo-
rithm (Mayne, 2014) for online closed-loop control, which is practically based on
pixel information only.

MPC has been well explored in the control community, However, adaptive
mpc has so far not received much attention in the literature (Mayne, 2014). An
exception is Sha (2008), where the authors advocate a neural network approach
similar to ours. However, they do not consider high-dimensional data but assume
that they have direct access to low-dimensional measurements.

Our approach benefits from the application of model-based optimal control
principles within a machine learning framework. Along these lines, Deisenroth
et al. (2009); Abramova et al. (2012); Boedecker et al. (2014); Pan and Theodorou
(2014); Levine et al. (2015) suggested to first learn a transition model and then
use optimal control methods to solve rl problems. Unlike these methods, our ap-
proach does not need to estimate value functions and scales to high-dimensional
problems.

Similar to our approach, Boots et al. (2014); Levine et al. (2015); van Hoof et al.
(2015) recently proposed model-based rl methods that learn policies directly
from visual information. Unlike these methods, we exploit a low-dimensional
feature representation that allows for fast predictions and online control learning
via mpc.



202 Paper F From Pixels to Torques: Policy Learning with Deep Dynamical Models

Problem Set-up and Objective

We consider a classical N -step finite-horizon rl setting in which an agent at-
tempts to solve a particular task by trial and error. In particular, our objec-
tive is to find a closed-loop policy π∗ that minimizes the long-term cost V π =∑N−1
k=0 f0(xk ,uk), where f0 denotes an immediate cost, xk ∈ R

D is the continuous-
valued system state and uk ∈ RF are continuous control inputs.

The learning agent faces the following additional challenges: (i) The agent
has no access to the true state, but perceives the environment only through high-
dimensional pixel information (images), (ii) a good control policy is required in
only a few trials. This setting is practically relevant, e.g., when the agent is a
robot that is monitored by a video camera based on which the robot has to learn
to solve tasks fully autonomously. Therefore, this setting is an instance of the
pixels to torques problem.

2 Deep Dynamical Model

Our approach to solve the pixels-to-torques problem is based on a deep dynam-
ical model (ddm), which jointly (i) embeds high-dimensional images in a low-
dimensional feature space via deep auto-encoders and (ii) learns a predictive for-
ward model in this feature space (Wahlström et al., 2015a). In particular, we con-
sider a ddm with control inputs u and high-dimensional observations y. We as-
sume that the relevant properties of y can be compactly represented by a feature
variable z. The two components of the ddm, i.e., the low-dimensional embedding
and the prediction model, which predicts future observations yk+1 based on past
observations and control inputs, are detailed in the following. Throughout this
paper, yk denotes the high-dimensional measurements, zk the corresponding low-
dimensional encoded features and ŷk the reconstructed high-dimensional mea-
surement. Further, ẑk+1 and ŷk+1 denote a predicted feature and measurement at
time k + 1, respectively.

2.1 Deep Auto-Encoder

We use a deep auto-encoder for embedding images in a low-dimensional fea-
ture space, where both the encoder g−1 and the decoder g are modeled with
deep neural networks. Each layer i of the encoder neural network g−1 computes

y(i+1)
k = σ (Aiy

(i)
k +bi), where σ is a sigmoidal activation function (we used tangent

hyperbolicus) and Ai and bi are free parameters. The input to the first layer is the

image, i.e., y(1)
k = yk . The last layer is the low-dimensional feature representation

of the image zk(θE) = g−1(yk ; θE), where θE = [. . . , Ai ,bi , . . . ] are the parameters
of all neural network layers. The decoder g consists of the same number of layers
in reverse order, see Figure 2, and approximately inverts the encoder g, such that
ŷk(θE, θD) = g(g−1(yk ; θE); θD) ≈ yk is the reconstructed version of yk with an
associated reconstruction error

εR
k (θE, θD) = yk − ŷk(θE, θD). (1)
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Figure 2: Auto-encoder that consists of an encoder g−1 and a decoder g. The
encoder maps the original image yk ∈ R

M onto its low-dimensional repre-
sentation zk = g−1(yk) ∈ R

m, where m � M; the decoder maps this feature
back to a high-dimensional representation ŷk = g(ẑk). The gray color repre-
sents high-dimensional observations.

The main purpose of the deep auto-encoder is to keep this reconstruction error
and the associated compression loss negligible, such that the features zk are a
compact representation of the images yk .

2.2 Prediction Model

We now turn the static auto-encoder into a dynamical model that can predict
future features ẑk+1 and images ŷk+1. The encoder g−1 allows us to map high-
dimensional observations yk onto low-dimensional features zk . For predicting
we assume that future features ẑk+1|hn depend on an n-step history hn of past
features and control inputs, i.e.,

ẑk+1|hn(θP) = f(zk ,uk , . . . , zk−n+1,uk−n+1; θP), (2)

where f is a nonlinear transition function, in our case a feed-forward neural net-
work, and θP are the corresponding model parameters. This is a nonlinear au-
toregressive exogenous model (narx) (Ljung, 1999). The predictive performance
of the model will be important for model predictive control (see Section 3) and
for model learning based on the prediction error (Ljung, 1999).

To predict future observations ŷk+1|hn we exploit the decoder, such that
ŷk+1|hn = g(ẑk+1|hn ; θD). The deep decoder g maps features z to high-dimensional
observations y parameterized by θD.

Now, we are ready to put the pieces together: With feature prediction model
(2) and the deep auto-encoder, the ddm predicts future features and images ac-
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uk−n+1 · · · uk

· · ·zk−n+1 zk ẑk+1|hn

yk−n+1 · · · yk ŷk+1|hn
High-dim.
observations

Features

Control
inputs

f

g−1g−1 g

Figure 3: Prediction model: Each feature zi is computed from high-
dimensional data yi via the encoder g−1. The transition model predicts the
feature ẑk+1|hn at the next time step based on the n-step history of n past fea-
tures zk−n+1, . . . , zk and control inputs uk−n+1, . . . ,uk . The predicted feature
ẑk+1|hn can be mapped to a high-dimensional prediction ŷk+1 via the decoder
g. The gray color represents high-dimensional observations.

cording to

zk(θE) = g−1(yk ; θE), (3a)

ẑk+1|hn(θE, θP) = f(zk ,uk , . . . , zk−n+1,uk−n+1; θP),

ŷk+1|hn(θE, θD, θP) = g(ẑk+1|hn ; θD), (3b)

which is illustrated in Figure 3. With this prediction model we define the predic-
tion error

εP
k+1(θE, θD, θP) = yk+1 − ŷk+1|hn(θE, θD, θP), (4)

where yk+1 is the observed image at time k + 1.

2.3 Training

The ddm is parameterized by the encoder parameters θE, the decoder param-
eters θD and the prediction model parameters θP. In the ddm, we train both
the prediction model and the deep auto-encoder jointly by finding parameters(
θ̂E, θ̂D, θ̂P

)
, such that

(
θ̂E, θ̂D, θ̂P

)
=arg min
θE,θD,θP

VR(θE, θD) + VP(θE, θD, θP), (5a)

VP(θE, θD, θP) =
∑N

k=1
‖εP
k (θE, θD, θP)‖2, (5b)

VR(θE, θD) =
∑N

k=1
‖εR
k (θE, θD)‖2, (5c)

which minimizes the sums of squared reconstruction (1) and prediction (4) er-
rors.
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We learn all model parameters θE, θD, θP jointly by solving (5a). 1 The re-
quired gradients with respect to the parameters are computed efficiently by back-
propagation, and the cost function is minimized by the BFGS algorithm (Nocedal
and Wright, 2006). Note that in (5a) it is crucial to include not only the prediction
error VP, but also the reconstruction error VR. Without this term the multi-step
ahead prediction performance will decrease because predicted features are not
consistent with features achieved from the encoder. Since we consider a control
problem in this paper, multi-step ahead predictive performance is crucial.

Initialization. With a linear activation function the auto-encoder and pca are
identical (Bourlard and Kamp, 1988), which we exploit to initialize the param-
eters of the auto-encoder: The auto-encoder network is unfolded, each pair of
layers in the encoder and the decoder are combined, and the corresponding pca
solution is computed for each of these pairs. We start with high-dimensional im-
age data at the top layer and use the principal components from that pair of layers
as input to the next pair of layers. Thereby, we recursively compute a good ini-
tialization for all parameters of the auto-encoder. Similar pre-training routines
are found in Hinton and Salakhutdinov (2006), in which a restricted Boltzmann
machine is used instead of pca.

In this section, we have presented a ddm that facilitates fast predictions of
high-dimensional observations via a low-dimensional embedded time series. The
property of fast predictions will be exploited by the online feedback control strat-
egy presented in the following. More details on the proposed model are given in
Wahlström et al. (2015a).

3 Learning Closed-Loop Policies from Images

We use the ddm for learning a closed-loop policy by means of nonlinear model
predictive control (mpc). We start off by an introduction to classical mpc, before
moving on to mpc on images in Section 3.1. mpc finds an optimal sequence
of control signals that minimizes a K-step loss function, where K is typically
smaller than the full horizon. In general, mpc relies on (i) a reference trajectory
xref = x∗1, . . . , x

∗
K (which can be a constant reference signal) and (ii) a dynamics

model

xk+1 = f(xk ,uk), (6)

which, assuming that the current state is denoted by x0, can be used to com-
pute/predict a state trajectory x̂1, . . . , x̂K for a given sequence u0, . . . ,uK−1 of con-
trol signals. Using the dynamics model mpc determines an optimal (open-loop)

1Normally when features are used for learning dynamical models, they are first extracted from
the data in a pre-processing step by minimizing (5c) with respect to the auto-encoder parameters
θE, θD. In a second step, the prediction model parameters θP are estimated based on these features
by minimizing (5b) conditioned on the estimated θ̂E and θ̂D. In our experience, a problem with this
approach is that the learned features might have a small reconstruction error, but this representation
will not be ideal for learning a transition model. Section 4.1 discusses this in more detail.



206 Paper F From Pixels to Torques: Policy Learning with Deep Dynamical Models

control sequence u∗0, . . . ,u
∗
K−1, such that the predicted trajectory x̂1, . . . , x̂K gets as

close to the reference trajectory xref as possible, such that

u∗0, . . . ,u
∗
K−1 ∈ arg min

u0:K−1

K−1∑

k=0

‖x̂k − x∗k‖2 + λ‖uk‖2, (7)

where ‖x̂k − x∗k‖2 is a cost associated with the deviation of the predicted state
trajectory x̂0:K−1 from the reference trajectory xref, and ‖uk‖2 penalizes the am-
plitude of the control signals. Here, λ is a tuning parameter. When the control
sequence u∗0, . . . ,u

∗
K−1 is determined, the first control u∗0 is applied to the system.

After observing the next state, mpc repeats the entire optimization and turns the
overall policy into a closed-loop (feedback) control strategy.

3.1 MPC on Images

We now turn the classical mpc procedure into mpc on images by exploiting
some convenient properties of the ddm. The ddm allows us to predict features
ẑ1, . . . , ẑK based on a sequence of controls u0, . . . ,uK−1. By comparing (6) with (2),
we define the state x0 as the present and past n − 1 features and the past n − 1
control inputs, such that

x0 = [z0, . . . , z−n+1,u−1, . . . ,u−n+1]. (8)

The ddm computes the present and past features with the encoder zk =
g−1(yk , θE), such that x0 is known at the current time, which matches the mpc
requirement. Our objective is to control the system towards a desired reference
image frame yref. This reference frame yref can also be encoded to a correspond-
ing reference feature zref = g−1(yref, θE), which results in the mpc objective

u∗0, . . . ,u
∗
K−1 ∈ arg min

u0:K−1

K−1∑

k=0

‖ẑk − zref‖2 + λ‖uk‖2. (9)

The gradients of the cost function (9) with respect to the control signals
u0, . . . ,uK−1 are computed in closed form, and we use BFGS to find the opti-
mal sequence of control signals. Note that the objective function depends on
u0, . . . ,uK−1 not only via the control penalty ‖uk‖2 but also via the feature predic-
tions ẑk of the ddm via (2).

Overall, we now have an online mpc algorithm that, given a trained ddm,
works indirectly on images by exploiting their feature representation. In the fol-
lowing, we will now turn this into an iterative algorithm that learns predictive
models from images and good controllers from scratch.

3.2 Adaptive MPC for Learning from Scratch

We will now turn over to describe how (adaptive) mpc can be used together with
our ddm to address the pixels to torques problem and to learn from scratch. At
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the core of our mpc formulation lies the ddm, which is used to predict future
states (8) from a sequence of control inputs. The quality of the mpc controller is
inherently bound to the prediction quality of the dynamical model, which is typ-
ical in model-based rl (Schneider, 1997; Schaal, 1997; Deisenroth et al., 2015).

To learn models and controllers from scratch, we apply a control scheme that
allows us to update the ddm as new data arrives. In particular, we use the mpc
controller in an adaptive fashion to gradually improve the model by collecting
data in the feedback loop without any specific prior knowledge of the system at
hand. Data collection is performed in closed-loop (online mpc), and it is divided
into multiple sequential trials. After each trial, we add the data of the most recent
trajectory to the data set, and the model is re-trained using all data that has been
collected so far.

Algorithm 1 Adaptive mpc in feature space

Follow a random control strategy and record data
loop

Update ddm with all data collected so far
for k = 0 to N − 1 do

Get state xk via auto-encoder
u∗k ← ε-greedy mpc policy using ddm prediction
Apply u∗k and record data

end for
end loop

Simply applying the mpc controller based on a randomly initialized model
would make the closed-loop system very likely to converge to a point, which is
far away from the desired reference value, due to the poor model that cannot
extrapolate well to unseen states. This would in turn imply that no data is col-
lected in unexplored regions, including the region that we actually are interested
in. There are two solutions to this problem: Either we use a probabilistic dynam-
ics model as suggested in Schneider (1997); Deisenroth et al. (2015) to explicitly
account for model uncertainty and the implied natural exploration or we follow
an explicit exploration strategy to ensure proper excitation of the system. In this
paper, we follow the latter approach. In particular, we choose an ε-greedy explo-
ration strategy where the optimal feedback u∗0 at each time step is selected with
a probability 1 − ε, and a random action is selected with probability ε.

Algorithm 1 summarizes our adaptive online mpc scheme. We initialize the
ddm with a random trial. We use the learned ddm to find an ε-greedy policy
using predicted features within mpc. This happens online. The collected data is
added to the data set and the ddm is updated after each trial.

4 Experimental Results

In the following, we empirically assess the components of our proposed method-
ology for autonomous learning from high-dimensional synthetic image data: (i)
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Figure 4: Long-term (up to eight steps) predictive performance of the ddm:
True (upper plot) and predicted (lower plot) video frames on test data.

the quality of the learned ddm and (ii) the overall learning framework.
In both cases, we consider a sequence of images (51 × 51 = 2601 pixels) and

a control input associated with these images. Each pixel y(i)
k is a component of

the measurement yk ∈ R2601 and assumes a continuous gray-value in the interval
[0, 1]. No access to the underlying dynamics or the state (angle ϕ and angular
velocity ϕ̇) was available, i.e., we are dealing with a high-dimensional continuous
state space. The challenge was to learn (i) a good dynamics model, and (ii) a good
controller from pixel information only. We used a sampling frequency of 0.2 s
and a time horizon of 25 s, which corresponds to 100 frames per trial.

The input dimension has been reduced to dim(yk) = 50 prior to model learn-
ing using pca. With these 50-dimensional inputs, a four-layer auto-encoder
network was used with dimension 50-25-12-6-2, such that the features were
of dimension dim(zk) = 2, which is optimal to model the periodic angle of the
pendulum. The order of the dynamics was selected to be n = 2 (i.e., we con-
sider two consecutive image frames) to capture velocity information, such that
zk+1 = f(zk ,uk , zk−1,uk−1). For the prediction model f we used a feedforward neu-
ral network with a 6-4-2 architecture. Note that the dimension of the first layer
is given by n(dim(zk) + dim(uk)) = 2(2 + 1) = 6.

4.1 Learning Predictive Models from Pixels

To assess the predictive performance of the ddm, we took 601 screenshots of a
moving tile, see Figure 4. The control inputs are the (random) increments in
position in horizontal and vertical directions.

We evaluate the performance of the learned ddm in terms of long-term pre-
dictions, which play a central role in mpc for autonomous learning. Long-term
predictions are obtained by concatenating multiple 1-step ahead predictions.

The performance of the ddm is illustrated in Figure 4 on a test data set. The
top row shows the ground truth images and the bottom row shows the ddm’s
long-term predictions. The model predicts future frames of the tile with high
accuracy both for 1-step ahead and multiple steps ahead. The model yields a
good predictive performance for both one-step ahead prediction and multiple-
step ahead prediction.
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Figure 5: Feature space for both joint (a) and sequential training (b) of
auto-encoder and prediction model. The feature space is divided into grid
points. For each grid point the decoded high-dimensional image is displayed
and the feature values for the training data (red) and validation data (yel-
low) are overlain. For the joint training the feature values reside on a two-
dimensional manifold that corresponds to the two-dimensional position of
the tile. For the separate training the feature values are scattered without
structure.

In Figure 5a, the feature representation of the data is displayed. The features
reside on a two-dimensional manifold that encodes the two-dimensional position
of the moving tile. By inspecting the decoded images we can see that each corner
of the manifold corresponds to a corner position of the tile. Due to this structure
a relatively simple prediction model is sufficient to describe the dynamics. In
case the auto-encoder and the prediction model would have been learned sequen-
tially (first training the auto-encoder, and then based on these features values
train the prediction model) such a structure would not have been enforced. In
Figure 5b the corresponding feature representation is displayed where only the
auto-encoder has been trained. Clearly, these features does not exhibit such a
structure.

4.2 Closed-Loop Policy Learning from Pixels

In this section, we report results on learning a policy that moves a pendulum (1-
link robot arm with length 1 m, weight 1 kg and friction coefficient 1 Nsm/rad)
from a start position ϕ = 0 to a target position ϕ = ±π. The reference signal was
the screenshot of the pendulum in the target position. For thempc controller, we
used a planning horizon of P = 15 steps and a control penalty λ = 0.01. For the
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Figure 6: The feature space z ∈ [−1, 1]×[−1, 1] is divided into 9×9 grid points
for illustration purposes. For each grid point the decoded high-dimensional
image is displayed. Green: Feature values that correspond to collected expe-
rience in previous trials. Cyan: Feature value that corresponds to the current
time step. Red: Desired reference value. Yellow: 15-steps-ahead prediction
after optimizing for the optimal control inputs.

ε-greedy exploration strategy we used ε = 0.2. We conducted 50 independent
experiments with different random initializations. The learning algorithm was
run for 15 trials (plus an initial random trial). After each trial, we retrained the
ddm using all collected data so far, where we also include the reference image
while learning the auto-encoder.

Figure 6 displays the decoded images corresponding to learned latent repre-
sentations in [−1, 1]2. The learned feature values of the training data (green) line
up in a circular shape, such that a relatively simple prediction model is sufficient
to describe the dynamics. If we would not have optimized for both the prediction
error and reconstruction error, such an advantageous structure of the feature val-
ues would not have been obtained. The ddm extracts features that can also model
the dynamic behavior compactly. The figure also shows the predictions produced
by thempc controller (yellow), starting from the current time step (cyan) and tar-
geting the reference feature (red) where the pendulum is in the target position.

To assess the controller performance after each trial, we applied a greedy pol-
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Figure 7: Control performance after 1st to 15th trial evaluated with ε = 0
for 16 different experiments. The objective was to reach an angle of ±π.

icy (ε = 0). In Figure 7, angle trajectories for 15 of the 50 experiments at different
learning stages are displayed. In the first trial, the controller managed only in
a few cases to drive the pendulum toward the reference value ±π. The control
performance increased gradually with the number of trials, and after the 15th
trial, it manages in most cases to get it to an upright position.

To assess the data efficiency of our approach, we compared it with the pilco
rl framework (Deisenroth et al., 2015) to learning closed-loop control policies for
the pendulum task above. pilco is a current state-of-the art model-based rl al-
gorithm for data-efficient learning of control policies in continuous state-control
spaces. Using collected data pilco learns a probabilistic model of the system
dynamics, implemented as a Gaussian process (gp) (Rasmussen and Williams,
2006). Subsequently, this model is used to compute a distribution over trajecto-
ries and the corresponding expected cost, which is used for gradient-based opti-
mization of the controller parameters.

Although pilco uses data very efficiently, its computational demand makes
its direct application impractical for many data points or high-dimensional (�
20 D) problems, such that we had to make suitable adjustments to apply pilco to
the pixels-to-torques problem. In particular, we performed the following experi-
ments: (1) pilco applied to 20D pca features, (2) pilco applied to 2D features
learned by deep auto-encoders, (3) An optimal baseline where we applied pilco



212 Paper F From Pixels to Torques: Policy Learning with Deep Dynamical Models

0 500 1,000 1,500
0

0.2

0.4

0.6

0.8

1

Number of frames (100 per trial)

Su
cc

es
s

R
at

e

pilco w/ 2D state (ϕ, ϕ̇)
pilco w/ 2D AE features
pilco w/ 20D pca features

ddm +mpc

Figure 8: Average learning success with standard errors. Black filled cir-
cle: pilco ground-truth rl baseline using the true state (ϕ, ϕ̇). Black circle:
pilco with learned auto-encoder features from image pixels. Gray cross:
pilco on 20D feature determined by pca. Gray square: Our proposed mpc
solution using the ddm.

to the standard rl setting with access to the “true” state (ϕ, ϕ̇) (Deisenroth et al.,
2015).

Figure 8 displays the average success rate of pilco (including standard er-
ror) and our proposed method using deep dynamical models together with a
tailored mpc (ddm +mpc). We define “success” if the pendulum’s angle is sta-
bilized within 10◦ around the target state.2 The baseline (pilco trained on the
ground-truth 2D state (ϕ, ϕ̇)) is shown in blue and solves the task very quickly.
The graph shows that our proposed algorithm (black), which learns torques di-
rectly from pixels, is not too far behind the ground-truth rl solution, achieving
an almost 90% success rate after 15 trials (1500 image frames). However, pilco
trained on the 2D auto-encoder features (red) and 20D pca features fail consis-
tently in all experiments We explain pilco’s failure by the fact that we trained the
auto-encoder and the transition dynamics in feature space separately. The auto-
encoder finds good features that minimize the reconstruction error. However,
these features are not good for modeling the dynamic behavior of the system,
and lead to bad long-term predictions.

Computation times of pilco and our method are vastly different: While
pilco spends most time optimizing policy parameters, our model spends most
of the time on learning the ddm. Computing the optimal nonparametric mpc
policy happens online and does not require significant computational overhead.
To put this into context, pilco required a few days of learning time for 10 trials

2Since we consider a continuous setting, we have to define a target region.
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(in a 20D feature space). In a 2D feature space, running pilco for 10 trials and
1000 data points requires about 10 hours.

Overall, our ddm +mpc approach to learning closed-loop policies from high-
dimensional observations exploits the learned Deep Dynamical Model to learn
good policies fairly data efficiently.

5 Conclusion

We have proposed a data-efficient model-based rl algorithm that learns closed-
loop policies in continuous state and action spaces directly from pixel informa-
tion. The key components of our solution are (1) a deep dynamical model (ddm)
that is used for long-term predictions in a compact feature space and (2) an mpc
controller that uses the predictions of the ddm to determine optimal actions on
the fly without the need for value function estimation. For the success of this rl
algorithm it is crucial that the ddm learns the feature mapping and the predictive
model in feature space jointly to capture dynamic behavior for high-quality long-
term predictions. Compared to state-of-the-art rl our algorithm learns fairly
quickly, scales to high-dimensional state spaces and facilitates learning from pix-
els to torques.
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Abstract

Stochastic dynamical systems are fundamental in state estimation, sys-
tem identification and control. System models are often provided in
continuous time, while a major part of the applied theory is developed
for discrete-time systems. Discretization of continuous-time models
is hence fundamental. We present a novel algorithm using a combi-
nation of Lyapunov equations and analytical solutions, enabling effi-
cient implementation in software. The proposed method circumvents
numerical problems exhibited by standard algorithms in the litera-
ture. Both theoretical and simulation results are provided.

1 Introduction

Dynamical processes in engineering and physics have for a long time successfully
been modeled with continuous-time differential equations. In order to account
for uncertainties, these equations are usually driven by an unknown stochastic
process called process noise. This noise is ideally modeled as completely “white”
in order to obtain the Markov property, which is required in recursive Bayesian in-
ference, such as Kalman filtering. However, in order to implement such filtering,
the continuous-time model has to be discretized. Such discretization includes
solving an integral involving the matrix exponential on the form

Q =

T∫

0

eAτSeA
Tτdτ, (1)

where A, S, Q ∈ Rn×n.
We propose an algorithm for solving (1) by decomposing the problem into

subproblems and then solve these subproblems either analytically or using a com-
bination of Lyapunov and Sylvester equations.

In many practical applications the discrete-time process noise covariance is
modeled and tuned directly, rather than discretized from its continuous-time
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counterpart. However, in certain scenarios the dependency between the discrete-
time process noise covariance and the sampling time is important. If the filtering
should work on different devices with different sampling frequencies, this depen-
dency should be properly modeled to guarantee the same dynamical behavior of
the filter. Further, in data with non-equidistant sampling the process noise co-
variance has to be rescaled at each time instant. This is often the case in Gaussian
process regression which can be described with a state-space model and solved
using Kalman filtering (Särkkä et al., 2013).

In the literature there exist different algorithms for computing the integral
(1). The probably most well-cited one was presented by Van Loan (1978), which
involves computing the matrix exponential for an augmented 2n×2n matrix fol-
lowed by a matrix multiplication of two resulting submatrices. This method does
not require any assumption on the model, however the resulting matrix becomes
ill-conditioned if the sampling time is large or if the poles of the system are fast.
For certain models, (1) can be solved analytically. Rome (1969) presented a direct
solution under the assumption that A is diagonalizable. The method requires an
eigenvalue decomposition which is not always numerical stable (Higham, 2008)
and not all matrices are diagonalizable. Finally, the integral can always be solved
numerically using the trapezoidal or the rectangular method.

In this work we present an alternative method for solving (1). This method
is based on a Lyapunov equation which characterizes the solution of (1). How-
ever, since Lyapunov equations cannot be solved if the system contains integra-
tors (Antoulas, 2005), the problem is decomposed into subproblems where the
integrators are treated separately. As will be explained, one set of subproblems
cannot be solved using Lyapunov equations, but they do have an analytical solu-
tion of (1). Conversely, the remaining set of subproblems do not have a closed
form solution of (1), but then the method with Lyapunov equations works fine.
The algorithm involves computing the matrix exponential of the n× n system
matrix rather than an augmented 2n×2n matrix as required by the solution by
Van Loan. Furthermore, the proposed algorithm circumvents some numerical
problems in the method proposed by Van Loan. Our theoretical algebraic contri-
butions include:

• A Lemma describing the relation between (1) and the aforementioned Lya-
punov equation, see Lemma 2.

• A novel extension of this solution which also handles integrators, see Sec-
tion 4.

• A complete algorithm which solves (1) with complementing numerical prop-
erties compared to existing solutions, see Algorithm 3.

The outline of the paper is as follows. In Section 2 the mathematical mod-
els are presented and the importance of the discretization method in use is mo-
tivated. In Section 3 the discretization using Lyapunov equations is presented
together with the main theoretical contributions of the paper. In Section 4 the so-
lutions from the previous two sections will be combined to solve for systems with
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integrators. In Section 5 a numerical evaluation is performed and in Section 6 the
conclusions are summarized and future directions pointed out.

2 Mathematical Preliminaries

Consider the following Itô stochastic differential equation

dx(t) = Ax(t)dt + dβ(t), (2a)

where β(t) is a Brownian motion with

E[dβ(t)dβ(t)T] = Sdt. (2b)

The model (2a) is formally equivalent to the stochastic differential equation

dx(t)
dt

= Ax(t) + w(t), (3a)

where w(t) is a zero-mean white Gaussian process with

E[w(t)w(τ)T] = Sδ(t − τ). (3b)

Since w(t) is not square Riemann integrable, the model (3) does not have any
mathematical meaning (Jazwinski, 1970). However, we can still intuitively think
of it as a stochastic differential equation driven by white noise.

It is important to note that this is just a model of the physical process and
cannot be found in reality. For example, white noise has a flat power spectral
density requiring infinite power, which is not physically realizable. Nevertheless,
using this continuous-time model will lead to sound properties for the equivalent
discrete-time model as will be explained later.

By integrating (2a) over the time interval [tk , tk+1] we can find its discrete-time
equivalence as

x(tk+1) = eATk︸︷︷︸
FTk

x(tk)︸︷︷︸
xk

+

tk+1∫

tk

eA(tk+1−τ)dβ(τ)

︸                 ︷︷                 ︸
wk

, (4)

where Tk = tk+1 − tk is the sampling time. This can be stated as a discrete-time
stochastic difference equation

xk+1 = FTkxk + wk . (5a)

By following for example Jazwinski (1970), the noise wk will be zero-mean, white
Gaussian

E[wkwT
l ] = QTkδkl , (5b)
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where δkl is the Kronecker delta function and

QTk =

Tk∫

0

eAτSeA
Tτdτ, (6a)

which together with the discrete-time system matrix

FTk = eATk (6b)

completes the discretization procedure.
The integral expression (6a) can be found in multiple textbooks on Kalman

filtering (e.g. Bar-Shalom et al. (2001); Grewal and Andrews (2008)) for modeling
discrete-time dynamical processes. Nevertheless, the discretization of continuous-
time differential equations for filtering applications is often misused. For exam-
ple, the noise w(t) is commonly assumed to be constant during each sampling
interval leading to the following discrete-time noise covariance

Q̄A
Tk

=
1
Tk




Tk∫

0

eAτdτ




︸       ︷︷       ︸
ḠTk

S




Tk∫

0

eA
Tτdτ




︸        ︷︷        ︸
ḠT
Tk

, (7a)

or just rescaling the continuous-time noise covariance with the sampling time

Q̄B
Tk

= TkS. (7b)

In contrast to the discretization in (6), the assumptions in (7) lead to a dynamical
description of the process which depends on the sampling intervals, whereas the
actual physical process do not. This can be seen by the property derived in the
following example.

Example 1
Consider the three time instances t1, t2 and t3. We then have

Cov
[
x(t3)

∣∣∣∣x(t1)
]

(8a)

= Cov
[
Ft3−t2 x(t2) + w2

∣∣∣∣x(t1)
]

(8b)

= Cov
[
Ft3−t2

(
Ft2−t1 x(t1) + w1

)
+ w2

∣∣∣∣x(t1)
]

(8c)

= Cov
[
FT2

w1 + w2

∣∣∣∣x(t1)
]

(8d)

= FT2
QT1

FTT2
+ QT2

. (8e)
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We could also use only one time interval and go from t1 directly to t3 with the
sampling time t3 − t1 = T1 + T2, which gives

Cov
[
x(t3)

∣∣∣∣x(t1)
]

(9a)

= Cov
[
Ft3−t1 x(t1) + w1

∣∣∣∣x(t1)
]

(9b)

= Cov
[
w1

∣∣∣∣x(t1)
]

= Qt3−t1 = QT1+T2
. (9c)

This gives the relation

QT1+T2
= FT2

QT1
FTT2

+ QT2
. (10)

Indeed, this property is fulfilled for the discretization presented in (6).

Lemma 1. If FTk and QTk are computed as described in (6), then

QT1+T2
= FT2

QT1
FTT2

+ QT2
.

Proof:

QT1+T2
=

T1+T2∫

0

eAτSeA
Tτdτ (11a)

=

T2∫

0

eAτSeA
Tτdτ +

T1+T2∫

T2

eAτSeA
Tτdτ (11b)

=

T2∫

0

eAτSeA
Tτdτ

︸            ︷︷            ︸
Q2

+ eAT2
︸︷︷︸
FT2

T1∫

0

eA
TτSeA

Tτdτ

︸              ︷︷              ︸
QT1

eA
TT2

︸︷︷︸
FTT2

(11c)

= QT2
+ FT2

QT1
FTT2

. (11d)

With similar calculations we can easily derive the equivalent results for the
covariance matrices in (7) and conclude that they do not share this property since

Q̄A
T1+T2

= Q̄A
T2

+ FT2
Q̄A
T1
FTT2

+ FT2
ḠT1

SḠT
T2

+ ḠT2
SḠT

T1
FTT2

, Q̄A
T2

+ FT2
Q̄A
T1
FTT2

, (12a)

Q̄B
T1+T2

= Q̄B
T2

+ Q̄B
T1

, Q̄B
T2

+ FT2
Q̄B
T1
FTT2

. (12b)
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Hence by assuming that the underlying continuous-time model is driven by
a continuous-time white process the corresponding discrete-time model has the
property that the dynamical description does not depend on the sampling inter-
vals, in contrast to other common discretization procedures. We can therefore
see (5) and (6) as algebraic relations between A, S, Tk , FTk and QTk fulfilling the
property in (10) without deriving it from its continuous-time counterpart.

The main advantage with the alternative expressions in (7) in comparison to
(6a) is their ease of calculation (especially true for (7b)). The remaining part of
this work will therefore describe how the integral (6a) can be solved in an efficient
manner with good numerical properties.

3 Discretization Using Lyapunov Equations

A method for computing the integral (6a) will now be presented. The method
will be proposed by requiring the system to be asymptotically stable. Later in
this section we will prove that this requirements actually can be relaxed.

3.1 Proposal of Solution

If the system is asymptotically stable, i.e. if all eigenvalues of A have negative
real part, a stationary covariance will exist and we denote it as

Cov[x(t)] = Cov[xk] = P . (13)

This covariance satisfies the following two Lyapunov equations for the continuous-
time model (2a) and the discrete-time model (5a), respectively

0 = AP + P AT + S, (14a)

P = FTk P F
T
Tk

+ QTk . (14b)

which gives a structured way of computing QTk , as presented in Algorithm 1.

Algorithm 1 Solution using Lyapunov equation for P
The matrices A and S and the scalar Tk are given. The matrices FTk and QTk in (6)
can then be computed as

FTk = eATk , (15a)

QTk = P − FTk P FTTk , (15b)

where P is the solution to the Lyapunov equation

AP + P AT = −S. (15c)

This algorithm can also be reformulated such that we do not need to compute
P in an intermediate step. By multiplying (15b) with A from the left and with AT
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from the right, respectively, we get

AQTk = AP − FTkAP FTTk , (16a)

QTkA
T = P AT − FTk P ATFTTk , (16b)

where the fact that FTk and A commute has been used since

AFTk = A(I + A +
1
2
A2 . . . ) = (A + A2 +

1
2
A3 . . . ) (17a)

= (I + A +
1
2
A2 . . . )A = FTkA. (17b)

By adding (16a) and (16b), we get

AQTk + QTkA
T = AP − FTkAP FTTk + P AT − FTk P ATFTTk (18a)

= AP + P AT
︸      ︷︷      ︸

−S

−FTk (AP + P AT
︸      ︷︷      ︸

−S

)FTTk (18b)

= −S + FTkSF
T
Tk
. (18c)

This gives the following algorithm as presented in Algorithm 2. This algorithm

Algorithm 2 Solution using Lyapunov equation for QTk
The matrices A and S and the scalar Tk are given. The matrices FTk and QTk in (6)
can then be computed as

FTk = eATk (19a)

and QTk is the solution to the Lyapunov equation

AQTk + QTkA
T = −VTk , (19b)

where

VTk = S − FTkSFTTk . (19c)

is similar to the solution presented by Axelsson and Gustafsson (2012) derived
from a continuous-time differential Lyapunov equation.

From here on we will proceed with Algorithm 2. However, all results (includ-
ing the final algorithm) can be reformulated to suit Algorithm 1 as well.

3.2 Theoretical Result

It can now be proven that Algorithm 2 (and consequently also Algorithm 1) gives
a solution to (6), provided that the solution of the Lyapunov equation exists and
is unique.
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Lemma 2. The solution to the integral

Q =

T∫

0

eAτSeBτdτ (20a)

satisfies the Sylvester equation

AQ + QB = −S + eAT SeBT . (20b)

Proof: Start with (20b) and replace Q with the integral (20a). This gives

AQ + QB =

T∫

0

AeAτSeBτdτ +

T∫

0

eAτSeBτBdτ (21a)

=

T∫

0

d
dτ

[eAτSeBτ ]dτ (21b)

= eAτSeBτ
∣∣∣∣
T

0
= eAT SeBT − S. (21c)

Remark 1. A similar result was presented by Gawronski (2004) in the context of time-
limited grammians. However, that result requires B = AT and that all eigenvalues of A
should have negative real part.

Remark 2. Note that Lemma 2 does not require anything about the matrices A and B.
In particular, they do not need to be stable as assumed in (13) and (14). Indeed, the
requirements for the Lyapunov equation (19b) to have a unique solution are milder. This
is answered by the following proposition, which is given for the more general Sylvester
equation.

Proposition 1. The Sylvester equation

AP + P B = C (22a)

has a unique solution P if and only if

λi(A) + λj (B) , 0 ∀i, j. (22b)

For proof, see for example Antoulas (2005).
For the case where B = AT and with the requirement that A is stable, the con-

dition (22b) is always fulfilled. By using that observation together with Lemma 2
where T → ∞, we get the following well known results relating the controllabil-
ity grammian to a Lyapunov equation, which can be found in most textbooks on
linear systems, e.g. Rugh (1996).
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Corollary 1. If all eigenvalues of A have negative real parts, then for each sym-
metric matrix S there exists a unique solution of

AQ + QAT = −S (23a)

given by

Q =

∞∫

0

eAτSeA
Tτdτ. (23b)

According to Proposition 1 the integral (6a) cannot be computed using the
Lyapunov equation (19b) if A and −A have any common eigenvalues. This is es-
pecially the case if the system has integrators, which indeed is common in models
intended for Kalman filtering. In the next section we will therefore present a solu-
tion which handles such systems as well. With this extension almost all systems
of interest will be covered, except for the systems which have at least one pair of
non-zero poles mirrored in the imaginary axis.

This extension will be performed by decomposing the problem into subprob-
lems where some of these subproblems still can be solved using parts of the Lya-
punov equation (19b), whereas the remaining subproblem can be solved analyti-
cally using the integral (6a).

4 Solution for Systems with Integrators

Consider the case when A is block triangular consisting of three blocks

A =
[
A11 A12

0 A22

]
, (24)

where

λi(A11) + λj (A11) , 0 ∀i, j, (25a)

λi(A11) + λj (A22) , 0 ∀i, j, (25b)

λj (A22) = 0 ∀i, j. (25c)

In this manner we have partitioned A such that all zero eigenvalues have been
placed in A22 and all remaining non-zero eigenvalues in A11. Many systems do
have such block triangular structure, for example if an observer canonical form
has been used, see Example 3. If the system does not have that form, an orthog-
onal transformation can be applied. This transformation can be computed using
Schur decomposition and reordering of the eigenvalues (Golub and Van Loan,
1996). This will also affect the covariance matrix S as well as VTk by considering
this transformation as a state transformation, see Appendix A.
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4.1 Solution using Lyapunov and Sylvester Equations

According to Lemma 2, the solution of the integral (6a) for the block triangular
matrix (24) shall obey the following Lyapunov equation

[
A11 A12

0 A22

] [
Q11 Q12
QT

12 Q22

]
+

[
Q11 Q12
QT

12 Q22

] [
AT

11 0
AT

12 AT
22

]
= −

[
V11 V12
V T

12 V22

]
, (26)

where QTk and VTk have been partitioned in a similar manner as A. Note that the
subscript Tk has been omitted from the submatrices in order to make the notation
less cluttered. This gives the following set of Lyapunov and Sylvester equations

A11Q11 + Q11A
T
11 = −V11 − A12Q

T
12 − Q12A

T
12, (27a)

A11Q12 + Q12A
T
22 = −V12 − A12Q22, (27b)

A22Q
T
12 + QT

12A
T
11 = −V T

12 − Q22A
T
12, (27c)

A22Q22 + Q22A
T
22 = −V22. (27d)

Based on the requirements in (25a) and (25b), Proposition 1 guarantees that
Q11 and Q12 can be solved uniquely using (27a) and (27b) if Q22 is known. In
contrast, (27d) does not have a unique solution for Q22. Instead, Q22 can be
solved analytically using the integral (6a). Note that (27c) is just a transposed
version of (27b) and does not bring any extra information.

4.2 Analytical Solution for the Nilpotent Part

Due to the block triangular structure of A, the submatrix Q22 will only depend
on A22 and S22 via a similar expression as in (6a). By starting from (6a) we have

Q22 =
[
0 I

]
Q

[
0
I

]
(28a)

=
[
0 I

] Tk∫

0

eAτSeA
Tτdτ

[
0
I

]
(28b)

=

Tk∫

0

[
0 eA22τ

]
S

[
0

eA
T
22τ

]
dτ (28c)

=

Tk∫

0

eA22τS22e
AT

22τdτ. (28d)

Further, since all eigenvalues of A22 are zero, the submatrix A22 will also be nilpo-
tent (Lancaster and Tismenetsky, 1985) leading to

eA22τ =
p−1∑

i=0

Ai22
τ i

i!
, (29)
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where p is the dimension of A22, i.e. the number of integrators in the system.
Expression (28d) can then be computed analytically as

Q22 =

Tk∫

0




p−1∑

i=0

1
i!
Ai22τ

i


 S22




p−1∑

j=0

1
j!
A
j
22

T
τ j


 dτ (30a)

=
p−1∑

i=0

p−1∑

j=0

1
i!j!

Ai22S22A
j
22

T
Tk∫

0

τ i+jdτ (30b)

=
p−1∑

i=0

p−1∑

j=0

T
i+j+1
k

i!j!(i + j + 1)
Ai22S22A

j
22

T
. (30c)

This is illustrated with the following example.

Example 2
Consider a constant velocity model, which formally can be described on the form

ẋ(t) =
[
0 1
0 0

]

︸    ︷︷    ︸
A

x(t) +
[
0
1

]

︸︷︷︸
B

q(t), E[q(t)q(τ)] = δ(t − τ). (31)

This system has only zero eigenvalues which gives

A = A22 =
[
0 1
0 0

]
, (32a)

S = S22 = E[Bq(Bq)T] =
[
0
1

]
1
[
0 1

]
=

[
0 0
0 1

]
. (32b)

By using this in (28) we get

QTk = STk + SAT
22
T 2
k

2
+ A22S

T 2
k

2
+ A22SA

T
22
T 3
k

3
(32c)

=
[
0 0
0 1

]
Tk +

[
0 0
1 0

]
T 2
k

2
+

[
0 1
0 0

]
T 2
k

2
+

[
1 0
0 0

]
T 3
k

3
(32d)

=



T 3
k
3

T 2
k
2

T 2
k
2 Tk


 , (32e)

which is the same result as given by Grewal and Andrews (2008), but derived in
a different way.
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Algorithm 3 Proposed algorithm (for systems with arbitrary number of integra-
tors)
The matrices A and S and the scalar Tk are given. The matrices FTk and QTk in (6)
can then be computed as

1. Transform A and S to Ã and S̃ such that Ã becomes block triangular

U−1AU = Ã =
[
Ã11 Ã12

0 Ã22

]
, U−1SU−T = S̃ =

[
S̃11 S̃12
S̃T12 S̃22

]
,

and with all integrators collected in Ã22. This can be done with an orthog-
onal transformation computed using Schur decomposition and reordering
of the eigenvalues.

2. Compute F̃Tk = eÃTk .

3. Compute ṼTk = S̃ − F̃Tk S̃ F̃TTk .
4. Compute

Q̃Tk =
[
Q̃11 Q̃12
Q̃T

12 Q̃22

]
,

using the following steps:

(a) Compute Q̃22 by evaluating

Q̃22 =
p−1∑

i=0

p−1∑

j=0

T
i+j+1
k

i!j!(i + j + 1)
Ãi22S̃22(Ãi22)T, (33a)

where p is the number of integrators.

(b) Compute Q̃12 by solving the Sylvester equation

Ã11Q̃12 + Q̃12Ã
T
22 = −Ṽ12 − Ã12Q̃22. (33b)

(c) Compute Q̃11 by solving the Lyapunov equation

Ã11Q̃11 + Q̃11Ã
T
11 = −Ṽ11 − Ã12Q̃

T
12 − Q̃12Ã

T
12. (33c)

5. Transform F̃Tk and Q̃Tk back to FTk and QTk

FTk = UF̃TkU
−1, (34a)

QTk = UQ̃TkU
T. (34b)
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4.3 General Algorithm

Based on the results in the last section, we can now propose an algorithm for
computing the integral (6a), also in the case where A consists of integrators, see
Algorithm 3.

Remark 3. If A does not have any integrators, Algorithm 3 will collapse to the simpler
version in Algorithm 2.

Remark 4. In theory, U−1 = UT since U is orthogonal. However, numerical algorithms
for computing the Schur decomposition do not make U completely orthogonal. From a
numerical point of view it is therefor a benefit to distinguish between U−1 and UT.

Remark 5. If Ã12 = 0 the coupling in (33b) and (33c) via Q̃12 and Q̃22 will disappear and
they can be solved independently from each other. If this is desired, the transformation in
Step 1 can be extended to eliminate Ã12 by solving an addition Sylvester equation (Bavely
and Stewart, 1979). However, such transformation is no longer orthogonal and can be
arbitrary ill-conditioned if the non-zero eigenvalues are close to zero.

Remark 6. If the system already has a block triangular structure, Step 1 and Step 5 in
Algorithm 3 can be omitted. This is the case for the observer canonical form as seen in the
following short example.

Example 3
Consider a siso-system of order n = m+pwithm non-zero poles and p additional
integrators described with a transfer function

G(s) =
b1s

m−1 + b2s
m−2 + · · · + bm−1s + bm

sn + a1sm−1 + · · · + am−1s + am
· 1
sp
. (35)

This system can be described with the observer canonical form (Glad and Ljung,
2000)

ẋ =




−a1 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
...

−am−1 0 . . . 1 0 0 . . . 0
−am 0 . . . 0 1 0 . . . 0

0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . 1
0 0 . . . 0 0 0 . . . 0




x +




0
...
0
b1
...
...
bm




w, (36a)

y =
[

1 0 . . . 0
]

x, (36b)

which can be written more compactly as

ẋ =
[
A11 A12

0 A22

]
x + Bw, (37a)

y =
[
1 0 . . . 0

]
x. (37b)

This system has by construction the desired block triangular structure.



232 Paper G Discretizing Stochastic Dynamical Systems Using Lyapunov Equations

5 Numerical Evaluation

In this section the numerical properties of the proposed solution will be com-
pared with a standard solution presented by Van Loan (1978) given in Algo-
rithm 4.

Algorithm 4 Van Loan’s method
The matrices A and S and the scalar Tk are given. The matrices FTk and QTk in (6)
can then be computed as

1. Compute the matrix exponential of an augmented 2n × 2n matrix
[
M11 M12

0 M22

]
= eHTk ,where H =

[
A S
0 −AT

]
. (38a)

2. The matrices FTk and QTk are given as

FTk = M11, QTk = M12M
T
11. (38b)

5.1 Implementation Aspects

In both methods Matlab’s built-in function expm has been used for comput-
ing the matrix exponential. In Step 1 of Algorithm 3 the functions schur and
ordschur have been used for computing the Schur decomposition and the re-
ordering of the eigenvalues. Finally, the Lyapunov and Sylvester equations have
been solved using lyap.

5.2 Simulation Results

In total 100 systems of order n = 6 with m = 4 stable poles and p = 2 additional
integrators are randomly generated. Each system is normalized such that the
fastest pole is at distance 1 from the imaginary axis, i.e. max(|Re(λi)|) = 1. An
estimate Q̂Tk is computed using both Algorithm 3 and Algorithm 4 with single
precision for different values of the sampling time Tk . Finally, the error

ε = ‖Q̂Tk − QTk ‖2/‖QTk ‖2
is evaluated, where QTk is computed using numerical integration of (6a) with
double precision, here considered as the true value. The result is presented in
Figure 1.

According to the result the proposed method outperforms the standard method
for large Tk . The reason will become clear if we investigate the two methods
further. In Algorithm 4, both ATk and −ATTk are present in the augmented
matrix HTk and the task to compute its matrix exponential (38a) will become
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Figure 1: The performance of the proposed method (Algorithm 3) and Van
Loan’s method (Algorithm 4).

ill-conditioned if Tk or max(|Re(λi)|) is large. In fact, the error will grow expo-
nentially with Tk , or the magnitude of work will grow linearly with Tk to keep
a certain tolerance (Van Loan, 1978). This issue is not present in the proposed
method, which can be seen in its simplified version in Algorithm 1. If Tk is large
we have FTk = eATk ≈ 0 and QTk will approach the stationary covariance P accord-
ing to (15b).

However, for fast sampling the proposed method performers slightly worse.
This is especially the case if the system has integrators as well as non-zero poles
close to the origin leading to that the Sylvester equation (33b) will become ill-
conditioned. Consequently, van Loan’s method has numerical issues when the
fastest pole is fast and the sampling is slow, whereas the proposed method has
nummerical problems when the slowest (non-zero) pole is slow and the sampling
is fast. The proposed method also has computational complexity advantages
since it only needs to compute the matrix exponential of an n × n matrix rather
than of an augmented 2n × 2n matrix as required by van Loan’s method.

6 Conclusions and Future Work

An algorithm for computing an integral involving the matrix exponential com-
mon in optimal sampling was proposed. The algorithm is based on a Lyapunov
equation and is justified with a novel lemma. An extension to systems with in-
tegrators was presented. Numerical evaluations showed that the proposed algo-
rithm has advantageous numerical properties for slow sampling and fast dynam-
ics in comparison with a standard method in the literature.

Further work includes extending the algorithm further to handle arbitrary
matrices, i.e. also matrices with non-zero eigenvalues mirrored in the imaginary
axis. Also the numerical properties should be analyzed further and strategies for
improving the numerical properties for slow poles should be investigated.
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Appendix

A State Transformation

Consider the following state transformation

x = U x̃. (39)

By applying (39) to the dynamical equation (3a) we get

ẋ = Ax + w ⇒ (40a)

U ˙̃x = AU x̃ + w ⇒ (40b)

˙̃x = U−1AU x̃ + U−1w ⇒ (40c)
˙̃x = Ãx̃ + w̃. (40d)

which gives the following transformation of A, S and V

Ã = U−1AU, (41a)

S̃ = E[w̃w̃T] = E[U−1w(U−1w)T] = U−1
E[wwT]U−T

= U−1SU−T. (41b)

These matrices will then be used to compute F̃Tk and Q̃Tk by following Step 2-4
in Algorithm 3. We then have

x̃k+1 = F̃Tk x̃k + w̃k ⇒ (42a)

U−1xk+1 = F̃TkU
−1xk + w̃k ⇒ (42b)

xk+1 = UF̃TkU
−1xk + Uw̃k ⇒ (42c)

xk+1 = FTkxk + wk (42d)

which gives the transformations

FTk = UF̃TkU
−1, (43a)

QTk = E[wkwT
k ] = E[Uw̃k(Uw̃k)

T] = UE[w̃kw̃T
k ]UT

= UQ̃TkU
T. (43b)

Note that if U is orthogonal, we have U−1 = UT.
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