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“Machine learning gives computers the ability to learn without

being explicitly programmed for the task at hand.”



Machine Learning – the four cornerstones

Cornerstone 1 (Data) Typically we need lots of it.

Cornerstone 2 (Mathematical model) A mathematical model is a com-

pact representation of the data that in precise mathematical form cap-

tures the key properties of the underlying situation.

Cornerstone 3 (Learning algorithm) Used to compute the unknown

variables from the observed data using the model.

Cornerstone 4 (Decision/Control) Use the understanding of the current

situation to steer it into a desired state.
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Ex – Automatic ECG classification

ECG data

Input, x

Computer program

Model

y ∈





atrial fibrillation

sinus tachycardia

1st degree AV block

. . .

Prediction

We are now reaching human level (medical doctor) performance on

certain specific tasks.

Key difference to ”classical engineering”: The model is not derived

based on our ability to mathematically explain what we see in an ECG.

Instead, a generic model is automatically learned based on data.

Ribeiro, A. H., Ribeiro, M. H., Paixao, G. M. M., Oliveira, D. M., Gomes, P. R., Canazart, J. A., Ferreira, M. P. S., Andersson, C. R.,

Macfarlane, P. W., Meira, W., TS and Ribeiro, A. L. P. Automatic diagnosis of the short-duration 12-lead ECG using a deep neural

network: the CODE study, arXiv:1904.01949, 2019.
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Ex – Ambient magnetic field map

The Earth’s magnetic field sets a

background for the ambient

magnetic field. Deviations make the

field vary from point to point.

Aim: Build a map (i.e., a

model) of the magnetic

environment based on

magnetometer measurements.

Solution: Customized Gaussian

process that obeys Maxwell’s

equations.

www.youtube.com/watch?v=enlMiUqPVJo 3/35
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Ex – Indoor localization using deviations in the magnetic field

Aim: Compute the position using variations in the ambient magnetic

field and the motion of the person (acceleration and angular velocities).

All of this observed using sensors in a standard smartphone.

Fig. 1: Principle of magnetic terrain navigation. Here a pre-generated magnetic map is overlaid on top of a picture of the space.
The map depicts a vector field with both a direction (the arrows indicate the direction based on the x and y components)
and magnitude (warm colours indicate stronger values, cool colours weaker). During positioning, the vector valued (three-
component) measurement track obtained by the smartphone magnetometer is matched to the magnetic landscape.

II. METHODS

An illustration of the general concept of magnetic terrain
navigation is shown in Figure 1. The magnetic terrain naviga-
tion setup in this paper boils down to three distinctive parts:

• The positioning is overseen by a particle filter, which is a
sequential Monte Carlo approach for proposing different
state histories and finding which one matches the data the
best.

• The magnetic terrain which the observations are matched
against. The map is constructed by a Gaussian process
model which is able to return a magnetic field estimate
and its variance for any spatial location in the building.

• A model for the movement of the person being tracked,
often referred to as a pedestrian dead reckoning model.

The following sections will explain these components of the
map matching algorithm in detail.

A. Particle filtering

Particle filtering [12, 22, 23] is a general methodology for
probabilistic statistical inference (i.e., Bayesian filtering and
smoothing) on state space models of the form

xk+1 ∼ p(xk+1 | xk),

yk ∼ p(yk | xk),
(1)

where p(xk+1 | xk) defines a vector-Markov model for the
dynamics of the state xk ∈ Rdx , and p(yk | xk) defines
the model for the measurements yk ∈ Rdy in the form of
conditional distribution of the measurements given the state.
For example, in (magnetic) terrain navigation, the dynamic
model tells how the target moves according to a (pedestrian)
dead reckoning and the (Markovian) randomness is used
for modeling the errors and uncertainty in the dynamics.
In conventional terrain navigation, the measurement model
tells what distribution of height we would measure at each
position, and in magnetic terrain navigation it tells what is the
distribution of magnetic field measurements we could observe
at a given position and orientation.

A particle filter aims at computing the (Bayesian) filtering
distribution, which refers to the conditional distribution of the
current state vector given the observations up to the current
time step p(xk | y1:k). Particle filtering uses a weighted
Monte Carlo approximation of n particles to approximate this
distribution. The approximation has the form

p(xk | y1:k) ≈
n∑

i=1

w
(i)
k δ(xk − x

(i)
k ), (2)

where δ(·) stands for the Dirac delta distribution and w
(i)
k

are non-negative weights such that
∑

i w
(i)
k = 1. Under this

Show movie!

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127, 2018.

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NeurIPS), Long Beach, CA, USA, December, 2017.

Arno Solin, Simo Särkkä, Juho Kannala and Esa Rahtu. Terrain navigation in the magnetic landscape: Particle filtering for indoor

positioning. In Proceedings of the European Navigation Conference, Helsinki, Finland, June, 2016.
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Probabilistic modelling – representation of beliefs (uncertainty)

For a machine to behave intelligently I believe it needs the

capability to represent and manipulate beliefs/uncertainty

about the real world.

As the machine perceives the world via its sensors it must then update its

beliefs in light of the new information.

The mathematics of probability theory is well developed and

1. it allows us to not only represent uncertainty,

2. but it also prescribes how to manipulate it based on the information

in new measurements.
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Probabilistic modelling – representation of beliefs (uncertainty)

A very important fact is that inverse probability (i.e. Bayes rule)

p(x | y) =
p(y | x)p(x)

p(y)

allows us to infer unknown variables (x), adapt our models, make

predictions and learn from data (y).

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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Key lesson from contemporary Machine Learning

Flexible models often give the best performance.

How can we build and work with these flexible models?

1. Models that use a large (but fixed) number of parameters.
(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436–444, 2015.

2. Models that use ”more parameters” as we get access to more data.
(non-parametric, ex. Gaussian process)
Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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Blending prior knowledge and data

While we can do a lot with our data and flexible black-box models, we

have already understood a lot about nature.

What if we could combine the two?!

Meaning that we start from small (rigid) models describing the phenomenon we

are studying and augment them with flexible models driven by data.

Personal opinion: I believe that there are (massive) gains to be made in

the simple combination of flexible data-driven models and solid widely

available knowledge that we already have.

Aim of this talk: Try to provide some concrete evidence for my

opinion (and to introduce the GP).
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Blending prior knowledge and data

Resulting technical challenge: How can we use known structure and

domain knowledge to design priors?

p(x | y) =
p(y | x)p(x)

p(y)

Once we have designed such a prior it will effectively restrict the

flexibility in a goal-oriented fashion.

Question: What is the right blend of such priors and data?
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Vision

Create flexible model building blocks containing the basic knowledge

we have about the phenomenon we are studying.

The model should be flexible enough to allow for new

knowledge to be gained.

The data complements our existing basic knowledge and adapts it to the

specific situation we are studying.

Has the potential to also allow us to learn new basic knowledge.

Reflection: Quite obvious really, but surprisingly little has been done...

I foresee such building blocks containing basic knowledge about physics,

chemistry, psychology, biology, etc. Now, it is really time to become a bit

more precise... 10/35



“With enough training data the machine can be trained to make very

good predictions from previously unseen data.”
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Outline

1. Introduction

2. Models – a few examples

3. Vision – blending prior knowledge and data

4. A flexible model – the Gaussian process

5. GPs with line integral measurements

6. GP + deep learning with integral measurements

(7. Strain field reconstruction from neutron diffraction experiments)

8. Conclusion

Machine learning gives computers the ability to learn without being

explicitly programmed for the task at hand.
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The Gaussian process is a model for nonlinear functions

Q: Why is the Gaussian process used everywhere?

It is a non-parametric and probabilistic model for nonlinear functions.

• Non-parametric means that it does not rely on any particular

parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in every

aspect of the model.
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An abstract idea

In probabilistic (Bayesian) linear regression

yt = βTxt︸︷︷︸
f (xt)

+et , et ∼ N (0, σ2),

we place a prior on β, e.g. β ∼ N (0, α2I ).

(Abstract) idea: What if we instead place a prior directly on the func-

tion f (·)
f ∼ p(f )

and look for p(f | y1:T ) rather than p(β | y1:T )?!

y1:T = {y1, . . . , yT}
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One concrete construction

Well, one (arguably simple) idea on how we can reason probabilistically

about an unknown function f is by assuming that f (x) and f (x ′) are

jointly Gaussian distributed

(
f (x)

f (x ′)

)
∼ N (m,K ) .

If we accept the above idea we can without conceptual problems

generalize to any arbitrary finite set of input values {x1, x2, . . . , xT}.



f (x1)

...

f (xT )


 ∼ N






m(x1)

...

m(xN)


 ,



k(x1, x1) . . . k(x1, xT )

...
. . .

...

k(xT , x1) . . . k(xT , xT )
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Definition

Definition: (Gaussian Process, GP) A GP is a (potentially infinite)

collection of random variables such that any finite subset of it is jointly

distributed according to a Gaussian.
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We now have a prior!

f ∼ GP(m, k)

The GP is a generative model so let us first sample from the prior.
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GP regression – illustration
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Starting somewhere – more concrete from hereon

Fact: Linear functional constraints and measurements are useful

in describing nature and simple to work with.

Very specific examples:

1. The magnetic field H is curl-free (recall example from before)

∇× H = 0.

2. Measurements are expressed as line integrals of the target function

• X-ray computed tomography (CT)

• Strain field reconstruction from neutron diffraction experiments
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2 16 13 3

11 5 8 10

7 9 12 6

14 4 1 15

4 9 2

3 5 7

8 1 6
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Computed tomography (CT)

Tomographic reconstruction: Recover the internal structure

f (x), x = [x y ]T

of an object from irradiation experiments.

Line integral measurements

y =

∫ R

−R
f (x0 + sn̂)ds + ε, ε ∼ N (0, σ2)

Limited data (sparse projections) important.
21/35



Linear functional measurements in GPs (more general)

Model the target function f (x) as a GP

f (x) ∼ GP(0, k(x, x′))

Fact: a GP is closed under linear transformations:

Lf (x) ∼ GP(0,LL′k(x, x′))

where for us (in the CT case)

Lf (x) =

∫ r

−r
f (x0 + sn̂)ds,

Our CT and strain field reconstruction examples have measurements:

y =

∫ r

−r
f (x0 + sn̂)ds + ε, ε ∼ N (0,Q)

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. 22/35



Ex. CT – carved cheese experiment

Ground truth FBP GP

Question: Why is the GP solution so blurry?

All details on this construction are available in
Zenith Purisha, Carl Jidling, Niklas Wahlström, Simo Särkkä, TS. Probabilistic approach to limited-data computed tomography

reconstruction, arXiv:1809.03779, 2018.
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Extending the expressiveness to non-stationary behaviors

The covariance function k(x, x′), stipulates the basic behavior of the

target function f (x).

The selection of k(x, x′) is the most crucial part of GP modelling.

Extend the expressiveness of stationary covariance functions by

transforming the inputs through a nonlinear mapping u(·) to form

k(u(x), u(x′)), effectively opening up for non-stationary behaviors.

Question: Which mapping should we use?

Let’s try a deep neural network...

Roberto Calandra, Jan Peters, Carl E. Rasmussen, and Marc P. Deisenroth. Manifold Gaussian processes for regression. In Proceedings

of the International Joint Conference on Neural Networks (IJCNN), 2016.

Andrew G.Wilson, Zhiting Hu, Ruslan R. Salakhutdinov, and Eric P. Xing. Deep kernel learning. In Advances in Neural Information

Processing Systems (NIPS), 2016.
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One useful way of combining deep learning with GPs

Intuition: The neural network does not have to learn the complete

function f (x), but only identify its discontinuities while for the remaining

part the model can rely upon the regression capabilities of the GP.
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Ex. – illustrating the idea

k(x , x ′) = σ2
f e
− 1

2l2
(x−x′)2 k(x , x ′) = σ2

f e
− 1

2l2
(u(x)−u(x′))2
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Using the idea together with integral measurements

Ground truth FBP GP GP + DL

GP + DL: Deep learning to use the input mapping together with our

taylored GP prior encoding our understanding of the underlying physics.

Recall our vision: Create flexible model building blocks containing the

basic knowledge we have about the phenomenon we are studying.
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Strain field reconstruction – background

Tomographic reconstruction: Recover the internal structure of an

object from irradiation experiments.

Deformed object

Reconstruct the strain tensor

ε(x) =



εxx(x) εxy (x)

εxy (x) εyy (x)
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Strain field reconstruction – measurement model

Neutron beams are generated at a

source, transmitted through the

sample (along n̂) and recorded at a

detector.

Measurement model (vectorised form):

y =
1

L

∫ L

0

NTf (x0 + sn̂)ds + ε

f(x) =




εxx(x)

εxy (x)

εyy (x)


 , N =




n2x

2nxny

n2y
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Strain field reconstruction – covariance model

Put a GP on the strain field f(x)

f(x) ∼ GP(0,K(x, x′))

Since f(x) is multivariate, the covariance function is a matrix

K(x, x′) =



k11(x, x′) k12(x, x′) k13(x, x′)

k21(x, x′) k22(x, x′) k23(x, x′)

k31(x, x′) k32(x, x′) k33(x, x′)




How should we select K(x, x′)?

There are certain physical constraints that it needs to fulfill.
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Multivariate GP – constraint incorporation

Assume linear constraints

F xf(x) = 0

Let f(x) = G xg(x)

f(x) = G xg(x) ∼ GP
(
G xµg(x), G xKg(x,x′)G

T
x′
)

Then

F xG xg(x) = 0

Arbitrary g(x)

⇒ F xG x = 0

Find G x

Carl Jidling, Niklas Wahlström, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information

Processing Systems (NIPS), Long Beach, CA, USA, December, 2017.
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Multivariate GP – constraint incorporation

Toy Example

Let

f(x) =

[
f1(x)

f2(x)

]
, x =

[
x

y

]

and consider the constraint

∂f1
∂x

+
∂f2
∂y

= 0 ⇔
[

∂
∂x

∂
∂y

]

︸ ︷︷ ︸
F x

f(x) = 0

Need G x such that F xG x = 0. One option is

G x =



− ∂

∂y

∂
∂x




since

F xG x =
[

∂
∂x

∂
∂y

]


− ∂

∂y

∂
∂x


 = − ∂2

∂x∂y
+

∂2

∂y∂x
= 0.
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Strain field reconstruction – constraint incorporation

A physical strain field must satisfy the equilibrium constraints (isotropic

linear elastic solid materials under plain stress)

0 =
∂fxx(x)

∂x
+ (1− ν)

∂fxy (x)

∂y
+ ν

∂fyy (x)

∂x
,

0 = ν
∂fxx(x)

∂y
+ (1− ν)

∂fxy (x)

∂x
+
∂fyy (x)

∂y
.

These can be written as

0 =




∂
∂x (1− ν) ∂

∂y ν ∂
∂x

ν ∂
∂y (1− ν) ∂

∂x
∂
∂y




︸ ︷︷ ︸
F x

f(x) =



cT
1

cT
2


 f(x)

We have constructed a Gaussian process that is guaranteed to obey

linear operator constraints by shaping the covariance function
Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, TS, Chris Wensrich and Adrian Wills. Probabilistic modelling and

reconstruction of strain. Nuclear instruments and methods in physics research: section B, 436:141-155, 2018. 33/35



Strain field reconstruction – experimental results

Carl Jidling, Johannes Hendriks, Niklas Wahlström, Alexander Gregg, TS, Chris Wensrich and Adrian Wills. Probabilistic modelling and

reconstruction of strain. Nuclear instruments and methods in physics research: section B, 436:141-155, 2018.
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Conclusion

The combined use of data-driven flexible models and existing

knowledge can be quite rewarding.

The best predictive performance is currently obtained from

highly flexible learning systems.

We introduced one flexible model class: Gaussian process (GP)

Hinted at how to embed basic knowledge from physics into the GP.

Uncertainty is a key concept!

Remember to talk to people who work on different problems with

different tools!! (Visit other fields!)
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