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What we do in the team — who we are

We automate the extraction of knowledge and
understanding from data.

Both basic research and applied research (with companies).

Create probabilistic models of dynamical systems and their

surroundings.

Develop methods to learn models from data.

The models can then be used by machines (or humans) to understand

or take decisions about what will happen next.
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What is a dynamical system?

A dynamical system evolves over time and it has a memory.

u(t) ? y(t)

Ex. 1 Linear time-invariant dynamical system described by

y(t) =

∫ ∞
0

g(τ)u(t − τ)dτ + e(t).

Ex. 2 Nonlinear autoregressive model with exogenous (NARX) inputs

yt = ϕ(yt−1, . . . , yt−ny , ut , . . . , ut−nu ) + et .

Ex. 3 State space model (using latent variables xt)

xt+1 = f (xt , ut , θ) + vt ,

yt = g(xt , ut , θ) + et .
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Ex) “What are xt, θ and yt”?

Aim (motion capture): Compute xt (position and orientation of the

different body segments) of a person (θ describes the body shape)

moving around indoors using measurements yt (accelerometers,

gyroscopes and ultrawideband).

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences 
Stockholm, September 19, 2013

An experiment to illustrate the importance of a model
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Inertial sensors Bio-mechanical Ultra-wideband The world

Task: Find the position and orientation of a human (human motion). 

Key models:

Show movie!

Manon Kok, Jeroen D. Hol and Thomas B. Schön. Using inertial sensors for position and orientation estimation, Foundations and

Trends of Signal Processing, 11(1–2):1–153, 2017.
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Key lesson from contemporary Machine Learning

Flexible models often give the best performance.

How can we build and work with these flexible models?

1. Models that use a large (but fixed) number of parameters.
(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436–444, 2015.

2. Models that use more parameters as we get access to more data.
(non-parametric, ex. Gaussian process)
Ghahramani, Z. Bayesian nonparametrics and the probabilistic approach to modeling. Phil. Trans. R. Soc. A 371, 2013.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.

Today we will focus on using the Gaussian process in modelling

dynamical systems.
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What is a Gaussian process (GP)?

The Gaussian process is a non-parametric and probabilistic model of a

nonlinear function.

• Non-parametric means that it does not rely on any particular

parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in every

aspect of the model.

Definition: (Gaussian Process, GP) A GP is a (potentially infinite)

collection of random variables such that any finite subset of it is jointly

distributed according to a Gaussian.
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Aim and outline

Aim: Provide some useful answers to the following two questions:

1. General: How can we mathematically construct probabilistic

models of dynamical systems?

2. Specific: How can the GP be used to model dynamical systems?

1. Introduction – What is a dynamical system?

2. Linear dynamical systems
a) Impulse response estimation

b) Autoregressive (AR)

c) Linear state space model (SSM)

3. Nonlinear dynamical systems

a) Nonlinear AR

b) Nonlinear SSM (GP-SSM)

4. Snapshots of some ongoing research (if there is time)

Comment on 44 and µ. 6/44



Part 2 – Linear dynamical

systems



µ: A fundamental concept from systems theory and control

A fundamental concept: The impulse response g(τ) provides knowledge

about everything there is to know about a linear system.

u(t) ? y(t) y(t) =

∫ ∞
0

g(τ)u(t − τ)dτ.

The impulse response of a dynamical system is its output when

presented with an ”impulse” input signal.

This impulse (the Dirac delta function) models the density of an

idealized point mass as a function equal to zero everywhere except for

zero and whose integral over the entire real line is equal to one.

The impulse function contains all frequencies, which means that the

impulse response defines the response of a linear time-invariant system

for all frequencies.
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GP-based linear impulse response estimation

Consider a linear time-invariant dynamical system described by

y(t) =

∫ ∞
0

g(τ)u(t − τ)dτ + e(t).

Task: Learn a model of the true underlying impulse response g(τ).

Placing a GP prior on the impulse response offers better performance

than the “classical” system identification approach.
Gianluigi Pillonetto and Giuseppe De Nicolao. A new kernel-based approach for linear system identification. Automatica, 46(1):81–93,

2010.

Gianluigi Pillonetto, Francesco Dinuzzo, Tianshi Chen, Giuseppe De Nicolao and Lennart Ljung. Kernel methods in system identification,

machine learning and function estimation: A survey. Automatica, 50(3):657–682, 2014.

Note that the integral of a GP is also a GP, so this is rather natural.

The GP offers a data-driven model flexibility tuning, an automatic

regularization striking a bias-variance trade-off that is “just right”.
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µ: Two common parametric representations

1. One of the simplest parametric rep. is provided by the AR(X) model.

yt = ϕ(yt−1, . . . , yt−n, ut , . . . , ut−nu ) + et .

These “classic” parametric approaches and the GP-based impulse

response approach are linked via a decision-theoretic formulation.
Johan Wågberg, Dave Zachariah and TS. Regularized parametric system identification: a decision-theoretic formulation. In Proceedings

of the American Control Conference (ACC), Milwaukee, WI, USA, June, 2018.

2. Another very useful parametric representation is offered by introducing

latent variables, which results in the so-called state space model.
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µ: Bayesian autoregressive model

An autoregressive model of order n is given by

yt = a1yt−1 + a2yt−2 + · · ·+ anyt−n + et , et ∼ N (µ, τ−1)

= θTzt︸︷︷︸
f (zt)

+et ,

where µ and τ are known explanatory variables (µ = 0, τ 6= 0).

The unknown model variables are collected as

θ = (a1, a2, . . . , an)T

with the prior

θ ∼ N (0, ρ−1In), where ρ assumed to be known.

Task: Compute the posterior p(θ | y1:T ).
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µ: Bayesian autoregressive model

Full probabilistic model p(θ, y1:T ) = p(y1:T | θ)p(θ), where the data

distribution is given by

p(y1:T | θ) = p(yT | y1:T−1, θ)p(y1:T−1 | θ) = · · · =
T∏
t=1

p(yt | y1:t−1, θ).

From the model we have that

p(yt | y1:t−1, θ) = N (yt | θTzt , τ
−1),

where zt = (yt−1, yt−2, . . . , yt−n)T. Hence,

p(y1:T | θ) =
T∏
t=1

N
(
yt
∣∣ θTzt , τ

−1
)

= N
(
y
∣∣ zθ, τ−1IT

)
,

where we have made use of y = (y1, y2, . . . , yT )T and

z = (z1, z2, . . . , zT )T.
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µ: Bayesian autoregressive model

p(θ, y) = N
(
y
∣∣ zθ, τ−1IT

)︸ ︷︷ ︸
p(y | θ)

N
(
θ
∣∣ 0, ρ−1In

)︸ ︷︷ ︸
p(θ)

= N

((
θ

y

)∣∣∣∣∣
(

0

0

)
,

(
ρ−1I2 ρ−1zT

ρ−1z τ−1IT + ρ−1zzT

))
.

The posterior is given by

p(θ | y) = N (θ |mT ,ST ) ,

where

mT = τST zTy ,

ST =
(
ρ−1I2 + σzTz

)T
.
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µ: Ex) Situation before any data is used

yt = a1yt−1 + a2yt−2 + et , et ∼ N (0, 0.2).
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µ: Ex) Situation after y1 is obtained
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µ: Ex) Situation after y1:2 and y1:20
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An abstract idea

In Bayesian linear regression

yt = θTzt︸︷︷︸
f (zt)

+et , et ∼ N (0, σ2),

we place a prior on θ, e.g. θ ∼ N (0, α2I ).

(Abstract) idea: What if we instead place a prior directly on the func-

tion f (·)
f ∼ p(f )

and look for p(f | y1:T ) rather than p(θ | y1:T )?!
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GP-AR model

An autoregressive model with exogenous (ARX) inputs

yt = ϕ(yt−1, . . . , yt−n, ut , . . . , ut−nu ) + et .

Place a GP prior over ϕ with the following input

xt =
(
yt−1 . . . yt−n ut . . . ut−nu

)T

There is of course no reason to limit ourself to linear models when we are

modelling ϕ using a GP. (a bit more about this later)

A. Girard, C. E. Rasmussen, J. Q. Candela, and R. Murray-Smith, Gaussian process priors with uncertain inputs application to

multiple-step ahead time series forecasting. in Advances in neural information processing systems (NIPS), 2003.

J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, Dynamic systems identification 24 with Gaussian processes. Mathematical and

Computer Modelling of Dynamical Systems, 11(4):411–424, 2005.
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µ: Latent variable model

Model variables that are not observed are called latent (a.k.a. hidden,

missing and unobserved) variables.

The idea of introducing latent variables into models is probably one of

the most powerful concepts in probabilistic modelling.

Latent variables provide more expressive models that can capture

hidden structures in data that would otherwise not be possible.

Cost: Learning the model often becomes (significantly) harder.

Standard use within dynamical systems: State space models.
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µ: Markov chain

The Markov chain is a probabilistic model that is used for modelling a

sequence of states (x0, x1, . . . , xT ).

Definition (Markov chain)

A stochastic process {xt}t≥0 is referred to as a Markov chain if, for

every k > 0 and t,

p(xt+k | x0, x1, . . . , xt) = p(xt+k | xt).

A Markov chain is completely specified by:

1. An initial value x0 and

2. a transition model (kernel) κ(xt+1 | xt) describing the transition from

state xt to state xt+1, according to xt+1 | (xt = xt) ∼ κ(xt+1 | xt).
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µ: Markov chain

The state of the Markov chain acts as a memory containing all

information there is to know about the phenomenon at a particular point

in time.

Two important applications of Markov chains:

1. The Markov model is used in the state space model (SSM) where

we can only observe the state indirectly via a measurement that is

related to the state.

2. The Markov chain constitutes the basic ingredient in the Markov

chain Monte Carlo (MCMC) methods.

Guess I have to mention a third application of the Markov chain as well:

3. Stochastic gradient methods
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µ: Linear Gaussian state space model (LG-SSM)

The linear Gaussian state space model (LG-SSM) is given by

xt = Axt−1 + But + vt ,

yt = Cxt + Dut + et ,

where xt ∈ Rnx denotes the state, ut ∈ Rnu denotes an explanatory

variable (known signal) and yt ∈ Rny denotes the measurement (data).

The initial state and the noise are distributed according tox0

vt
et

 ∼ N

µ0

0

 ,

P0 0 0

0 Q S

0 ST R




Remark: There is a connection between the SSM and the GP, where the

GP can sometimes be reformulated as LG-SSMs. Opens up for linear

complexity inference via the Kalman filter.
J. Hartikainen and S. Särkkä. Kalman Filtering and Smoothing Solutions to Temporal Gaussian Process Regression Models.

Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2010. 21/44



An attempt to illustrate why SSM + GP might make sense

Again, the linear Gaussian state space model

xt+1 = Axt + vt ,

yt = Cxt + et .

is designed to model dynamical behaviour.

However, it is limited in its expressiveness and uncertainty modelling.

The linear state-space model

xt+1 = Axt,

yt = Cxt + et,

is designed to model dynamical behavior. It is, howewer,
limited in its expressiveness and uncertainty modeling.

The nonparametric Gaussian process model

y ∼ GP(µ, κ)

is very flexible, and offers enhanced capabilities for
uncertainty representation compared to many classical
approaches. It is, however, less capable of predicting
dymamical behavior than the state-space model.

The Gaussian-process state-space model

xt+1 = f(xt), f ∼ GP,
yt = g(xt), g ∼ GP,

combines the nonparametric flexibility and the uncertainty
representation of the GP with the powerful dynamical
modeling capabilities of the state-space model.

Figure 2. An illustration of the advanced uncertainty dynamical modeling possible with the
combination of the state-space model and the Gaussian process.

20
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An attempt to illustrate why SSM + GP might make sense

The Gaussian process state space model (GP-SSM)

xt+1 = f (xt) + vt , where f ∼ GP,
yt = g(xt) + et , where g ∼ GP.

combines the non-parametric flexibility and the uncertainty representation

of the GP with the dynamical modeling capabilities of the SSM.

The linear state-space model

xt+1 = Axt,

yt = Cxt + et,

is designed to model dynamical behavior. It is, howewer,
limited in its expressiveness and uncertainty modeling.

The nonparametric Gaussian process model

y ∼ GP(µ, κ)

is very flexible, and offers enhanced capabilities for
uncertainty representation compared to many classical
approaches. It is, however, less capable of predicting
dymamical behavior than the state-space model.

The Gaussian-process state-space model

xt+1 = f(xt), f ∼ GP,
yt = g(xt), g ∼ GP,

combines the nonparametric flexibility and the uncertainty
representation of the GP with the powerful dynamical
modeling capabilities of the state-space model.

Figure 2. An illustration of the advanced uncertainty dynamical modeling possible with the
combination of the state-space model and the Gaussian process.
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Aim and outline

Aim: Provide some useful answers to the following two questions:

1. General: How can we mathematically construct probabilistic

models of dynamical systems?

2. Specific: How can the GP be used to model dynamical systems?

1. Introduction – What is a dynamical system?

2. Linear dynamical systems

a) Impulse response estimation

b) Autoregressive (AR)

c) Linear state space model (SSM)

3. Nonlinear dynamical systems
a) Nonlinear AR model

b) Nonlinear SSM (GP-SSM)

4. Snapshots of some ongoing research (if there is time)
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Part 3 – Nonlinear dynamical

systems



Nonlinear ARX model — GP style

An autoregressive model with exogenous (ARX) inputs

yt = ϕ(yt−1, . . . , yt−n, ut , . . . , ut−nu ) + et .

Place a GP prior over ϕ with the following input

xt =
(
yt−1 . . . yt−n ut . . . ut−nu

)T

Challenges (standard challenges with the basic GP):

1. Computationally too expensive.

2. It cannot efficiently make use of new measurements online.

3. Cannot deal with stochastic (noisy) inputs.

As you have heard by now there are ways around all of these.

Hildo Bijl, TS, Jan-Willem van Wingerden and Michel Verhaegen. System identification through online sparse Gaussian process

regression with input noise. IFAC Journal of Systems and Control, 2:1-11, 2017.
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µ: Nonlinear state space model (SSM)

The state space model (SSM) is a Markov chain that makes use of a

latent variable representation to describe dynamical phenomena.

It consists of two stochastic processes:

1. unobserved (state) process {xt}t≥0 modelling the dynamics,

2. observed process {yt}t≥1 modelling the measurements and their

relationship to the unobserved state process.

xt = f (xt−1, θ) + vt ,

yt = g(xt , θ) + et ,

where θ ∈ Rnθ denotes static model parameters.
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µ: Three different representations of the SSM

Three alternative representations, using

1. graphical models,

2. probability distributions or

3. probabilistic programs.

1. Representing the SSM using a graphical model:

x0 x1 . . . xT

y1 yT

θ
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µ: Representations using distributions or probabilistic programs

2. Representation using probability distributions

xt | (xt−1, θ) ∼ p(xt | xt−1, θ),

yt | (xt , θ) ∼ p(yt | xt , θ),

x0 ∼ p(x0 | θ).

3. Representing the SSM using a probabilistic program

x[1] ∼ Gaussian(0.0, 1.0); p(x1)

y[1] ∼ Gaussian(x[1], 1.0); p(y1 | x1)

for (t in 2..T) {
x[t] ∼ Gaussian(a*x[t - 1], 1.0); p(xt | xt−1)

y[t] ∼ Gaussian(x[t], 1.0); p(yt | xt)
}

A probabilistic program encodes a probabilistic model (here an

LG-SSM) according to the semantics of a particular probabilistic

programming language (here Birch). 28/44



µ: Parametric SSM – full probabilistic model

The full probabilistic model is given by

p(x0:T , θ, y1:T ) = p(y1:T | x0:T , θ)︸ ︷︷ ︸
data distribution

p(x0:T , θ)︸ ︷︷ ︸
prior

Distribution describing a parametric nonlinear SSM

p(x0:T , θ, y1:T ) =
T∏
t=1

p(yt | xt , θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

data distribution

T∏
t=1

p(xt | xt−1, θ)︸ ︷︷ ︸
dynamics

p(x0 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!
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µ: Finding the states and the parameters

Based on our generative model, compute the posterior distribution

p(x0:T , θ | y1:T ) = p(x0:T | θ, y1:T )︸ ︷︷ ︸
state inf.

p(θ | y1:T )︸ ︷︷ ︸
param. learn.

.

Bayesian formulation – model the unknown parameters as a random

variable θ ∼ p(θ) and compute

p(θ | y1:T ) =
p(y1:T | θ)p(θ)

p(y1:T )

Maximum likelihood formulation – model the unknown parameters as

a deterministic variable and solve

θ̂ = argmax
θ∈Θ

p(y1:T | θ).
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µ: Central object – the likelihood

The likelihood is computed by marginalizing

p(x0:T , y1:T | θ) = p(x0 | θ)
T∏
t=1

p(yt | xt , θ)
T∏
t=1

p(xt | xt−1, θ),

w.r.t the state sequence x0:T ,

p(y1:T | θ) =

∫
p(x0:T , y1:T | θ)dx0:T .

(We are averaging p(x0:T , y1:T | θ) over all possible state sequences.)

Equivalently we have

p(y1:T | θ) =
T∏
t=1

p(yt | y1:t−1, θ) =
T∏
t=1

∫
p(yt | xt , θ) p(xt | y1:t−1, θ)︸ ︷︷ ︸

key challenge

dxt .

TS, Fredrik Lindsten, Johan Dahlin, Johan Wågberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential Monte Carlo

methods for system identification. In Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing, China,

October 2015.
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µ: The model – learning relationship

Learning a model based on data leads to computational challenges:

• Integration: e.g. the HD integrals arising during marg. (averaging

over all possible parameter values z):

p(y1:T ) =

∫
p(y1:T | z)p(z)dz .

• Optimization: e.g. when extracting point estimates, for example by

maximizing the likelihood

ẑ = argmax
z

p(y1:T | z)

Impossible to compute exactly, approximations are needed:

• Monte Carlo (MC), Markov chain MC, and sequential MC.

• Variational inference (VI).

• Stochastic optimization.
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The idea underlying a non-parametric SSM via the GP

xt+1 = f (xt) + vt , s.t. f (x) ∼ GP(0, κη,f (x , x ′)),

yt = g(xt) + et , s.t. g(x) ∼ GP(0, κη,g (x , x ′)).

Results in a flexible non-parametric model where the GP prior takes on

the role of a regularizer. Enables regularization also in nonlinear models.

Challenge: Approximate the posterior distribution

p(f , g ,Q,R, η | y1:T ),

Mauricio A. Alvarez, David Luengo and Neil D. Lawrence. Latent force models. In Artificial Intelligence and Statistics (AISTATS), 2009.

Frigola, Roger, Fredrik Lindsten, TS, and Carl Rasmussen. Bayesian inference and learning in Gaussian process state-space models with

particle MCMC. In Advances in Neural Information Processing Systems (NIPS), 2013.

Roger Frigola, Yutian Chen, and Carl E. Rasmussen. Variational Gaussian process state-space models. In Advances in Neural Information

Processing Systems (NIPS), 2014.

Stefanos Eleftheriadis, Thomas F. W. Nicholson, Marc P. Deisenroth, James Hensman. Identification of Gaussian process state space

models, Advances in Neural Information Processing Systems (NIPS), 2017

Andreas Svensson and TS. A flexible state space model for learning nonlinear dynamical systems, Automatica, 80:189-199, June, 2017. 33/44



Approximate Gaussian processes

We use a “reduced-rank” GP approximation:

f ∼ GP(0, k) ⇔ f (x) ≈
m∑
j=0

w jφj(x)

with prior
w j ∼ N (0,S(λj))

For x ∈ [−L, L] ⊂ R: φj(x) = 1√
L
sin

(
πj(x+L)

2L

)
.

m = 4Full GP m = 16m = 9

Arno Solin and Simo Särkkä. Hilbert Space Methods for Reduced-Rank Gaussian Process Regression. arXiv:1401.5508, 2014.
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Computationally feasible GP-SSM

Original formulation:

xt+1 = f (xt) + vt , vt ∼ N (0,Q),

yt = g(xt) + et , et ∼ N (0,R),

f (x) ∼ GP(0, κη,f (x , x ′))

Formulation using the reduced-rank GP approximation:

xt+1 =
m∑
j=0

w jφj(xt) + vt , vt ∼ N (0,Q),

yt = g(xt) + et , et ∼ N (0,R),

w j ∼ N (0,S(λj)).

Linear in the parameters w i and nonlinear in the states xt .
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The learning problem (dynamical systems)

Compute the posterior distribution

p(x1:T , θ | y1:T ) = p(x1:T | θ, y1:T )︸ ︷︷ ︸
state

p(θ | y1:T )︸ ︷︷ ︸
parameter

.

HD integration/optimization problems without analytical solution.

Sequential Monte Carlo provide approximations to integration problems

where there is a sequential structure present.

Learning the parameters θ is rather straightforward in this GP-SSM.

The states x1:T are still challenging. We use a combination of SMC and

MCMC.

Andreas Svensson and TS. A flexible state space model for learning nonlinear dynamical systems, Automatica, 80:189–199, 2017. 36/44



GP-SSM — A Zoubin cube to describe itBrief literature overview, discussion and conclusions
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Part 4 – Snapshots of some

ongoing research and message



Snapshot 1 — A linearly constrained GP

Innovation: Modification of the covariance function in a GP to correctly

account for known linear operator constraints.

Contribution:

1. A probabilistic model that is

guaranteed to fulfil known

linear operator constraints.

2. A constructive procedure for

designing the transformation.
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Linearly constrained Gaussian processes

Abstract
We consider a modification of the covariance
function in Gaussian processes to correctly ac-
count for known linear constraints. By modelling
the target function as a transformation of an un-
derlying function, the constraints are explicitly
incorporated in the model such that they are guar-
anteed to be fulfilled by any sample drawn or
prediction made. We also propose a constructive
procedure for designing the transformation op-
erator and illustrate the result on both simulated
and real-data examples.

1. Introduction
Bayesian non-parametric modelling has had a profound im-
pact in machine learning due, in no small part, to the flex-
ibility of these model structures in combination with the
ability to encode prior knowledge in a principled man-
ner (Ghahramani, 2015). These properties have been ex-
ploited within the class of Bayesian non-parametric models
known as Gaussian Processes (GPs), which have received
significant research attention and have demonstrated utility
across a very large range of real-world applications (Ras-
mussen & Williams, 2006).

Abstracting from the myriad number of these applications,
it has been observed that the efficacy of GPs modelling
is often intimately dependent on the appropriate choice of
mean and covariance functions, and the appropriate tuning
of their associated hyper-parameters. Often, the most ap-
propriate mean and covariance functions are connected to
prior knowledge of the underlying problem. For example,
Koyejo et al. (2013) use functional expectation constraints
to consider the problem of gene-disease association, and
Navarro et al. (2016) employs a multivariate generalised
von Mises distribution to produce a GP-like regression that
handles circular variable problems.

At the same time, it is not always obvious how one might
construct a GP model that obeys underlying principles,

*Equal contribution . Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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Figure 1. Predicted strength of a magnetic field at three heights,
given measured data sampled from the trajectory shown (blue
curve). The three components (x1, x2, x3) denote the Cartesian
coordinates, where the x3-coordinate is the height above the floor.
The magnetic field is curl-free, which can be formulated in terms
of three linear constraints. The method proposed in this paper
can exploit these constraints to improve the predictions. See Sec-
tion 5.2 for details.

such as equilibrium conditions and conservation ”laws”.
One straightforward approach to this problem is to add fic-
titious measurements that observe the constraints at a finite
number of points of interest. This has the benefit of being
relatively straightforward to implement, but has the some-
times significant drawback of increasing the problem di-
mension and at the same time not enforcing the constraints
between the points of interest.

A different approach to constraining the GP model is to
construct mean and covariance functions that obey the con-
straints. For example, curl and divergence free covariance
functions are used in (Macêdo & Castro, 2008) to improve
the accuracy for regression problems. The main benefit of
this approach is that the problem dimension does not grow,
and the constraints are enforced everywhere, not just at the
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Snapshot 2 — Constrained GP for tomographic reconstruction

Tomographic reconstruction goal: Build a map of an unknown

quantity within an object using information from irradiation experiments.

Ex1) Modelling and reconstruction of

strain fields.

Ex2) Reconstructing the internal structure

from limited x-ray projections.

(a) (b) (c)

Figure 5: (a) FBP reconstruction of cheese using dense 360 projections. (b) Filteredback projection
reconstruction from 9 projections. (c) GP reconstruction from 9 projections.

3.3 Discussion
We have presented x-ray tomography reconstruction from both simulated and real data for only 9
projections using an approach based on the Gaussian process. As a benchmark algorithm, FBP
reconstructions are overwhelmed by streak artifacts as it can be seen in Figure 4(b) for the chest
phantom and Figure 5(b) the for cheese target. The edges of the target are badly reconstructed.
Because of the artefacts, it is difficult to distinguish the lighter region (which is assumed as tissue)
and the black region (the air). It is confirmed by a high value (more than 80%) of the relative
error in figures of merit in Table 1. On the other hand, the GP reconstructions from both data
outperform the FBP algorithm in terms of image quality as reported in figures of merit. The PSNR
value of the GP-approach reconstruction is higher than that of the FBP reconstruction, and the
relative error is only 19.3%. The GP prior clearly suppresses the artifacts in the reconstructions as
shown in Figure 4(c) and 5(c). In Figure 4(c), the air and tissue region are recovered much better,
since it has less prominent artefacts. In Figure 5(c), the air region (outside the cheese and the C
and T letters) are recovered much sharper than in the FBP reconstructions. Overall, the results
indicate that the image quality can be improved significantly by employing the GP method.

We emphasize that in the proposed GP-approach, some parameters in the prior is a part of the
inference problem (see Equation 4). Henceforth, we can avoid the difficulty in choosing the prior
parameters. This problem corresponds to the classical regularization methods, in which selecting
the regularization parameters is a very crucial step to produce a good reconstruction.

4 Conclusions and Future work
We have employed the Gaussian process with hierarchical prior to reconstruct the x-ray attenuation
coefficient for limited projection data. The method can be implemented to estimate the attenuation
coefficient from the measured data produced by the Radon transform. Simulated and real data
are tested, and the results in both cases are quite promising. Unlike algorithms commonly used in
limited x-ray tomography problem in which tuning or choosing the prior parameters is required,
the proposed GP method offers an easier set up as it takes into account the prior parameters as a
part of the estimation. Henceforth, it constitutes a promising and user-friendly strategy.

The most important part of the GP model is the selection of the covariance function, since it
stipulates the properties of the unknown function. As such, it also leaves most room for improve-
ment. Considering the examples in Section 3, a common feature of the target functions is that they
consists of a number of well-defined, separate regions. The function values are similar and thus
highly correlated within the regions, while the correlation is low at the edges where rapid changes
occur. This kind of behavior is hard to capture with a stationary covariance function that models
the correlation as completely dependent on the distance between the input locations.

A non-stationary alternative is the neural network covariance function, which is known for its
ability to model functions with non-smooth features [29]. Other more advanced options include
deep GPs [45] and manifold GPs [46]. The price is, however, that the implementation becomes
significantly harder. Numerical methods would most likely be required in the evaluation of (9a)-
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Snapshot 3 — Model of the ambient magnetic field with GPs

The Earth’s magnetic field sets a background for the ambient magnetic

field. Deviations make the field vary from point to point.

Aim: Build a map (i.e., a

model) of the magnetic

environment based on

magnetometer measurements.

Solution: Customized Gaussian

process that obeys Maxwell’s

equations.

www.youtube.com/watch?v=enlMiUqPVJo

Arno Solin, Manon Kok, Niklas Wahlström, TS and Simo Särkkä. Modeling and interpolation of the ambient magnetic field by

Gaussian processes. IEEE Transactions on Robotics, 34(4):1112–1127, 2018.
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Snapshot 4 — New PhD thesis on the topic

Machine learning with

state-space models, Gaussian

processes and Monte Carlo

methods.

By Andreas Svensson

Chapter 1. Introduction

1.1 Focus of the thesis

The �eld of machine learning is vast and ever increasing. Of course, this thesis
cannot cover everything, and not even close to. This thesis is primarily about learning
statistical models from data when the data has a sequential nature (such as time series
and input-output relationships of dynamical systems). In a technical lingo, the models
concerned in this thesis are primarily state-space models (hidden Markov models)
and Gaussian processes. The learning, which is done by a computer, is nothing but
a set of mathematical computations. There are di�erent methods to perform these
computations, and this thesis focuses on a set of methods which makes clever use of
randomness, namely Monte Carlo methods. A pictorial view could perhaps look like
this, where the shaded red regions are the focus of the thesis:

Monte Carlo
methods

State-space
models

Gaussian
processes

This thesis, and also the research behind it, is focused on methods rather than ap-
plications. That does not mean there are no applications, and examples of applications
are given in several of the papers.

2

Link to the thesis:

www.it.uu.se/katalog/andsv164/main/thesis_andreas_

svensson_webb.pdf
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Snapshot 5 — Use the GP to learn Hessians

Results in a stochastic quasi-Newton method.

Summary: Stochastic quasi-Newton integral:

yk = Dk

∫ 1

0

B̃(rk(τ))dτ + ek ,

with the following model for the Hessian

B̃(θ) ∼ GP(µ(θ), κ(θ, θ′)).

Talk more about this on Thursday.
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My message (I/II)

Message: The Gaussian process can be used to construct useful

representations of dynamical systems.

I have hinted at how we can combine standard dynamical models like

1. Linear – impulse response

2. Nonlinear – Autoregressive (AR)

3. Nonlinear – State-space model (SSM)

and the Gaussian process to achieve useful constructions.

”If you have a new nonlinear construction, always make sure that it

”does the right thing” in the linear Gaussian special case.”
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My message (II/II)

System identification

the Gaussian process

Remember to talk to people who work on different problems with

different tools!!
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