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What we do in the team — who we are

We automate the extraction of knowledge and
understanding from data.

Both basic research and applied research (with companies).

& % = LU

Create probabilistic models of dynamical systems and their

surroundings.
Develop methods to learn models from data.

The models can then be used by machines (or humans) to understand
or take decisions about what will happen next.
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What is a dynamical system?

[ A dynamical system evolves over time and it has a memory. ]

u(t) 7 |- (1)

Ex. 1 Linear time-invariant dynamical system described by

y(t) = /OOO g(r)u(t — 7)dr + e(t).
Ex. 2 Nonlinear autoregressive model with exogenous (NARX) inputs
Ve =O(Ye-1,- s Yeon, Uty oo, Ut—p,) + €t
Ex. 3 State space model (using latent variables x;)
Xer1 = F(Xe, Ur, 0) + ve,

= 0 .
Yt g(Xh Uz, ) + e 2/44



Ex) “What are x;, 6 and y,”?

Aim (motion capture): Compute x, (position and orientation of the
different body segments) of a person (6 describes the body shape)
moving around indoors using measurements y; (accelerometers,
gyroscopes and ultrawideband).

Show movie!

Manon Kok, Jeroen D. Hol and Thomas B. Schon. Using inertial sensors for position and orientation estimation, Foundations and
Trends of Signal Processing, 11(1-2):1-153, 2017.
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Key lesson from contemporary Machine Learning

Flexible models often give the best performance.

How can we build and work with these flexible models?

1. Models that use a large (but fixed) number of parameters.

(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436-444, 2015.

2. Models that use more parameters as we get access to more data.
(non-parametric, ex. Gaussian process)
Ghahramani, Z. Bayesian nonparametrics and the probabilistic approach to modeling. Phil. Trans. R. Soc. A 371, 2013.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.

Today we will focus on using the Gaussian process in modelling
dynamical systems.

4/44



What is a Gaussian process (GP)?

The Gaussian process is a non-parametric and probabilistic model of a
nonlinear function.
e Non-parametric means that it does not rely on any particular
parametric functional form to be postulated.
e Probabilistic means that it takes uncertainty into account in every

aspect of the model.

Definition: (Gaussian Process, GP) A GP is a (potentially infinite)
collection of random variables such that any finite subset of it is jointly

distributed according to a Gaussian.
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Aim and outline

Aim: Provide some useful answers to the following two questions:

1. General: How can we mathematically construct probabilistic
models of dynamical systems?

2. Specific: How can the GP be used to model dynamical systems?

1. Introduction — What is a dynamical system?
2. Linear dynamical systems
a) Impulse response estimation
b) Autoregressive (AR)
c) Linear state space model (SSM)
3. Nonlinear dynamical systems
a) Nonlinear AR
b) Nonlinear SSM (GP-SSM)
4. Snapshots of some ongoing research (if there is time)

Comment on 44 and p. 6/44



Part 2 — Linear dynamical
systems




p: A fundamental concept from systems theory and control

A fundamental concept: The impulse response g(7) provides knowledge
about everything there is to know about a linear system.

u(t) y(0) v - [ " g(r)ult — )dr.

The impulse response of a dynamical system is its output when
presented with an "impulse” input signal.

This impulse (the Dirac delta function) models the density of an
idealized point mass as a function equal to zero everywhere except for
zero and whose integral over the entire real line is equal to one.

The impulse function contains all frequencies, which means that the
impulse response defines the response of a linear time-invariant system
for all frequencies.
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GP-based linear impulse response estimation

Consider a linear time-invariant dynamical system described by

w6 = [ elr)ale— )+ e(0)
Jo
Task: Learn a model of the true underlying impulse response g(7).

Placing a GP prior on the impulse response offers better performance
than the “classical” system identification approach.

Gianluigi Pillonetto and Giuseppe De Nicolao. A new kernel-based approach for linear system identification. Automatica, 46(1):81-93,
2010.

Gianluigi Pillonetto, Francesco Dinuzzo, Tianshi Chen, Giuseppe De Nicolao and Lennart Ljung. Kernel methods in system identification,
machine learning and function estimation: A survey. Automatica, 50(3):657-682, 2014.

Note that the integral of a GP is also a GP, so this is rather natural.

The GP offers a data-driven model flexibility tuning, an automatic
regularization striking a bias-variance trade-off that is “just right”.
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p: Two common parametric representations

1. One of the simplest parametric rep. is provided by the AR(X) model.

Ve = O(Ve—1s- s Yemns Uy ooy Up—p,) + 1.

These “classic” parametric approaches and the GP-based impulse
response approach are linked via a decision-theoretic formulation.

Johan Wagberg, Dave Zachariah and TS. Regularized parametric system identification: a decision-theoretic formulation. In Proceedings
of the American Control Conference (ACC), Milwaukee, WI, USA, June, 2018.

2. Another very useful parametric representation is offered by introducing
latent variables, which results in the so-called state space model.
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,: Bayesian autoregressive model

An autoregressive model of order n is given by
Ye=ayi 1+ aye o+ +anyent+e, e~Np,T )
= eth +et7
~—~
f(z)
where i and 7 are known explanatory variables (1 = 0,7 # 0).

The unknown model variables are collected as

0= (31,32,...,&),,)T
with the prior

0~ N(0,p 1), where p assumed to be known.

Task: Compute the posterior p(6 | y1.7).
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1 Bayesian autoregressive model

Full probabilistic model p(0, y1.7) = p(y1.7 | 0)p(0), where the data
distribution is given by

.
plyr710) = p(yr | y1:7-1,0)p(yrT-110) = - = [ ] (vt | ya:t-1,6).

From the model we have that

P()’t |)/1:t—1> 9) = N(}/t | eTZta 7'_1)7

where z; = (Ve_1,Yt—2,.-.,¥t—n)". Hence,
T
p(yr.7|0) = HN(yt |07z, 771) =N (y| 20,77 Ir),
t=1
where we have made use of y = (y1, yo, ..., y7)T and
zZ = (Zl, 22, ..y ZT)T.
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1 Bayesian autoregressive model

p(0,y) =N (y|z0, 7 ) N(0]0,p7 1)

p(y 16) p(9)
N 0 0 p~th p~tzT
y 0) ' \ptz 77Yr+ptzz") )"

The posterior is given by
p(0ly) =N(|mr,ST),

where
mr =71Srz'y,

St = (p_ll2 + asz)T

12/44



p: Ex) Situation before any data is used

Ye = a1Ve—1+ a2y o+ e, e ~ N(0,0.2).

Prior 7 samples from the prior

White dot — true value for 0 = (0.6,0.2).
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p: Ex) Situation after y,; is obtained

7 samples from the

Likelihood Posterior .
posterior
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p: Ex) Situation after y;., and y;.59

7 samples from the

Likelihood Posterior .
posterior
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An abstract idea

In Bayesian linear regression

Y = HTZt +et, € ~ ./\/—(0,0'2)7

f(z)

we place a prior on 6, e.g. 8 ~ N(0,a?l).

(Abstract) idea: What if we instead place a prior directly on the func-
tion £(-)
f ~ p(f)

and look for p(f | y1.7) rather than p(@ | y1.7)?!
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GP-AR model

An autoregressive model with exogenous (ARX) inputs

Ye = @(%—17 sy Yt—ny Uty ooy Ut—nu) + et

Place a GP prior over ¢ with the following input

T
Xt = (}/t—l ‘e Yt—n ug ... Ut_nu)

There is of course no reason to limit ourself to linear models when we are
modelling ¢ using a GP. (a bit more about this later)

A. Girard, C. E. Rasmussen, J. Q. Candela, and R. Murray-Smith, Gaussian process priors with uncertain inputs application to
multiple-step ahead time series forecasting. in Advances in neural information processing systems (NIPS), 2003.

J. Kocijan, A. Girard, B. Banko, and R. Murray-Smith, Dynamic systems identification 24 with Gaussian processes. Mathematical and
Computer Modelling of Dynamical Systems, 11(4):411-424, 2005.
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p: Latent variable model

Model variables that are not observed are called latent (a.k.a. hidden,
missing and unobserved) variables.

The idea of introducing latent variables into models is probably one of
the most powerful concepts in probabilistic modelling.

Latent variables provide more expressive models that can capture
hidden structures in data that would otherwise not be possible.

Cost: Learning the model often becomes (significantly) harder.

Standard use within dynamical systems: State space models.
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u: Markov chain

The Markov chain is a probabilistic model that is used for modelling a
sequence of states (xp,x1,...,XT7).

Definition (Markov chain)

A stochastic process {x:}+>0 is referred to as a Markov chain if, for
every k > 0 and t,

P(Xt+k |X07X17 e 7Xt) = P(Xt+k |Xt)«
A Markov chain is completely specified by:

1. An initial value x¢ and

2. a transition model (kernel) x(x¢41 | x¢) describing the transition from
state x; to state xy11, according to x¢11 | (Xt = X¢) ~ K(Xet1 | Xt)-
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w: Markov chain

The state of the Markov chain acts as a memory containing all
information there is to know about the phenomenon at a particular point
in time.

Two important applications of Markov chains:

1. The Markov model is used in the state space model (SSM) where
we can only observe the state indirectly via a measurement that is
related to the state.

2. The Markov chain constitutes the basic ingredient in the Markov
chain Monte Carlo (MCMC) methods.

Guess | have to mention a third application of the Markov chain as well:
3. Stochastic gradient methods
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Linear Gaussian state space model (L

The linear Gaussian state space model (LG-SSM) is given by
Xe = Axe—1 + But + vy,
Ve = Cx¢ + Duy + e,
where x; € R™ denotes the state, u; € R™ denotes an explanatory

variable (known signal) and y; € R™ denotes the measurement (data).

The initial state and the noise are distributed according to

Xo L Pb, 0 O
Vi ~ N 0 , 0 Q S
(S 0 0 S T R

Remark: There is a connection between the SSM and the GP, where the
GP can sometimes be reformulated as LG-SSMs. Opens up for linear
complexity inference via the Kalman filter.

J. Hartikainen and S. Sarkk3. Kalman Filtering and Smoothing Solutions to Temporal Gaussian Process Regression Models.
Proceedings of IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2010. 21/44



An attempt to illustrate why SSM + GP might make sense

Again, the linear Gaussian state space model
Xt4+1 — AXt + Vi,
Ve = Cx¢ + e

is designed to model dynamical behaviour.

However, it is limited in its expressiveness and uncertainty modelling.

10 T T T T ‘

| /\/WV\N\/\/\N\/\/\N

=
ot
® Data
Sr I Fredictive distribution using a 2nd order linear state-space model
| | | | .
o 5 10 15 20 25 30

sample time
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An attempt to illustrate why SSM + GP might make sense

The Gaussian process state space model (GP-SSM)
Xer1 = F(xe) + i, where f ~ GP,
yve = g(xt) + e, where g ~ GP.

combines the non-parametric flexibility and the uncertainty representation
of the GP with the dynamical modeling capabilities of the SSM.

® Data
I Predictive distribution with 1st order GP state-space model
1

0 5 10 15 20 25 30
sample time
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Aim and outline

Aim: Provide some useful answers to the following two questions:

1. General: How can we mathematically construct probabilistic
models of dynamical systems?

2. Specific: How can the GP be used to model dynamical systems?

1. Introduction — What is a dynamical system?
2. Linear dynamical systems
a) Impulse response estimation
b) Autoregressive (AR)
c) Linear state space model (SSM)
3. Nonlinear dynamical systems
a) Nonlinear AR model
b) Nonlinear SSM (GP-SSM)
4. Snapshots of some ongoing research (if there is time)
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Part 3 — Nonlinear dynamical
systems




Nonlinear ARX model — GP style

An autoregressive model with exogenous (ARX) inputs

Ye = @(yf—lv" '7yt—n7uta"'7ut—”u) + e

Place a GP prior over ¢ with the following input

T
Xt = (Yt—l . Yt—n U ... Ut_nu)

Challenges (standard challenges with the basic GP):

1. Computationally too expensive.
2. It cannot efficiently make use of new measurements online.
3. Cannot deal with stochastic (noisy) inputs.

As you have heard by now there are ways around all of these.

Hildo Bijl, TS, Jan-Willem van Wingerden and Michel Verhaegen. System identification through online sparse Gaussian process
regression with input noise. /IFAC Journal of Systems and Control, 2:1-11, 2017.
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p: Nonlinear state space model (SSM)

The state space model (SSM) is a Markov chain that makes use of a
latent variable representation to describe dynamical phenomena.

It consists of two stochastic processes:

1. unobserved (state) process {x;}+>o modelling the dynamics,

2. observed process {y; }+>1 modelling the measurements and their
relationship to the unobserved state process.

Xt = f(Xt7179) + Vi,
v = g(xt,0) + e,

where 6§ € R" denotes static model parameters.
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p: Three different representations of the SSM

Three alternative representations, using
1. graphical models,
2. probability distributions or
3. probabilistic programs.

1. Representing the SSM using a graphical model:

()
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1: Representations using distributions or probabilistic programs

2. Representation using probability distributions
Xt | (xe=1,0) ~ p(x¢ | x¢—1,0),
ye | (%, 0) ~ p(ye | xe, 0),
xo ~ p(xo | 0).

3. Representing the SSM using a probabilistic program

x[1] ~ Gaussian(0.0, 1.0); p(x1)
y[1] ~ Gaussian(x[1], 1.0); p(y1 | x1)
for (tin 2..T) {
x[t] ~ Gaussian(a*x[t - 1], 1.0); p(xe | x¢—1)
y[t] ~ Gaussian(x[t], 1.0); p(y: | xt)
}

A probabilistic program encodes a probabilistic model (here an
LG-SSM) according to the semantics of a particular probabilistic
programming language (here Birch). 28/44



p: Parametric SSM — full probabilistic model

The full probabilistic model is given by

p(x0.7,0, y1.:17) = p(yr.T | x0.7,0) p(x0:7,0)
—_———— —

data distribution prior

Distribution describing a parametric nonlinear SSM

T
p(xo:7,0,y1.7) = HP(}’t | X, 0) HP(Xt | xe—1,0) p(x0 [ 0) p(0)
t=1 t=1 el
observation dynamics state  param.
data distribution prior
[ Model = probability distribution!
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p: Finding the states and the parameters

Based on our generative model, compute the posterior distribution

p(XO:T, 0 ‘ y1:T) - p(XO:T | 97}/1:7') P(9 | y1:T) .
—_——————

state inf. param. learn.

Bayesian formulation — model the unknown parameters as a random
variable 6 ~ p(6) and compute

_ plyrT|0)p(0)
PO p(y1:T)

Maximum likelihood formulation — model the unknown parameters as
a deterministic variable and solve

f = arg max p(y1:1 | 6).
€O
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(2 Central object — the likelihood

The likelihood is computed by marginalizing
T T

P(XO:T7)/1:T | 9) = P(XO | 9) HP(Yt |Xt; 9) HP(Xt ‘ Xt—1, 9)»

t=1 t=1

w.r.t the state sequence xq.T,
p(yT|0) = /p(XO:T:)/l:T | 0)dxo. 7

(We are averaging p(xo.7, y1.7 | 0) over all possible state sequences.)

Equivalently we have
T T

ply7[0) =[] pOve [ y2:e-1,0) = H/ P(ye | xe, 0) p(xe [ y1:6-1,0) dxe.
—_— ———

t=1 t=1
key challenge

TS, Fredrik Lindsten, Johan Dahlin, Johan Wagberg, Christian A. Naesseth, Andreas Svensson and Liang Dai. Sequential Monte Carlo
methods for system identification. In Proceedings of the 17th IFAC Symposium on System Identification (SYSID), Beijing, China,
October 2015
31/44



p1: The model — learning relationship

Learning a model based on data leads to computational challenges:

e Integration: e.g. the HD integrals arising during marg. (averaging
over all possible parameter values z):

p(yiT) = /P()/I:T|Z)p(2)dz.

e Optimization: e.g. when extracting point estimates, for example by
maximizing the likelihood

z = argmax p(y1.7|2)
z

Impossible to compute exactly, approximations are needed:

e Monte Carlo (MC), Markov chain MC, and sequential MC.
e Variational inference (VI).

e Stochastic optimization.
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The idea underlying a non-parametric SSM via the GP

Xt41 = f(Xt) —+ Vi, s.t. f(X) ~ gp(o, K'r/,f(X7X/))a
Ve = g(Xt) + e, s.t. g(X) ~ gP(O» H7],g(X7X/))'

Results in a flexible non-parametric model where the GP prior takes on
the role of a regularizer. Enables regularization also in nonlinear models.

Challenge: Approximate the posterior distribution

p(fvga Qa R77]|}/1:T),

Mauricio A. Alvarez, David Luengo and Neil D. Lawrence. Latent force models. In Artificial Intelligence and Statistics (AISTATS), 2009.

Frigola, Roger, Fredrik Lindsten, TS, and Carl Rasmussen. Bayesian inference and learning in Gaussian process state-space models with
particle MCMC. In Advances in Neural Information Processing Systems (NIPS), 2013.

Roger Frigola, Yutian Chen, and Carl E. Rasmussen. Variational Gaussian process state-space models. In Advances in Neural Information
Processing Systems (NIPS), 2014.

Stefanos Eleftheriadis, Thomas F. W. Nicholson, Marc P. Deisenroth, James Hensman. ldentification of Gaussian process state space
models, Advances in Neural Information Processing Systems (NIPS), 2017

Andreas Svensson and TS. A flexible state space model for learning nonlinear d ical systems, A ica, 80:189-199, June, 2017. 33 /44



Approximate Gaussian processes

We use a “reduced-rank” GP approximation:

m

f~GP0K) & f(x)~ ) wWd(x)

Jj=0

with prior

wl ~ N(0, S(V))

For x € [—L7 L] C R: ¢J(X) = L sin (wj(;:L))i

L
Full GP m=4 m=9 m =16
° °
— T
[ ] ) [
Arno Solin and Simo Sarkka. Hilbert Space Methods for Reduced-Rank G ian Process Regression. arXiv:1401.5508, 2014
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Computationally feasible GP-SSM

Original formulation:
Xt+1 — f(Xt) + Vi, Vi ~ N(07 Q)7

ye = g(x¢) + e, e: ~ N(0,R),
f(x) ~ GP(0, K, ¢(x,x"))

Formulation using the reduced-rank GP approximation:

Xt41 = Z Wj(f)j(Xt) + Vi, ve ~ N(0, Q),
=0
yt:g(xt)+et7 etNN(07R)7

w/ ~ N(0,S(NM)).

Linear in the parameters w' and nonlinear in the states x;.
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The learning problem (dynamical systems)

Compute the posterior distribution

plxa:T, 0| y11) = plx.7 [0, y1.7) p(O | y1:7) -
e —— ——
state parameter

HD integration /optimization problems without analytical solution.

Sequential Monte Carlo provide approximations to integration problems
where there is a sequential structure present.

Learning the parameters @ is rather straightforward in this GP-SSM.

The states xy.7 are still challenging. We use a combination of SMC and
MCMC.

Andreas Svensson and TS. A flexible state space model for learning lii d ical systems, A ica, 80:189-199, 2017. 36/44




GP-SSM — A Zoubin cube to describe it

Control with
unknown states
(GP-MPC,
GP-POMDP)

4

State estimation

in the GP-SSM | System identification

Control for GP
time series
models
(GP-MPC)

The GP for time

series modelling System identification

Joint learning and
control with

System identification e g

E

2

System E

identification of 3

the GP-SSM
1 Reinforcement
System identificaticy learning, PILCO

=
3

GP regression
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Part 4 — Snapshots of some
ongoing research and message




Snapshot 1 — A linearly constrained GP

Innovation: Modification of the covariance function in a GP to correctly
account for known linear operator constraints.

magnetic field

Contribution:

1. A probabilistic model that is
guaranteed to fulfil known
linear operator constraints.

23 [m]

2. A constructive procedure for
designing the transformation.

Carl Jidling, Niklas Wahlstrm, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information
Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. 38/44



Snapshot 2 — Constrained GP for tomographic reconstruction

Tomographic reconstruction goal: Build a map of an unknown
quantity within an object using information from irradiation experiments.

Ex1) Modelling and reconstruction of
strain fields.

Ex2) Reconstructing the internal structure
from limited x-ray projections.

Carl Jidling, Johannes Hendriks, Niklas Wahlstrom, Alexander Gregg, TS, Chris Wensrich and Adrian Wills. Probabilistic modelling and
reconstruction of strain. Nuclear inst. and methods in physics research: section B, 2018. (to appear)

ited-dat

Zenith Purisha, Carl Jidling, Niklas Wahlstrém, Simo Sarkka and TS. Probabilistic approach to i phy
reconstruction. Draft, 2018
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Snapshot 3 — Model of the ambient magnetic field with GPs

The Earth’s magnetic field sets a background for the ambient magnetic
field. Deviations make the field vary from point to point.

Aim: Build a map (i.e., a i

model) of the magnetic ‘, H
environment based on
magnetometer measurements.

Solution: Customized Gaussian o | '
—

process that obeys Maxwell's ﬂ - LL

equations. L{ &=

=] |

www.youtube.com/watch?v=enlMiUqPVJo

Arno Solin, Manon Kok, Niklas Wahlstrém, TS and Simo Sarkka. Modeling and interpolation of the ambient magnetic field by
Gaussian processes. |EEE Transactions on Robotics, 34(4):1112-1127, 2018.

Carl Jidling, Niklas Wahlstrém, Adrian Wills and TS. Linearly constrained Gaussian processes. Advances in Neural Information
Processing Systems (NIPS), Long Beach, CA, USA, December, 2017. 40/44


www.youtube.com/watch?v=enlMiUqPVJo

Snapshot 4 — New PhD thesis on the topic

Machine learning with
state-space models, Gaussian
processes and Monte Carlo
methods.

State-space
models

Monte Carlo
methods

Gaussian
processes

By Andreas Svensson

Link to the thesis:

www.it.uu.se/katalog/andsvi64/main/thesis_andreas_

svensson_webb.pdf
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www.it.uu.se/katalog/andsv164/main/thesis_andreas_svensson_webb.pdf
www.it.uu.se/katalog/andsv164/main/thesis_andreas_svensson_webb.pdf

Snapshot 5 — Use the GP to learn Hessians

Results in a stochastic quasi-Newton method.

Summary: Stochastic quasi-Newton integral:

1
Yk = Dk/ B(I’k(T))dT + ek,
0
with the following model for the Hessian

B(0) ~ GP(u(0), 5(6,0)).

Talk more about this on Thursday.
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My message (1/11)

Message: The Gaussian process can be used to construct useful

representations of dynamical systems.

| have hinted at how we can combine standard dynamical models like

1. Linear — impulse response
2. Nonlinear — Autoregressive (AR)
3. Nonlinear — State-space model (SSM)

and the Gaussian process to achieve useful constructions.

"If you have a new nonlinear construction, always make sure that it
"does the right thing” in the linear Gaussian special case.”
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My message (11/11)

System identification

the Gaussian process

Remember to talk to people who work on different problems with
different tools!!
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