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Abstract: One of the key challenges in identifying nonlinear and possibly non-Gaussian state
space models (SSMs) is the intractability of estimating the system state. Sequential Monte
Carlo (SMC) methods, such as the particle filter (introduced more than two decades ago),
provide numerical solutions to the nonlinear state estimation problems arising in SSMs. When
combined with additional identification techniques, these algorithms provide solid solutions to
the nonlinear system identification problem. We describe two general strategies for creating such
combinations and discuss why SMC is a natural tool for implementing these strategies.
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1. INTRODUCTION

This paper is concerned with system identification of
nonlinear state space models (SSMs) in discrete time. The
general model that we consider is given by,

xt+1 |xt ∼ fθ(xt+1 |xt, ut), (1a)

yt |xt ∼ gθ(yt |xt, ut), (1b)

(θ ∼ π(θ)), (1c)

where the states, the known inputs and the observed mea-
surements are denoted by xt ∈ X ⊆ Rnx , ut ∈ U ⊆ Rnu
and yt ∈ Y ⊆ Rny , respectively. The dynamics and
the measurements are modeled by the probability density
functions (PDFs) fθ(·) and gθ(·), respectively, parame-
terised by the unknown vector θ ∈ Θ ⊆ Rnθ . The ini-
tial state x1 is distributed according to some distribution
µθ(x1). For notational simplicity, we will from hereon
(without loss of generality) drop the known input ut from
the notation. When considering Bayesian identification,
meaning that θ is modelled as an unobserved random
variable, we also place a prior π(θ) on θ. We are concerned
with off-line identification, i.e. we wish to find the unknown
parameters θ in (1) based on a batch of T measurements.

The key challenge that will drive the development through-
out this paper is how to deal with the difficulty that
the states x1:T in (1) are unknown. We will distinguish
between two different strategies for handling this:

(1) Marginalisation amounts to marginalising (inte-
grating out) the states from the problem and view-
ing θ as the only unknown quantity of interest. In
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the frequentistic problem formulation, the prediction
error method (Ljung, 1999) and direct maximisa-
tion of the likelihood belong to this strategy. In the
Bayesian formulation, the Metropolis Hastings algo-
rithm (Metropolis et al., 1953; Hastings, 1970) can be
used to approximate the posterior distribution of the
parameters conditionally on the data.

(2) Data augmentation treats the states as auxiliary
variables that are estimated together with the param-
eters. The expectation maximisation (EM) algorithm
of Dempster et al. (1977) solves the maximum likeli-
hood formulation in this way and the Gibbs sampler
of Geman and Geman (1984) solves the Bayesian
problem by this strategy.

In the special case when the model (1) is linear and Gaus-
sian, there are closed form expressions available from the
Kalman filter and the associated smoother. The primary
focus of this paper, however, is the more challenging non-
linear and/or non-Gaussian case. More than two decades
ago (e.g., Gordon et al., 1993; Kitagawa, 1993) sequential
Monte Carlo (SMC) methods started to emerge with the
introduction of the particle filter. These methods have
since then undergone a rapid development and today they
constitute a standard solution to the problem of comput-
ing the latent (i.e. unobserved/unknown/hidden) states in
nonlinear/non-Gaussian SSMs.

The aim of this paper is to show how SMC can be used in
solving the nonlinear system identification problems that
arise in finding the unknown parameters in (1). We do not
aim to cover all different methods that are available, but
instead we aim to clearly describe exactly where and how
the need for SMC arises and focus on the key principles.
Complementary overview paper are provided by Kantas
et al. (2015) and by Andrieu et al. (2004).



We consider the Bayesian and the maximum likelihood
formulations, as defined in Section 2. The rest of the
paper is divided into three parts. In the first part (Sec-
tions 3 and 4) we describe the marginalisation and data
augmentation strategies and show where the need for SMC
arise. The second part (Section 5) provides a rather self-
contained derivation of the particle filter and outlines some
of its properties. Finally, in the third part (Section 6–
8) we show how these particle methods can be used to
implement the identification strategies described in the
first part, resulting in several state-of-the-art algorithms
for nonlinear system identification. Loosely speaking, the
SMC-part of the various algorithms that we introduce
is essentially a way of systematically exploring the state
space XT in a nonlinear SSM (1) in order to address the key
challenge of dealing with the latent state sequence x1:T .

2. PROBLEM FORMULATION

There are different ways in which the system identifica-
tion problem can be formulated. Two common formalisms
are grounded in frequentistic and Bayesian statistics, re-
spectively. We will treat both of these formulations in
this paper, without making any individual ranking among
them. First, we consider the frequentistic, or maximum
likelihood (ML), formulation. This amounts to finding a
point estimate of the unknown parameters in θ, for which
the observed data is as likely as possible. This is done by
maximising the data likelihood function according to

θ̂ML = arg max
θ∈Θ

pθ(y1:T ) = arg max
θ∈Θ

log pθ(y1:T ). (2)

For a thorough treatment of the use of ML for system
identification, see e.g., Ljung (1999); Söderström and Sto-
ica (1989).

Secondly, in the Bayesian formulation, the unknown pa-
rameters in θ are modeled as a random variable (or random
vector) according to (1c). The system identification prob-
lem thus amounts to computing the posterior distribution
of θ given the observed data. According to Bayes’ theorem,
the posterior distribution is given by,

p(θ | y1:T ) =
pθ(y1:T )π(θ)

p(y1:T )
. (3)

Note that the likelihood function should now be inter-
preted as the conditional PDF of the observations given
the parameters θ, i.e. pθ(y1:T ) = p(y1:T | θ). However, to
be able to discuss the different identification criteria in a
common setting, we will, with a slight abuse of notation,
denote the likelihood by pθ(y1:T ) also in the Bayesian
formulation. An early account of Bayesian system iden-
tification is provided by Peterka (1981) and a more recent
description is available in Ninness and Henriksen (2010).

The central object in both formulations above is the
observed data likelihood pθ(y1:T ), or its constituents
pθ(yt | y1:t−1) as,

pθ(y1:T ) =

T∏
t=1

pθ(yt | y1:t−1), (4)

where we have used the convention y1 | 0 , ∅. For the
nonlinear SSM (1), the likelihood (4) is not available in
closed form. This is a result of the fact that the latent
state sequence x1:T , i.e. p(x1:T | y1:T ), is unknown. Indeed,
a relationship between the likelihood and the latent states
can be obtained via marginalization of the joint density
pθ(x1:T , y1:T ) w.r.t. x1:T according to,

pθ(y1:T ) =

∫
pθ(x1:T , y1:T )dx1:T , (5)

where the model provides a closed form expression for the
integrand according to,

pθ(x1:T , y1:T ) = µθ(x1)

T∏
t=1

gθ(yt |xt)
T−1∏
t=1

fθ(xt+1 |xt).

(6)

This expression does not involve any marginalisation,
whereas the observed data likelihood pθ(y1:T ) is found
by averaging the joint distribution pθ(x1:T , y1:T ) over all
possible state sequences according to (5). Equivalently, we
can express pθ(y1:T ) as in (4) where the one-step predictive
likelihood can be written (using marginalisation) as,

pθ(yt | y1:t−1) =

∫
gθ(yt |xt)pθ(xt | y1:t−1)dxt. (7)

These expressions highlight the tight relationship between
the system identification problem and the state inference
problem. A key challenge that will drive the developments
in this work is how to deal with the latent states. For
nonlinear system identification, the need for computa-
tional methods, such as SMC, is tightly coupled to the
intractability of the integrals in (5) and (7).

To illustrate the strategies and algorithms introduced we
will use them to solve two concrete problems, which are
formulated below.

Example 1: Linear Gaussian model

Our first illustrative example is a simple linear Gaussian
state space (LGSS) model, given by

xt+1 = 0.7xt + vt, vt ∼ N (0, θ−1), (8a)

yt = xt + et, et ∼ N (0, 0.1), (8b)

(θ ∼ G(0.01, 0.01)), (8c)

where the unknown parameter θ corresponds to the preci-
sion (inverse variance) of the process noise vt. Note that
the prior for the Bayesian model is chosen as the Gamma
(G) distribution with known parameters, for reasons of
simplicity, since this is the conjugate prior for this model.
The initial distribution µθ(x1) is chosen as the stationary
distribution of the state process. Identification of θ is based
on a simulated data set consisting of T = 100 samples
y1:100 with true parameter θ0 = 1.

Example 2: Nonlinear non-Gaussian model

Our second example, involving real data, is related to a
problem in paleoclimatology. Shumway and Stoffer (2011)
considered the problem of modelling the thickness of
ice varves (layers of sediments that are deposited from
melting glaciers). The silt and sand that is deposited over
one year makes up one varve and changes in the varve
thicknesses indicates temperature changes. The data set
that is used contains the thickness of 634 ice varves formed
at a location in Massachusetts between years 9 883 and
9 250 BC. We make use of a nonlinear and non-Gaussian
SSM proposed by Langrock (2011) to model this data:

xt+1 |xt ∼ N (xt+1;φxt, τ
−1), (9a)

yt |xt ∼ G(yt; 6.25, 0.256 exp(−xt)), (9b)

with parameters θ = {φ, τ}. The initial distribution µθ(x1)
is chosen as the stationary distribution of the state process.
The data set and a more complete description of the
problem is provided by Shumway and Stoffer (2011).



Full details concerning the examples and the numerical
experiments that we provide throughout the paper are
available in the appendix of the arXiv-version of this
paper. The code used to generate the results is available
from the first authors web-site.

3. IDENTIFICATION STRATEGY –
MARGINALISATION

The marginalisation strategy amounts to solving the iden-
tification problem—either (2) or (3)—by computing the
integral appearing in (7) (or, equivalently, (5)). That is,
we marginalize (integrate out) the latent states x1:T and
view θ as the only unknown quantity of interest.

In some special cases the marginalisation can be done
exactly. In particular, for LGSS models the one-step pre-
dictive density in (7) is Gaussian and computable by
running a Kalman filter. For the general case, however,
some numerical approximation of the integral in (7) is
needed. We will elaborate on this in Section 6, where we
investigate the possibility of using SMC to perform the
marginalisation. For now, however, to illustrate the general
marginalisation strategy, we will assume that the integral
in (7) can be solved exactly.

3.1 ML identification via direct optimisation

Consider first the ML formulation (2). Direct optimisation
(DO) amounts to working directly on the problem

θ̂ML = arg max
θ∈Θ

T∑
t=1

log

∫
gθ(yt |xt)pθ(xt | y1:t−1)dxt,

(10)

where we have rewritten the data log-likelihood using (4)
and (7). Even though we momentarily neglect the difficulty
in computing the integral above it is typically not possible
to solve the optimisation problem (10) in closed form.
Instead, we have to resort to numerical optimisation meth-
ods, see e.g. Nocedal and Wright (2006). These methods
typically find a maximiser of the log-likelihood function
log pθ(y1:T ) by iteratively refining an estimate θk of the

maximiser θ̂ML according to

θk+1 = θk + αksk. (11)

Here, sk denotes the search direction which is computed
based on information about the cost function available
from previous iterations. The step size αk, tells us how far
we should go in the search direction. The search direction
is typically computed according to

sk = H−1
k gk, gk = ∇θ log pθ(y1:T )

∣∣
θ=θk

, (12)

where Hk denotes a positive definite matrix (for example
the Hessian ∇2

θ log pθ(y1:T ) or approximations thereof)
adjusting the gradient gk.

Example 3: DO applied to the LGSS model

To apply the update in (10) for estimating θ in (8), we
need to determine the search direction sk and the step
length αk. Here, we select the search direction as the
gradient of the log-likelihood, i.e.Hk is the identity matrix.
The log-likelihood for (8) can be expressed as

log pθ(y1:T ) =

T∑
t=1

logN (yt; 0.5x̂t|t−1, Pt|t−1 + 0.1), (13)

where x̂t|t−1 and Pt|t−1 denotes the predicted state esti-
mate and its covariance obtained from a Kalman filter. The
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Fig. 1. Upper: the log-likelihood estimates (green) together with the
ML parameter estimates of the LGSS model obtain by the DO
and the EM algorithms, respectively. The estimates sit on top
of each other and are shown in blue. Lower: parameter posterior
estimates obtained by the MH (left) and the Gibbs (right)
algorithms, respectively. The vertical dashed lines indicate the
true parameters of the model from which the data is generated
and the dark grey lines indicate the prior density.

gradient gk in (12) of the log-likelihood (13) can therefore
be obtained by calculating ∇θx̂t|t−1 and ∇θPt|t−1, which
can be obtained from the Kalman filter, using the so-called
sensitivity derivatives introduced by Åström (1980). In
the upper part of Figure 1, we present the log-likelihood
(blue) computed using the Kalman filter together with the

estimate θ̂ML (orange) obtained by the DO algorithm.

Within the DO method the use of SMC arise in evaluation
of the cost function in (10) and its derivatives to compute
the search directions sk in (12).

3.2 Bayesian identification via Metropolis Hastings

Let us now turn to the Bayesian formulation (3). As above,
to illustrate the idea we consider first the simple case in
which the marginalisation in (7) can be done exactly. Still,
in most nontrivial cases the posterior PDF in (3) cannot
be computed in closed form. The difficulty comes from
the factor p(y1:T ), known as the marginal likelihood, which
ensures that the posterior PDF is properly normalised (i.e.,
that it integrates to one). The marginal likelihood can be
expressed as,

p(y1:T ) =

∫
pθ(y1:T )π(θ)dθ. (14)

Even if the likelihood pθ(y1:T ) is analytically tractable, we
see that we need to carry out an integration w.r.t. θ. Fur-
thermore, computing a point estimate, say the posterior
mean of θ, also amounts to solving an integral

E [θ | y1:T ] =

∫
θ p(θ | y1:T )dθ, (15)

which may also be intractable.



A generic way of approximating such intractable integrals,
in particular those related to Bayesian posterior distribu-
tions, is to use a Monte Carlo method. In Section 5 we
will discuss, in detail, how SMC can be used to approx-
imately integrate over the latents states of the system.
The sequential nature of SMC makes it particularly well
suited for integrating over latent stochastic processes, such
as the states in an SSM. However, to tackle the present
problem of integrating over the latent parameters we shall
consider a different class of methods denoted as Markov
chain Monte Carlo (MCMC).

The idea behind MCMC is to simulate a Markov chain
{θ[m]}m≥1. The chain is constructed in such a way that its
stationary distribution coincides with the so-called target
distribution of interest, here p(θ | y1:T ). If, in addition, the
chain is ergodic—essentially meaning that spatial averages
coincide with “time” averages—the sample path from the
chain can be used to approximate expectations w.r.t. to
the target distribution:

1

M − k + 1

M∑
m=k

ϕ(θ[m])
a.s.−→

∫
ϕ(θ)p(θ | y1:T )dθ, (16)

as M → ∞, for some test function ϕ. Here
a.s.−→ denotes

almost sure convergence. Note that the first k samples have
been neglected in the estimator (16), to avoid the transient
phase of the chain. This is commonly referred to as the
burn-in of the Markov chain.

Clearly, for this strategy to be useful we need a systematic
way of constructing the Markov chain with the desired
properties. One such way is to use the Metropolis Hastings
(MH) algorithm. The MH algorithm uses an accept/reject
strategy. At iteration m + 1, we propose a new sample θ′

according to,

θ′ ∼ q(· | θ[m]), (17)

where q(·) denotes a proposal distribution designed by
the user and θ[m] denotes the sample from the previous
iteration m. The newly proposed sample θ′ will then be
added to the sequence (i.e. θ[m+ 1] = θ′) with probability

α , 1 ∧ p(θ′ | y1:T )

p(θ[m] | y1:T )

q(θ[m] | θ′)
q(θ′ | θ[m])

(18a)

= 1 ∧ pθ′(y1:T )π(θ′)

pθ[m](y1:T )π(θ[m])

q(θ[m] | θ′)
q(θ′ | θ[m])

, (18b)

where a∧b is used to denote min (a, b) and α is referred to
as the acceptance probability. Hence, with probability 1−α
the newly proposed sample is not added to the sequence
(i.e. rejected) and in that case the previous sample is once
more added to the sequence θ[m+ 1] = θ[m].

There exists a well established theory for the MH algo-
rithm, which for example establish that it is ergodic and
converges to the correct stationary distribution. This has
been developed since the algorithm was first introduced
by Metropolis et al. (1953) and Hastings (1970). Ninness
and Henriksen (2010) provides a nice account on the use
of the MH algorithm for Bayesian system identification.

Example 4: MH applied to the LGSS model

To apply the MH algorithm for parameter inference in the
LGSS model, we require a proposal distribution q(·) in (17)
and to calculate the acceptance probability α in (18b). A
standard choice for q(·) is a Gaussian random walk

q(θ′ | θ[m]) = N
(
θ′; θ[m], σ2

q

)
, (19)

where σ2
q denotes the variance of the random walk. For

this choice of proposal, the acceptance probability is

α = 1 ∧ pθ′(y1:T )π(θ′)

pθ[m](y1:T )π(θ[m])
,

where q cancels since it is symmetric in θ. Note that
the likelihood can be computed using the Kalman filter
in analogue with (13) for the LGSS model. In the lower
left part of Figure 1, we present the resulting posterior
estimate obtained from running the algorithm M = 20 000
iterations (discarding the first 10 000 as burn-in).

4. IDENTIFICATION STRATEGY – DATA
AUGMENTATION

An alternative strategy to marginalisation is to make
use of data augmentation. Intuitively, we can think of
this strategy as a systematic way of separating one hard
problem into two new and closely linked sub-problems,
each of which is hopefully easier to solve than the original
problem. For the SSM (1) these two problems amounts to

(1) finding information about the state sequence x1:T .
(2) finding information about the parameters θ.

The state sequence x1:T is thus treated as an auxiliary
variable that is estimated together with the parameters θ.
Using the data augmentation terminology (Tanner and
Wong, 1987; van Dyk and Meng, 2001), the state sequence
x1:T is referred to as the missing data, as opposed to the
observed data y1:T . By augmenting the latter with the
former, we obtain the complete data {x1:T , y1:T }.
Naturally, if the complete data were known, then identifi-
cation of θ would have been much simpler. In particular,
we can directly write down the complete data likelihood
pθ(x1:T , y1:T ) according to (6), which contrary to the
observed data likelihood pθ(y1:T ), does not involve any
marginalisation. The two likelihoods are related via (5),
suggesting that the complete data likelihood can indeed
be used for identifying the unknown parameters.

4.1 Expectation Maximisation (EM)

Analogously with the marginalisation strategy, we can
make use of data augmentation to address both the fre-
quentistic and the Bayesian identification problems. For
the former identification criteria, (2), the result is the ex-
pectation maximisation (EM) algorithm (Dempster et al.,
1977). EM provides an iterative procedure to compute ML
estimates of unknown parameters θ in probabilistic models
involving latent variables, like the SSM in (1).

As a direct result of the conditional probability identity
pθ(x1:T , y1:T ) = pθ(x1:T | y1:T )pθ(y1:T ), we can relate the
observed and complete data log-likelihoods as

log pθ(y1:T ) = log pθ(x1:T , y1:T )− log pθ(x1:T | y1:T ). (20)

The EM algorithm operates by iteratively maximising the
intermediate quantity

Q(θ, θ′) ,
∫

log pθ(x1:T , y1:T )pθ′(x1:T | y1:T )dx1:T (21a)

= Eθ′ [log pθ(x1:T , y1:T ) | y1:T ] , (21b)

according to:

(E) Q(θ, θ[k]) = Eθ[k] [log pθ(x1:T , y1:T ) | y1:T ],
(M) θ[k + 1] = arg max

θ∈Θ
Q(θ, θ[k]).



We can show that iterating the above Expectation (E) and
Maximisation (M) steps implies

Q(θ, θ′) ≥ Q(θ′, θ′) =⇒ pθ(y1:T ) ≥ pθ′(y1:T ). (22)

Hence, the sequence {θ[k]}k≥1 will by construction result
in a monotonic increase in likelihood values. Hence, the
complete data log-likelihood log pθ(x1:T , y1:T ) can, via the
intermediate quantity Q in (21), be used as a surrogate
for the original observed data likelihood function pθ(y1:T )
in solving the ML problem (2). We are still required to
compute the integral (21) and an important observation
is now that we can approximate this integral (and its
derivatives w.r.t. θ) using SMC.

Example 5: EM applied to the LGSS model

We need to compute the intermediate quantity to apply
the EM algorithm for estimating the parameter in the
LGSS model. For this model, we can write

Q(θ, θ′) = const.+

Eθ′

[
logµθ(x1) +

T∑
t=2

logN (xt; 0.7xt−1, θ
−1)

∣∣∣∣∣ y1:T

]
Note, that this expression results from that the parameter
only is present in the latent state process.

We can directly maximise the intermediate quantity for
θ since the system is linear in the parameters. By tak-
ing the gradient of Q(θ, θ′), we obtain terms propor-
tional to Eθ′

[
xt−1(xt−0.7xt−1) | y1:T

]
, where x̂t|T x̂t|T and

x̂t|T x̂t−1|T denotes smoothed state estimates and Pt,t|T
and Pt−1,t|T their covariances, respectively. These can be
computed using a Kalman smoother and we refer the
reader to Gibson and Ninness (2005) for the explicit
expressions for implementing this. In the upper part of

Figure 1, we present the parameter estimate θ̂ML (blue)
obtained by the EM algorithm. We note that the parame-
ter estimates obtained by the DO and EM algorithms are
identical and overlapping. However, they differ from the
true parameter due to the finite value of T .

4.2 Gibbs sampler

The Gibbs sampler is an MCMC method that produce
samples from the joint distribution by alternatively sam-
pling from its conditionals. Let us consider the Bayesian
formulation, with the aim of computing (3). Inspired by
the data augmentation strategy, start by assuming that
the complete data {x1:T , y1:T } is available. Bayes’ theorem
then results in

p(θ |x1:T , y1:T ) =
pθ(x1:T , y1:T )π(θ)

p(x1:T , y1:T )
. (23)

Intuitively, if the states x1:T were known, then the iden-
tification problem would be much simpler and, indeed,
computing the posterior in (23) is typically easier than
in (3). Firstly, the complete data likelihood is provided
in (6), whereas the likelihood pθ(y1:T ) is intractable in
the general case. Secondly, in many cases of interest it
is possible to identify a prior for θ that is conjugate to the
complete data likelihood, in which case the posterior (23)
is available in closed form.

The problem with (23) is of course that it hinges upon
the state sequence being known. However, assume that
we can simulate a sample of the state trajectory x1:T
from its conditional distribution given the observed data

y1:T and the system parameters θ, i.e. from the joint
smoothing distribution. Furthermore, assume that it is
possible to sample from the distribution in (23). We can
then implement the following algorithm: Initialise θ[0] ∈ Θ
arbitrarily and, for m ≥ 0,

Sample x1:T [m] ∼ pθ[m](x1:T | y1:T ). (24a)

Sample θ[m+ 1] ∼ p(θ |x1:T [m], y1:T ). (24b)

This results in the generation of the following sequence of
random variables

θ[0], x1:T [0], θ[1], x1:T [1], θ[2], x1:T [2], . . . , (25)

which forms a mutual Markov chain in the parameters θ
and the states x1:T , {θ[m], x1:T [m]}m≥1. The procedure
in (24) represents a valid MCMC method. More specif-
ically, it is a particular instance of the so-called Gibbs
sampler. The simulated Markov chain admits the joint
distribution p(θ, x1:T | y1:T ) as a stationary distribution.
Furthermore, under weak conditions it can be shown to be
ergodic. That is, the Markov chain generated by the proce-
dure (24) can be used to estimate posterior expectations,
and the estimators are consistent in the sense of (16). Note
that, if we are only interested in the marginal distribution
p(θ | y1:T ), then it is sufficient to store the sub-sequence
constituted by {θ[m]}m≥1, obtained by simply discarding
the samples {x1:T [m]}m≥1 from (25).

It is worth pointing out that it is possible to combine
Gibbs sampling with other MCMC methods. For instance,
if it is not possible to sample from posterior distribution
(23) exactly, then a valid approach is to replace step (24b)
of the Gibbs sampler with, e.g., an MH step with target
distribution p(θ |x1:T , y1:T ). Similarly, for nonlinear state
space models, the joint smoothing distribution in (24a)
is not available in closed form, but it is still possible
to implement the strategy above by sampling the state
trajectory from an MCMC kernel targeting the joint
smoothing distribution; see Section 8.2.

Example 6: Gibbs applied to the LGSS model

To implement the Gibbs sampler for parameter inference
in the LGSS model, we need to sample from the conditional
distributions in (24). To generate samples of state trajecto-
ries given θ and y1:T , we can make use of the factorisation

pθ(x1:T | y1:T ) =

(
T−1∏
t=1

pθ(xt |xt+1, y1:t)

)
pθ(xT | y1:T )

(26)

of the joint smoothing distribution. Consequently, we can
sample x1:T [m] using the following backward simulation
strategy: Sample x̃T ∼ pθ(xT | y1:T ) and, for t = T −
1, . . . , 1, sample

x̃t ∼ pθ(xt | x̃t+1, y1:t) ∝ pθ(x̃t+1 |xt)pθ(xt | y1:t). (27)

We see that the backward simulation relies on the filtering
distributions {pθ(xt | y1:t)}Tt=1 and, indeed, for the LGSS
model we can obtain closed form expressions for all the
involved densities by running a Kalman filter.

In the second step, (24b), we sample the parameters θ by

θ ∼ p(θ | x̃1:T , y1:T ) = G(θ |α, β), (28a)

α = 0.01 +
T

2
, (28b)

β = 0.01 +
1

2

(
0.51x̃2

1 +

T−1∑
t=1

(x̃t+1 − 0.7x̃t)
2

)
, (28c)

which is the result of a standard prior-posterior update
with a Gamma prior and Gaussian likelihood. The closed-



form expression for p(θ |x1:T , y1:T ) is an effect of using a
prior which is conjugate to the complete data likelihood.

In the lower right part of Figure 1, we present the resulting
posterior estimate obtained from the Gibbs sampler with
the same settings as for the MH algorithm. We note that
the posterior estimates are almost identical for the two
methods, which corresponds well to the established theory.

The data augmentation strategy (here implemented via
the Gibbs sampler) enabled us to approximate the poste-
rior distribution p(θ | y1:T ) by separating the problem into
two connected sub-problems (24).

5. SEQUENTIAL MONTE CARLO

Sequential Monte Carlo (SMC) methods offer numerical
approximations to the state estimation problems associ-
ated with the nonlinear/non-Gaussian SSM (1). The par-
ticle filter (PF) approximates the filtering PDF pθ(xt | y1:t)
and the particle smoother (PS) approximates the joint
smoothing PDF pθ(x1:t | y1:t), or some of its marginals.
The PF can intuitively be thought of as the equivalent of
the Kalman filter for nonlinear/non-Gaussian SSMs.

The SMC approximation is an empirical distribution of
the form

p̂θ(xt | y1:t) =

N∑
i=1

witδxit(xt). (29)

The samples {xit}Ni=1 are often referred to as particles—
they are point-masses “spread out” in the state space, each
particle representing one hypothesis about the state of the
system. We can think of each particle xit as one possible
system state and the corresponding weight wit contains
information about how probable that particular state is.

To make the connection to the marginalisation and data
augmentation strategies introduced in the two previous
sections clear, we remind ourselves where the need for SMC
arise in implementing these strategies to identify θ in (1).
The PF is used to compute the cost function (10) and its
derivatives in order to find the search directions (12). To
set up an MH samler, we can make use of a likelihood
estimate provided by the PF in order to compute the
acceptance probabilities in (18). When it comes to data
augmentation strategies, the PS is used to approximate
the intermediate quantity in (21) and in order to set up
the Gibbs sampler, particle methods are used to draw a
realisation from the joint smoothing distribution in (24a).

5.1 Particle filter

A principled solution to the nonlinear filtering problem is
provided by the following two recursive equations:

pθ(xt | y1:t) =
gθ(yt |xt)pθ(xt | y1:t−1)

pθ(yt | y1:t−1)
, (30a)

pθ(xt | y1:t−1) =

∫
fθ(xt |xt−1)pθ(xt−1 | y1:t−1)dxt−1.

(30b)

These equations can only be solved in closed form for very
specific special cases, e.g., the LGSS model which results
in the Kalman filter. We will derive the particle filter as a
general approximation of (30) for general nonlinear/non-
Gaussian SSMs.

The particle filter—at least in its most basic form—can
be interpreted as a sequential application of importance
sampling. At each time step t we use importance sampling
to approximate the filtering PDF pθ(xt | y1:t). This is made
possible by using the expressions in (30) and by exploiting
the already generated importance sampling approxima-
tion of pθ(xt−1 | y1:t−1). At time t = 1 we can find an
empirical distribution (29) by approximating pθ(x1 | y1) ∝
gθ(y1 |x1)µθ(x1) using importance sampling in the normal
sense. We sample independently the particles {xi1}Ni=1 from
some proposal distribution rθ(x1). To account for the dis-
crepancy between the proposal distribution and the target
distribution, the particles are assigned importance weights,
given by the ratio between the target and the proposal
(up to proportionality), i.e. wi1 ∝ gθ(y1 |xi1)µθ(x

i
1)/rθ(x

i
1),

where the weights are normalised to sum to one.

We proceed in an inductive fashion and assume that we
have an empirical approximation of the filtering distribu-
tion at time t− 1 according to

p̂θ(xt−1 | y1:t−1) =

N∑
i=1

wit−1δxit−1
(xt−1). (31)

Inserting this into (30b) results in

p̂θ(xt | y1:t−1) =

∫
fθ(xt |xt−1)

N∑
i=1

wit−1δxit−1
(xt−1)dxt−1

=

N∑
i=1

wit−1fθ(xt |xit−1). (32)

That is, we obtain a mixture distribution approximating
pθ(xt | y1:t−1), where we have one mixture component for
each of the N particles at time t− 1. Furthermore, insert-
ing (32) into (30a) results in the following approximation
of the filtering PDF

pθ(xt | y1:t) ≈
gθ(yt |xt)

pθ(yt | y1:t−1)

N∑
i=1

wit−1fθ(xt |xit−1). (33)

The task is now to approximate (33) using importance
sampling. Inspired by the structure of (33) we choose a
proposal density (again denoted by rθ) of the same form,
namely as a mixture distribution,

rθ(xt | y1:t) ,
N∑
i=1

νit−1rθ(xt |xit−1, yt), (34)

where both the mixture components rθ(xt |xt−1, yt) and
the mixture weights νt−1 are design choices constituting
parts of the proposal distribution.

To generate a sample from the mixture distribution (34)
the following two-step procedure is used; first we randomly
select one of the components, and then we generate a
sample from that particular component. Note that we will
sampleN particles from the proposal distribution (34). Let
us use ait to denote the index of the mixture component
selected for the ith particle at time t. Now, since the prob-
ability of selecting component rθ(xt |xjt−1, yt) is encoded

by its weight νjt−1, we have that

P
(
ait = j

)
= νjt−1, j = 1, . . . , N. (35)

Subsequently, we can generate a sample from the selected
component ait according to xit ∼ rθ(xt | x̄it−1, yt), where

x̄it−1 , x
ait
t−1. By construction xit is now a sample from

the proposal density (34). The particle x̄it−1 is referred



to as the ancestor particle of xit, since xit is generated
conditionally on x̄it−1. This also explains why the index ait
is commonly referred to as the ancestor index, since it
indexes the ancestor of particle xit at time t− 1.

In practice we sample the N ancestor indices {ait}Ni=1
according to (35) in one go. This results in a new set of par-
ticles {x̄it−1}Ni=1 that are subsequently used to propagate
the particles to time t. This procedure, which (randomly)
generates {x̄it−1}Ni=1 by selection (sampling with replace-

ment) from among {xit−1}Ni=1 according to some weights,
is commonly referred to as resampling.

The next step is to assign importance weights to the new
particles accounting for the discrepancy between the tar-
get distribution pθ(xt | y1:t) and the proposal distribution
rθ(xt | y1:t). As before, the weights are computed as the
ratio between the (unnormalised) target PDF and the
proposal PDF. Direct use of (33) and (34) results in

w̄it =
gθ(yt |xit)

∑N
j=1 w

j
t−1fθ(x

i
t |x

j
t−1)∑N

j=1 ν
j
t−1rθ(x

i
t |x

j
t−1, yt)

. (36)

By evaluating w̄it for i = 1, . . . , N and normalising
the weights, we obtain a new set of weighted particles
{xit, wit}Ni=1, constituting an empirical approximation of
pθ(xt | y1:t). This completes the algorithm, since these
weighted particles in turn can be used to approximate the
filtering PDF at time t+ 1, then at time t+ 2 and so on.

A problem with the algorithm presented above is that the
weight calculation in (36) has a computational complexity
of O(N) for each particle, rendering an overall compu-
tational complexity of O(N2), since the weights need to
be computed for all N particles. A pragmatic solution
to this problem is to use the freedom available in the
proposal density and select it according to rθ(xt | y1:t) =∑N
j=1 w

j
t−1fθ(xt |x

j
t−1). That is, we select ancestor parti-

cles with probabilities given by their importance weights
and sample new particles by simulating the system dynam-
ics from time t−1 to t. Inserting this into (36) results in the
simple expression w̄it = gθ(yt |xit), which brings the overall
computational complexity down to O(N). The resulting
algorithm is referred to as the bootstrap particle filter and
it is summarised in Algorithm 1.

Algorithm 1 Bootstrap particle filter (all operations are for
i = 1, . . . , N)

1: Initialisation (t = 1):
2: Sample xi1 ∼ µθ(x1).

3: Compute w̄i1 = gθ(y1 |xi1), normalise, wi1 = w̄i1/
∑N

j=1
w̄j1.

4: for t = 2 to T do
5: Resampling: Sample ait with P

(
ait = j

)
= wjt .

6: Propagation: Sample xit ∼ fθ(xt |x
ait
t−1).

7: Weighting: Compute w̄it = gθ(yt |xit) and normalise,

wit = w̄it/
∑N

j=1
w̄jt .

8: end

The bootstrap PF was the first working particle filter,
an early and influential derivation is provided by Gordon
et al. (1993). It is arguably the simplest possible imple-
mentation of SMC, but nevertheless, it incorporates the
essential methodological ideas that underpin the general
SMC framework. Importance sampling (i.e. propagation
and weighting in Algorithm 1 above) and resampling are

used to sequentially approximate a sequence of probability
distributions of interest; here {pθ(xt | y1:t)}t≥1.

Selecting the dynamics as proposal distribution, as in the
bootstrap particle filter, is appealing due to the simplicity
of the resulting algorithm. However, this choice is unfor-
tunately also suboptimal, since the current measurement
yt is not taken into account when simulating the particles
{xit}Ni=1 from the proposal distribution. A better strategy
of reducing the computational complexity of the weight
computation from O(N2) to O(N) is to target the joint
distribution of (xt, at) with an importance sampler, instead
of directly targeting the marginal distribution of xt as was
done above. Indeed, by explicitly introducing the ancestor
indices as auxiliary variables in the importance sampler,
we obtain the weight expression

w̄it =
w
ait
t−1gθ(yt |xit)fθ(xit |x

ait
t−1)

ν
ait
t−1rθ(x

i
t |x

ait
t−1, yt)

, (37)

as a more practical alternative to (36). With this approach
we have the possibility of freely selecting the mixture
weights νt−1 and mixture components rθ(xt |xt−1, yt) of
the proposal, while still enjoying an overall linear com-
putational complexity. The resulting algorithm is referred
to as the auxiliary particle filter (APF). Rather than
providing the details of the derivation we simply refer to
the original paper by Pitt and Shephard (1999) or our
complete derivation in Schön and Lindsten (2015).

5.2 Some useful properties of the PF

As any Monte Carlo algorithm, the PF can be interpreted
as a random number generator. Indeed, the particles and
the ancestor indices used within the algorithm are random
variables, and executing the algorithm corresponds to
simulating a realisation of these variables. It can be useful,
both for understanding the properties of the PF and for
developing more advanced algorithms around SMC, to
make this more explicit. Let

xt , {x1
t , . . . , x

N
t }, and at , {a1

t , . . . , a
N
t }, (38)

refer to all the particles and ancestor indices, respectively,
generated by the PF at time t. The PF in Algorithm 1 then
generates a single realisation of a collection of random
variables {x1:T ,a2:T } ∈ XNT × {1, . . . , N}N(T−1). Fur-
thermore, since we know how these variables are generated,
we can directly write down their joint PDF 1 as,

ψθ(x1:T ,a2:T | y1:T )

,
N∏
i=1

µθ(x
i
1)

T∏
t=2

{
N∏
i=1

w
ait
t fθ(x

i
t |x

ait
t−1)

}
. (39)

Naturally, any estimator derived from the PF will also be a
random variable. From (39) we note that the distribution
of this random variable will depend on the number of
particles N , and convergence of the algorithm can be
identified with convergence, in some sense, of this random
variable. Specifically, let ϕ : X 7→ R be some test function
of interest. The posterior expectation Eθ [ϕ(xt) | y1:t] =∫
ϕ(xt)pθ(xt | y1:t)dxt, can be estimated by the PF by

computing (cf., (16)),

ϕ̂Nt ,
N∑
i=1

witϕ(xit). (40)

There is a solid theoretical foundation for SMC, e.g., inves-
tigating the convergence of (40) to the true expectation as

1 w.r.t. a natural product of Lebesgue and counting measure.



N → ∞ and establishing non-asymptotic bounds on the
approximation error. The (types of) existing theoretical re-
sults are too numerous to be mentioned here, and we refer
to the book by Del Moral (2004) for a comprehensive treat-
ment. However, to give a flavour of the type of results that
can be obtained we state a central limit theorem (CLT) for
the estimator (40). Under weak regularity assumptions it
holds that (Del Moral and Miclo, 2000; Del Moral, 2004;
Chopin, 2004),

√
N
(
ϕ̂Nt − Eθ [ϕ(xt) | y1:t]

) d−→ N (0, σ2
t (ϕ)), (41)

as N →∞ where
d−→ denotes convergence in distribution.

The asymptotic estimator variance σ2
t (ϕ) depends on the

test function ϕ, the specific PF implementation that is
used and, importantly, the properties of the state space
model (an explicit expression for σ2

t (ϕ) is given by Doucet
and Johansen (2011)).

The CLT in (41) is reassuring since it reveals that the es-

timator converges at a rate
√
N , which is the same rate as

for independent and identically distributed (i.i.d.) Monte
Carlo estimators. An interesting question to ask, however,
is how the asymptotic variance depends on t. In particular,
recall from (33) that we use the approximation of the
filtering distribution at time t − 1, in order to construct
the target distribution, which in turn is approximated
by the particles at time t. This “approximation of an
approximation” interpretation of the PF may, rightfully,
lead to doubts about the stability of the approximation.
In other words, will the asymptotic variance σ2

t (ϕ) grow
exponentially with t?

Fortunately, in many realistic scenarios, the answer to this
question is no. The key to this result is that the model
exhibits some type of forgetting, essentially meaning that
the dependence between states xs and xt diminishes (fast
enough) as |t−s| gets large. If this is the case, we can bound
σ2
t (ϕ) ≤ C for some constant C which is independent of t,

ensuring the stability of the PF approximation. We refer
to Del Moral and Guionnet (2001); Chopin (2004) for more
precise results in this direction.

In analogy with the Kalman filter, the PF does not only
compute the filtering distribution, but it also provides (an
approximation of) the likelihood pθ(y1:t), which is central
to the system identification problem. For the bootstrap PF
in Algorithm 1, this is given by,

p̂θ(y1:t) =

t∏
s=1

{
1

N

N∑
i=1

w̄is

}
. (42)

Note that the approximation is computed using the unnor-
malised importance weights {w̄is}Ni=1. The expression (42)
can be understood by considering the factorisation (4) and
noting that the one-step predictive likelihood, by (7), can
be approximated by,

p̂θ(ys | y1:s−1) =

∫
gθ(ys |xs)p̂θ(xs | y1:s−1)dxs

=
1

N

N∑
i=1

gθ(ys |xis) =
1

N

N∑
i=1

w̄is, (43)

where {xis}Ni=1 are simulated from the bootstrap proposal
rθ(xs | y1:s) = p̂θ(xs | y1:s−1) (a similar likelihood estimator
can be defined also for the general APF).

Sharp convergence results are available also for the likeli-
hood estimator (42). First of all, the estimator is unbiased,
i.e. Eψθ [p̂θ(y1:t)] = pθ(y1:t) for any value of N , where the

expectation is w.r.t. the randomness of the PF (Pitt et al.,
2012; Del Moral, 2004). We will make use of this result
in the sequel. Furthermore, the estimator is convergent
as N → ∞. In particular, under similar regularity and
forgetting conditions as mentioned above, it is possible to
establish a CLT at rate

√
N also for (42). Furthermore, the

asymptotic variance for the normalised likelihood estima-
tor can be bounded by D · t for some constant D. Hence,
in contrast with the filter estimator (40), the asymptotic
variance for (42) will grow with t, albeit only linearly.
However, the growth can be controlled by selecting N ∝ t,
which provides a useful insight into the tuning of the
algorithm if it is to be used for likelihood estimation.

5.3 Particle smoother

The PF was derived as a means of approximating the
sequence of filtering densities {pθ(xt | y1:t)}t≥1. We can
also start from the forward smoothing relation

pθ(x1:t | y1:t) = pθ(x1:t−1 | y1:t−1)
fθ(xt |xt−1)gθ(yt |xt)

pθ(yt | y1:t−1)
,

(44)

and derive the particle filter as a means of approximating
the sequence of joint smoothing densities {pθ(x1:t | y1:t)}t≥1.
Interestingly, the resulting algorithm is equivalent to the
PF that we have already seen. Indeed, by using the ances-
tor indices we can trace the genealogy of the filter particles
to get full state trajectories, resulting in the approximation

p̂θ(x1:t | y1:t) =

N∑
i=1

witδxi1:t(x1:t). (45)

However, there is a serious limitation in using the PF
as a solution to the smoothing problem, known as path
degeneracy. It arises due to the fact that the resampling
step, by construction, will remove particles with small
weights and duplicate particles with high weight. Hence,
each resampling step will typically reduce the number of
unique particles. An inevitable result of this is that for
any given time s there exists t > s such that the PF
approximation of pθ(x1:t | y1:t) collapses to a single particle
at time s.

One solution to the path degeneracy problem is to propa-
gate information backwards in time, using a forward/back-
ward smoothing technique. The joint smoothing distribu-
tion can be factorised as in (26) where each factor depends
only on the filtering distribution (cf. (27)). Since the filter
can be approximated without (directly) suffering from
path degeneracy, this opens up for a solution to the path
degeneracy problem. An important step in this direction
was provided by Godsill et al. (2004), who made use of
backward simulation to simulate complete state trajecto-
ries x̃1:T , approximately distributed according to the joint
smoothing distribution pθ(x1:T | y1:T ). The idea has since
then been refined, see e.g. Douc et al. (2011); Bunch and
Godsill (2013). Algorithms based on the combination of
MCMC and SMC introduced by Andrieu et al. (2010),
resulting in the particle MCMC (PMCMC) methods, also
offer promising solutions to the nonlinear state smooth-
ing problem. For a self-contained introduction to particle
smoothers, see Lindsten and Schön (2013).

6. MARGINALISATION IN THE NONLINEAR SSM

Now that we have seen how SMC can be used to approxi-
mate the filtering distribution, as well as the predictive and



smoothing distributions and the likelihood, we are in the
position of applying the general identification strategies
outlined in the previous sections to identify nonlinear/non-
Gaussian state space models.

6.1 Direct optimisation using Fisher’s identity

Consider the maximum likelihood problem in (2). The
objective function, i.e. the log-likelihood, can be approxi-
mated by SMC by using (42). However, many standard op-
timisation methods requires not only evaluation of the cost
function, but also the gradient and possibly the Hessian,
in solving (2). SMC can be used to compute the gradient
via the use of Fisher’s identity,

∇θ log pθ(y1:T )
∣∣
θ=θk

= ∇θQ(θ, θk)
∣∣
θ=θk

, (46)

where the intermediate quantity Q was defined in (21). It
follows that

∇θ log pθ(y1:T ) = Eθ [∇θ log pθ(x1:T , y1:T ) | y1:T ] . (47)

That is, the gradient of the log-likelihood can be computed
by solving a smoothing problem. This opens up for gradi-
ent approximations via a particle smoother, as discussed
in Section 5.3; see e.g. Poyiadjis et al. (2011) for further
details. The Hessian can also be approximated using, for
example, Louis’ identity (e.g., Cappé et al., 2005).

Note that the gradient computed in this way will be
stochastic, since it is approximated by an SMC method.
It is therefore common to choose a diminishing step-
size sequence of the gradient ascent method according to
standard stochastic approximation rules; see e.g., Kushner
and Yin (1997); Benveniste et al. (1990). However, it
should be noted that the approximation of the gradient
of the log-likelihood will be biased for a finite number of
particles N , and the identification method therefore relies
on asymptotics in N for convergence to a maximiser of (2).

6.2 Using unbiased likelihoods within MH

We can make use of the likelihood estimator (42) also
for Bayesian identification of nonlinear SSMs via the MH
algorithm. Indeed, an intuitive idea is to simply replace the
intractable likelihood in the acceptance probability (18)
by the (unbiased) estimate p̂θ(y1:T ). What is maybe less
intuitive is that this simple idea does in fact result in a
valid (in the sense that it has p(θ | y1:T ) as its stationary
distribution) MH algorithm, for any number of particles
N ≥ 1. Let us now sketch why this is the case.

We start by introducing a (high-dimensional) auxiliary
variable u constituted by all the random quantities gener-
ated by the PF, i.e. u , {x1:T ,a2:T } distributed according
to ψθ(u | y1:T ) defined in (39). Note that the joint distri-
bution of the parameters θ and the auxiliary variables u,

p(θ, u | y1:T ) = ψθ(u | y1:T )p(θ | y1:T ) (48a)

=
pθ(y1:T )ψθ(u | y1:T )π(θ)

p(y1:T )
, (48b)

has the original target distribution p(θ | y1:T ) as one of
its marginals. Inspired by (48b), consider the following
extended target distribution

φ(θ, u | y1:T ) =
p̂θ,u(y1:T )ψθ(u | y1:T )π(θ)

p(y1:T )
, (49)

where we have made use of the unbiased likelihood es-
timate p̂θ,u(y1:T ) from the PF (and indicate explicitly
the dependence on u in the notation for clarity). We

can now set up a standard MH algorithm that operates
in the (huge) non-standard extended space Θ × XNT ×
{1, . . . , N}N(T−1) approximating the extended target dis-
tribution (49). The resulting algorithm will generate sam-
ples asymptotically from p(θ | y1:T ) despite the fact that we
employ an approximate likelihood in (49)! To understand
why this is the case, let us marginalise (49) w.r.t. the
auxiliary variable u:∫

φ(θ, u | y1:T )du =
π(θ)

p(y1:T )

∫
p̂θ,u(y1:T )ψθ(u | y1:T )du.

(50)

The fact that the likelihood estimate p̂θ,u(y1:T ) produced
by the PF is unbiased means that

Eu|θ [p̂θ,u(y1:T )] =

∫
p̂θ,u(y1:T )ψθ(u | y1:T )du = pθ(y1:T ).

(51)

The marginalisation in (50) can now be finalised, resulting
in
∫
φ(θ, u | y1:T )du = p(θ | y1:T ), proving that p(θ | y1:T ) is

recovered exactly as the marginal of the extended target
distribution (49), despite the fact that we employed a PF
approximation of the likelihood using a finite number of
particles N . This explains why it is sometimes referred
to as an exact approximation. An interpretation is that
using the likelihood estimate from the PF does change
the marginal distribution w.r.t. u in (48), but it does not
change the marginal w.r.t. θ.

Based on the current sample (θ[m], u[m]) a new sample
(θ′, u′) is proposed according to

θ′ ∼ q(· | θ[m]), u′ ∼ ψθ′(· | y1:T ). (52)

We emphasise that simulation of u′ corresponds to running
a PF with the model parameterised by θ′. The probability
of accepting the sample proposed in (52) as the next
sample (θ[m+ 1], u[m+ 1]) is given by

α = 1 ∧ p̂θ′,u′(y1:T )π(θ′)

p̂θ[m],u[m](y1:T )π(θ[m])

q(θ[m] | θ′)
q(θ′ | θ[m])

, (53)

which was obtained by inserting (49) and (52) into (18).
In practice it is sufficient to keep track of the likelihood
estimates {p̂θ[m],u[m]}m≥1, and we do not need to store
the complete auxiliary variable {u[m]}m≥1. The above
development is summarised in Algorithm 2. It can be
further improved by incorporating gradient and Hessian
information about the posterior into the proposal (52),
resulting in more efficient use of the generated particles
(Dahlin et al., 2015).

Algorithm 2 Particle Metropolis Hastings (PMH) for
Bayesian system identification of nonlinear SSMs
1: Run a PF (Algorithm 1) targeting p(x1:T | θ[1]) to obtain u′ ∼
ψθ[1](u | y1:T ) and p̂θ[1],u′ (y1:T ) according to (42).

2: for m = 1 to M do
3: Sample θ′ ∼ q(· | θ[m]).
4: Run a PF (Algorithm 1) targeting p(x1:T | θ′) to obtain u′ ∼

ψθ′ (u | y1:T ) and p̂θ′,u′ (y1:T ) according to (42).
5: Sample dm ∼ U [0, 1].
6: Compute the acceptance probability α by (53).
7: if dm < α then
8: θ[m+ 1]← θ′ and p̂θ[m+1](y1:T )← p̂θ′ (y1:T ).
9: else

10: θ[m+ 1]← θ[m] and p̂θ[m+1](y1:T )← p̂θ[m](y1:T ).
11: end if
12: end for

The particle Metropolis Hastings algorithm constitutes
one member of the particle MCMC (PMCMC) family of
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Fig. 2. The marginal posterior estimates for φ (left) and τ (right)
using the PMH algorithm (upper) and the PGAS algorithm
(lower). The dotted vertical and the dark grey lines indicate the
estimated posterior mean and the prior densities, respectively.

algorithms introduced in the seminal paper by Andrieu
et al. (2010). The derivation above is along the lines of the
pseudo-marginal approach due to Andrieu and Roberts
(2009). The extended target construction φ, however, is
the core of all PMCMC methods and they differ in that
different (more or less standard) MCMC samplers are used
for this (non-standard) target distribution. They also have
in common that SMC is used as a proposal mechanism on
the space of state trajectories XT .

Example 7: PMH applied to the NL-SSM

We make use of Algorithm 2 to estimate the parameters
in (9) together with a simple Gaussian random walk,

θ′ ∼ q(· | θ[m]) = N (θ[m], 2.5622Σ/2),

where Σ denotes an estimate of the posterior covariance
matrix. This choice is optimal for some target distributions
as is discussed by Sherlock et al. (2013). The posterior
covariance estimate is obtained as

Σ = 10−5

[
22.51 −4.53
−4.53 2.57

]
using a pilot run of the algorithm. In the upper part
of Figure 2, we present the resulting marginal posterior

estimates. The posterior means θ̂PMH = {0.95, 51.05} are
indicated by dotted lines.

7. DATA AUGMENTATION IN NONLINEAR SSM

Algorithms implementing the data augmentation strategy
treats the states as auxiliary variables that are estimated
along with the parameters, rather than integrating them
out. Intuitively this results in algorithms that alterate
between updating θ and x1:T .

7.1 Expectation maximisation

The expectation maximisation algorithm introduced in
Section 4.1 separates the maximum likelihood problem (2)
into two closely linked problems, namely the computation
of the intermediate quantity Q(θ, θ[k]) and its maximi-
sation w.r.t. θ. As previously discussed, computing the
intermediate quantity corresponds to solving a smoothing
problem. Hence, for a nonlinear/non-Gaussian SSM, a
natural idea is to use a particle smoother, as discussed
in Section 5.3, to solve this subproblem. The details of
the algorithm are provided by Cappé et al. (2005); Olsson
et al. (2008); Schön et al. (2011), whereas the general idea
of making use of Monte Carlo integration to approximate
the E-step dates back to Wei and Tanner (1990).

By this approach, a completely new set of simulated
particles has to be generated at each iteration of the
algorithm, since we continuously update the value of θ.
Once an approximation of Q(θ, θ[k]) has been computed,
the current particles are discarded and an entirely new
set has to be generated at the next iteration. While it
does indeed result in a working algorithm it makes for
an inefficient use of the particles. The PMCMC family
of algorithms opens up for the construction of Markov
kernels that can be used to generate samples of the state
trajectory (to be used in the approximation of Q(θ, θ[k]))
in a computationally more efficient fashion, which serves as
one (of several) motivation of the subsequent development.

7.2 Sampling state trajectories using Markov kernels

We now introduce another member of the PMCMC family
of algorithms (recall PMH from Section 6.2) that can
be used whenever we are faced with the problem of
sampling from an intractable joint smoothing distribution
pθ(x1:T | y1:T ). In those situations an exact sample can
be replaced with a draw from an MCMC kernel with
stationary distribution pθ(x1:T | y1:T ), without introducing
any systematic error, and PMCMC opens up for using
SMC to construct such MCMC kernels.

Here, we review a method denoted as particle Gibbs
with ancestor sampling (PGAS), introduced by Lindsten
et al. (2014). To construct the aforementioned Markov
kernel, PGAS makes use of a procedure reminiscent of
the PF in Algorithm 1. The only difference is that in
PGAS we condition on the event that an a priori specified
state x′t is always present in the particle system, for each
time t. Hence, the states (x′1, . . . , x

′
T ) must be retained

throughout the sampling prodecure. To accomplish this
we sample xit according to the bootstrap PF only for
i = 1, . . . , N − 1. The remaining N th particle xNt is then
set deterministically as xNt = x′t. It is often the case
that we are interested in complete particles trajectories;
cf., (45). To generate a genealogical trajectory for x′t, it
is possible to connect it to one of the particles at time
t−1, {xit−1}Ni=1 by sampling a value for the corresponding

ancestor index aNt from its conditional distribution. This
is referred to as ancestor sampling, see Algorithm 3.

Note that Algorithm 3 takes as input a state trajectory
x′1:T = (x′1, . . . , x

′
T ) and returns another state trajectory

x?1:T , which is simulated randomly according to some
distribution (which, however, cannot be written on closed
form). Hence, we can view Algorithm 3 as sampling from
a Markov kernel defined on the space of state trajectories
XT . This Markov kernel is referred to as the PGAS kernel.



Algorithm 3 PGAS kernel (with a bootstrap PF)

1: Initialisation (t = 1): Draw xi1 ∼ µ(x1) for i = 1, . . . , N − 1

and set xN1 = x′1. Compute w̄i1 = gθ(yt |xi1) for i = 1, . . . , N .
2: for t = 2 to T do
3: Sample ait with P

(
ait = j

)
= wjt−1 for i = 1, . . . , N − 1.

4: Sample xit ∼ fθ(xt |x
ait
t−1) for i = 1, . . . , N − 1.

5: Set xNt = x′t.

6: Draw aNt with P
(
aNt = j

)
∝ w̄jt−1fθ(x′t |x

j
t−1).

7: Set xi1:t = {xa
i
t

1:t−1, x
i
t} for i = 1, . . . , N .

8: Compute w̄it = gθ(yt |xit) for i = 1, . . . , N .
9: end for

10: Draw k with P (k = i) ∝ w̄iT .

11: Return x?1:T = xk1:T .

The usefulness of the method comes from the fact that
the PGAS kernel is a valid MCMC kernel for the joint
smoothing distribution pθ(x1:T | y1:T ) for any number of
particles N ≥ 2! A detailed derivation is provided by
Lindsten et al. (2014), who show that the PGAS kernel is
ergodic and that it admits the joint smoothing distribution
as its unique stationary distribution. This implies that
the state trajectories generated by PGAS can be used
as samples from the joint smoothing distribution. Hence,
the method is indeed an interesting alternative to other
particle smoothers. Moreover, the PGAS kernel can be
used as a component in any (standard) MCMC method.
In the subsequent section we will make explicit use of this,
both for ML and Bayesian identification.

8. IDENTIFICATION USING MARKOV KERNELS

8.1 Expectation maximisation revisited

In Section 7.1 we made use of particle smoothers to ap-
proximate the intractable integral defining the intermedi-
ate quantity Q(θ, θ[m]). However, it is possible to make
more efficient use of the simulated variables by using the
PGAS Algorithm 3 and employing a stochastic approxi-
mation update of the intermediate quantity Q,

Q̂k(θ, θk) = (1− αk)Q̂k−1(θ, θk−1)+

αk

N∑
i=1

wiT log pθ(x
i
1:T , y1:T ), (54)

where αk is the step size and {wiT , xi1:T }Ni=1 is generated
by Algorithm 3. Stochastic approximation EM (SAEM)
was introduced and analysed by Delyon et al. (1999) and
it was later realised that it is possible to use MCMC
kernels within SAEM (Andrieu et al., 2005) (see also
Benveniste et al. (1990)). The aforementioned particle
SAEM algorithm for nonlinear system identification was
presented by Lindsten (2013) and it is summarised in
Algorithm 4.

Algorithm 4 PGAS for ML sys. id. of nonlinear SSMs

1: Initialisation: Set θ[0] and x1:T [0] arbitrarily. Set Q̂0 = 0.
2: for k ≥ 1 do
3: Run Algorithm 3 with x′1:T = x1:T [k− 1]. Set x1:T [k] = x?1:T .

4: Compute Q̂k(θ) according to (54).

5: Compute θ[k] = arg max Q̂k(θ).
6: if convergence criterion is met then
7: return θ[k]
8: end if
9: end for

Note the important difference between the SMC-based EM
algorithm outlined in Section 7.1 and Algorithm 4. In the
former we generate a completely new set of particles at
each iteration, whereas in particle SAEM all simulated
particles contribute, but they are down-weighted using a
forgetting factor given by the step size. This approach is
more efficient in practice, since we can use much fewer
particles at each iteration. In fact, the method can be
shown to converge to a maximiser of (2) even when
using a fixed number of particles N ≥ 2 when executing
Algorithm 4.

8.2 Bayesian identification

Gibbs sampling can be used to simulate from the posterior
distribution (3) or more generally, the joint state and
parameter posterior p(θ, x1:T | y1:T ). The PGAS kernel
allows us to sample the complete state trajectory x1:T in
one block. Due to the invariance and ergodicity properties
of the PGAS kernel, the validity of the Gibbs sampler is
not violated. We summarise the procedure in Algorithm 5.

Algorithm 5 PGAS for Bayesian sys. id. of nonlinear SSMs
1: Initialisation: Set θ[0] and x1:T [0] arbitrarily.
2: for m = 1 to M do
3: Run Algorithm 3 conditionally on (x1:T [m− 1], θ[m− 1]) and

set x1:T [m] = x?1:T .
4: Draw θ[m] ∼ p(θ |x1:T [m], y1:T ).
5: end for

Example 8: PGAS applied to (9)

To make use of Algorithm 5 to estimate the parameters
in (9), we need to simulate from the conditional distribu-
tion θ[m] ∼ p(θ |x1:T [m], y1:T ). This distribution is not
available in closed form, however we can generate samples
from it by using rejection sampling with the following
instrumental distribution

q(φ, τ |x1:T [m], y1:T ) = G (τ ;α, β)N
(
φ; µ̃, τ̃−1

)
,

α = 0.01 +
T − 1

2
,

β = 0.01 +
1

2

T∑
t=1

xt[m]2 − 1

2

(∑T−1
t=1 xt+1[m]xt[m]

)2

∑T−1
t=2 xt[m]2

,

µ̃ =

∑T−1
t=1 xt+1[m]xt[m]∑T−1

t=2 xt[m]2
, τ̃ = τ

T−1∑
t=2

xt[m]2.

In the lower part of Figure 2, we present the resulting

marginal posterior estimates. The posterior means θ̂PG =
{0.953, 44.37} are indicated by dotted lines.

9. FUTURE CHALLENGES

We end this tutorial by pointing out directions for future
research involving interesting challenges where we believe
that SMC can open up for significant developments.

Over two decades ago the SMC development started by
providing a solution to the intractable filtering problem
inherent in the nonlinear SSM. We have since then seen
that SMC is indeed much more widely applicable and we
strongly believe that this development will continue, quite
possibly at a higher pace. This opens up entirely new
arenas where we can use SMC to solve hard inference
problems. To give a few concrete examples of this we



have the Bayesian nonparametric models (such as the
Dirichlet and the Beta processes) that are extensively used
in machine learning. There are also the so-called spatio-
temporal models, which do not only have structure in
time, but also in a spatial dimension, imagine the weather
forecasting problem. A known deficiency of the standard
(bootstrap) particle filter is its inability to handle high-
dimensional variables xt (Bickel et al., 2008), which is
usually the case in for example spatio-temporal models.
However, recent work has shown promising directions to
tackle high-dimensional models in a consistent way using
SMC (Naesseth et al., 2014; Beskos et al., 2014; Naesseth
et al., 2015).

There is a well-known (but underutilised) duality between
the control problem and the system identification problem.
Coupled with the various SMC based approximations
this opens up for fundamentally new controllers to be
learnt by formulating the policy optimisation in control
problems as an inference problem. For some work along
this direction, see e.g. (Doucet et al., 2010; Hoffman et al.,
2009; Toussaint and Storkey, 2006).

The PMCMC family of methods that has been discussed
and used throughout this tutorial is a concrete example of
another interesting trend, namely that of coupling various
sampling methods into more powerful solutions. This is a
trend that will continue to evolve. The online (Bayesian)
inference problem is also a future challenge where we
believe that SMC will play an important role.
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