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Abstract: This paper proposes off-line and on-line data-driven approaches to anomaly detection
based on generalized likelihood ratio tests for a bias change. The procedure is divided into two
steps. Assuming availability of a nominal dataset, a nonparametric density estimate is obtained
in the first step, prior to the test. Second, the unknown bias change is estimated from test
data. Based on the expectation maximization (EM) algorithm, batch and sequential maximum
likelihood estimators of the bias change are derived for the case where the density estimate is
given by a Gaussian mixture. Approximate asymptotic expressions for the probabilities of error
are suggested based on available results. Real world experiments illustrate the approach.
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1. INTRODUCTION

In anomaly detection, the main objective is to determine
whether observations conform to expected (normal) be-
havior or not (i.e. an anomaly). Anomaly detection ap-
pears in a variety of applications, such as condition mon-
itoring of machines, fraud detection, intrusion detection,
etc. Chandola et al. (2009) provide a survey of anomaly
detection. A factor that distinguishes anomaly detection
to related detection problems is the lack of knowledge of
the anomaly. This is a rather common situation, e.g. in
condition monitoring and fault detection. A mathematical
model is a common description of the available knowledge.
However, it may be difficult to determine such a model a
priori in some applications. A more common situation is
perhaps that it is possible to collect measurements (data)
under normal conditions. This nominal dataset contains
relevant information about the conforming behavior and
it is possible to infer the presence of an anomaly based
only on nominal data.

Examples of data-driven approaches to anomaly detection
are one-class classification algorithms, e.g. Devroye and
Wise (1980); Schölkopf et al. (2001), where a boundary
region in the observation space is determined from a nom-
inal dataset. Fresh observations falling outside this region
are classified as anomalies. A shortcoming with such an
approach is that all knowledge about the normal behavior
is summarized by a region in the observation space. For
instance, this approach would fail to recognize that if
observations consistently fall in a low probability region of
the support, it is more likely that an anomaly is present.
An alternative is to estimate a model of the measurements
density based on the nominal data. In this case, anomalies
can be detected based on the probability that test data
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has under the estimated density model. Since it is often
difficult to determine the family of distributions, mixture
models are commonly used, e.g. Agarwal (2007), as well
as nonparametric estimates (Desforges et al., 1998; Yeung
and Chow, 2002). A shortcoming with approaches based
on a model solely for the normal behavior is that it is not
possible to provide an estimate of how certain the test is
of the presence of an anomaly. This type of information is
however often important in practice to support decisions
of recovery actions.

With the possibility of determining probabilistic models
for both the normal and abnormal behaviors, anomaly
detection can be seen as a hypothesis testing problem
(HTP). In a HTP, it is possible to quantify the decision
uncertainties since probabilistic models are defined for
the entire problem. In a binary HTP, the null hypothesis
H0 describes the nominal behavior and the alternative
hypothesis H1 describes the abnormal behavior. The hy-
potheses are described by the statistical behavior of the
measurements y ∈ Rd under each hypothesis,

H0 : y ∼ p0(y), H1 : y ∼ p1(y). (1)

When the hypotheses densities, p0(y) and p1(y), are
given or when their family of parametric distributions are
known, there are well-established statistical tests based
on likelihood ratios, i.e. Λ(y),p1(y)/p0(y), (Neyman and
Pearson, 1933; Wald, 1945).

An approach to overcome the lack of knowledge for the
anomaly is to define it as a change relative to nominal. In
this manner, the available knowledge about the nominal
behavior can be used to test for an anomaly. Here, a bias
(location) change is considered, i.e. the density for the
alternative hypothesis is written as p1(y) = p0(y − ∆),
for a bias change ∆. Using this model, this article aims at
providing an approach for anomaly detection that without



requiring specification of a density function and based only
on availability of a nominal dataset,

• is flexible and can be used for different problems,
• can provide estimates of the decision uncertainties,
• requires only minimal and meaningful specification

parameters from the user.

This is achieved via a two step approach. First, the nomi-
nal dataset is used to find a nonparametric estimate of the
density function for H0, denoted p̂0(y). In the second step,
incoming test measurements are used to find a maximum

likelihood estimate ∆̂ of the unknown bias change. These
estimates are used to define the approximate model

H0 : yi ∼ p̂0(y), H1 : yi ∼ p̂1(y|∆̂) = p̂0(y − ∆̂), (2)

which is tested based on a generalized likelihood ratio
(GLR) assuming this model to be true. Both on-line and
off-line tests are devised.

The presentation is organized as follows, Sec. 2 presents
the bias change model and reviews the GLR test. Sec. 3
presents the approaches used to find the estimate p̂0(y)
based on a nominal dataset. The resulting density model
will be a finite mixture distribution. Sec. 4 defines max-
imum likelihood estimators for ∆ based on the Expec-
tation Maximization algorithm. Algorithms are derived
for mixtures of multivariate Gaussian distributions. The
use of GLR tests based on the approximate models (2) is
illustrated in Sec. 5 through real data examples followed
by concluding remarks.

2. THE BIAS CHANGE MODEL AND GLR TEST

The assumption that an anomaly will appear as a bias
change from nominal gives the following hypotheses

H0 : y ∼ p0(y), H1 : y ∼ p1(y|∆)=p0 (y −∆) , (3)

for the unknown bias vector ∆. The expected value of y
under H1 can be written as

Ep1 [y] = Ep0 [y] + ∆, (4)

i.e., it changes the mean of y by ∆. This model is easy
to interpret and bias changes are often considered when
detecting anomalies, e.g. in the literature of fault diag-
nosis (Isermann, 2006). The model describes situations
where the data is shifted in the observation space. The
parameter ∆ also carries valuable information about the
problem. E.g. if Σ is the density covariance, then ∆Σ−1∆T

measures the significance of the change relative to the
density volume, similar to a signal to noise ratio.

Introducing the notation Yi:j =[yi, · · · ,yj ] (j > i), for N
independent and identically distributed (i.i.d.) measure-

ments, YN ,Y1:N , the objective is to decide whether YN

belongs to H0 or H1 in (3). This can be done with a
generalized (log-) likelihood ratio (GLR),

ŜN , log Λ̂N (YN ) = max
∆

log
p1N (YN |∆)

p0N (YN )

= log
p1N (YN |∆̂N )

p0N (YN )
=

N∑
j=1

log
p0(yj − ∆̂N )

p0(yj)
,

(5)

where ∆̂N is a maximum likelihood (ML) estimate of
the unknown bias. Batch estimation of ∆ is discussed in
Sec. 4.1. The GLR is tested based on a threshold check

ŜN
H1

≷
H0

η, (6)

the above notation means that H0 is chosen if the test
statistic ŜN is smaller than the threshold η otherwise H1

is chosen.

2.1 Unknown Change Time

The GLR quantity used in (5) assumes that the entire
batch YN was collected under either H0 or H1, i.e. the
change time is known. In many practical situations, the
change time is unknown. For a batch YN , there are N+1
possibilities, either no change was present or a change
appeared at any t ∈ {1, . . . , N}. A hypothesis test for
this problem can be defined according to (Basseville and
Nikiforov, 1993, Sec. 2.6.1)

H0 : yi ∼ p0(y), 1 ≤ i ≤ N, (7a)

H1 :

{
yi ∼ p0(y), 1 ≤ i ≤ t− 1,

yi ∼ p1(y|∆) = p0(y −∆), t ≤ i ≤ N, (7b)

where both t and ∆ are unknown in H1. The resulting
GLR is based on a joint maximization of the unknowns as

S̃N , max
1≤t≤N

max
∆

log
p01:t−1(Y1:t−1)p1t:N (Yt:N |∆)

p0n(YN )

= max
1≤t≤N

log
p1t:N (Yt:N |∆̂t:N )

p0t:N (Yt:N )
= max

1≤t≤N
Ŝt:N .

(8)

the hypotheses are chosen as in (6) with ŜN replaced by

S̃N , an estimate of the change time is

t̂N =arg max
t
Ŝt:N (9)

and the estimate for the change is ∆̂t̂N :N . The statistic

S̃N requires finding the ML estimate of the change ∆̂t:N

for N possible splits t ∈ {1, . . . , N} and evaluation of the

related log-likelihood ratio Ŝt:N .

2.2 On-line Solution

The formulation in (7) and (8) is essentially offline. An
on-line approach is however possible by repeating the
procedure for the sequence {yn} for each incoming mea-
surement (Gustafsson, 2000, Sec. 3.5.3). Every time a new

data yn is received, n estimates ∆̂t:n, t ∈ {1, . . . , n},
should be found and the associated Ŝt:n evaluated. The
complexity therefore increases with n. The estimate ∆̂t:n

requires solution of an optimization problem and is more

computationally demanding than the evaluation of Ŝt:n.

To reduce complexity, the estimates ∆̂t:n can be found

sequentially in the data, i.e. ∆̂t:n is found based only on

the previous value ∆̂t:n−1 and current measurement yn.
Sequential estimation of ∆ is discussed in Sec. 4.2.

The denominator for Ŝt:n in (5), i.e. the log-likelihood
function for H0, can be computed sequentially un-
der the i.i.d. assumption. Given the previous value
log p0t:n−1(Yt:n−1) and yn, it can be updated as

log p0t:n(Yt:n) = log p0t:n−1(Yt:n−1) + log p0(yn). (10)

The numerator for Ŝt:n, i.e. the log-likelihood function for
H1, must however be evaluated for the entire Yt:n based

on ∆̂t:n and, in general, cannot be found sequentially.



2.3 Asymptotic Performance

Associated to any test is the probability of deciding incor-
rectly for H0, denoted β, and the probability of deciding
incorrectly for H1, denoted α. For a GLR test they are

given by β = Pr
(
ŜN |H1 < η

)
and α = Pr

(
ŜN |H0 ≥ η

)
.

While in general no analytical solution is available, they
can in principle be found based on Monte Carlo techniques.
An alternative is to find α and β based on the asymptotic
behavior of the GLR statistic. The asymptotic behavior of
the test statistic is given by (Mackay, 2003, App. 6A-C)

2ŜN |H0 as.∼ X 2
d , (11a)

2ŜN |H1 as.∼ X ′d
2 (
λ(∆1)

)
, λ(∆) , ∆TF(0)∆, (11b)

where ∆1 is the true parameter under H1, X 2
d is the chi-

square distribution with d degrees of freedom, X ′d
2
(λ) is

the non-central chi-square with non-centrality parameter λ
and F(0) is the Fisher information for ∆ evaluated at
zero. This result is valid whenever the correct models are
used and ∆̂N tends to the true value ∆1. Since under
H0 the asymptotic behavior of the test statistic does not
depend on unknowns, a threshold can be found from (11a)
for a desired error level α′. An estimate of β can also be

computed based on the maximum likelihood estimate ∆̂.
This is summarized as follows

η(α′) = inf
{
η ∈ R :

∫∞
η
X 2
d (z) dz ≥ α′

}
, (12a)

β(α′) =
∫ η(α′)
−∞ X ′d

2
(
z;λ(∆̂)

)
dz. (12b)

To apply the GLR test for the bias change model, the
unknown density p0(y) is needed. In a practical setup, it
is often common to introduce assumptions on the data
distribution, the Gaussian model being a common choice.
Although the Gaussian model gives statistical tests that
can be conveniently described by sufficient statistics (Trees
and Bell, 2013), it is clear that there will be situations
where this model is a poor description ofH0. In this paper,
no assumption is forced about H0, instead, all knowledge
is considered to be contained in a nominal dataset and the
approximate model (2) is used as an approximation.

3. NONPARAMETRIC DENSITY ESTIMATORS

A nominal dataset Y0
N0

with N0 i.i.d. observations from

H0 is used to find a nonparametric density estimate p̂0(y).
The density model will take the form of a finite mixture

p̂0(y) =
∑
k∈K

πk κ(y; y0
k,h),

∑
k∈K

πk = 1, πk > 0, (13)

where K is an index set with cardinality |K|=K≤N0, κ(·)
is a kernel function satisfying κ(y)≥ 0 and

∫
κ(y) dy=1.

The bandwidth h ∈ Rd is fixed and the weighting coef-
ficients {πk} are found according to the chosen density
estimator. Two nonparametric density estimators are pre-
sented next.

3.1 Kernel Density Estimator

The first type of estimator considered is a so called kernel
density estimator (KDE), or Parzen estimator. The KDE

based on the nominal dataset Y0
N0

is given by a finite
mixture model (13) with

K = {1, 2, . . . , N0}, πk = |(h)|−1/2

N0
, (14a)

κ(y; y0
k,h) = κ

(
S(h)−1/2

(
y − y0

k

))
, (14b)

where S(h) is a positive definite scaling matrix. The KDE
model has as many components as data points and the co-
efficients {πk} are fixed and identical. As shown by Parzen
(1962); Cacoullos (1966), this estimator is consistent and
asymptotically unbiased. The KDE method requires spec-
ification of the bandwidth h. There are several approaches
reported in the literature for bandwidth selection (Jones
et al., 1996b,a). Here, a diagonal S(h) will be considered
with bandwidth elements chosen using Silverman’s rule of
thumb (Silverman, 1986),

S(h) = diag(h),
√
hj = 4

d+2

1
d+4N

−1
d+4

0 σ̂j , (15)

for j={1, . . . , d} and where σ̂j is an estimate of the data
standard deviation over the jth dimension.

Besides requiring storage of the entire dataset, perform-
ing inference with a KDE will become computationally
intensive when N0 is large. An alternative is to consider
reduced mixture models, with K�N0 components. When
the number of components K is fixed, it is possible to
find maximum likelihood estimates for the parameters
using, e.g., the EM algorithm (Dempster et al., 1977). A
disadvantage with such an approach is that the number of
components K must be pre-specified.

3.2 A Sparse Density Estimator

An alternative will be considered here based on the gen-
eralized cross entropy (GCE) method presented by Botev
and Kroese (2011), which does not require specification of
K or h. For a dataset Y0

N0
, the estimate is given as

p̂0(y) =
∑
k∈K

λ∗kκ(y; y0
k,h
∗), (16)

with K = {1, . . . , N0} and where the bandwidth h∗ and
weights λ∗k are given by

(h∗,λ∗) =
{

(h,λ) : 1Tλ(h) = 1,

λ(h) = arg min
λ≥0

λTC(h)λ− λT φ̂(h)
}
. (17a)

The quadratic program (QP) for λ(h) is defined by

φ̂i(h) =
1

N0 − 1

∑
j 6=i

κ(y0
j ; y

0
i ,h), i = 1, . . . , N0, (17b)

Cij(h) =

∫
Rd

κ(y; y0
i ,h)κ(y; y0

j ,h) dy, (17c)

and C(h)∈RN0×N0 is positive definite by construction.

This approach is algorithmically similar to the support
vector density estimator by Vapnik and Mukherjee (2000),
in which the condition 1Tλ(h) = 1 is included as a
constraint in the QP and h is pre-specified. As noted
by Botev and Kroese (2011), the QP in (17a) is closely
related to the support vector regression problem with an
ε-insensitive error function, see e.g. (Bishop, 2006, Sec.
7.1.4), and most elements in λ∗ will be close to zero.



Computing the estimate To avoid solving (17a) for a d-
dimensional h, a simplification is made which considers
a scalar bandwidth h applied to a diagonal covariance
estimate, i.e.

S(h) = hΣ̂, where Σ̂ij =

{
0, if i 6= j
σ̂2
i , if i=j

(18)

where i, j ∈ {1, . . . , d}. In this manner, only one band-
width parameter needs to be found and different scaling is
allowed for the different dimensions. The resulting problem
(17a) is solved by addressing the nonlinear least squares

h∗ = arg min
h

(
1Tλ(h)− 1

)2
, (19)

where λ(h) is the solution to the QP (17a) and λ∗=λ(h∗).

To remove small components in λ∗, a pruning approach is
suggested here. Let λ∗ be ordered as λ∗1 ≤ λ∗2 ≤ . . . λ∗N0

,
the ε approximation of (16) is written by replacing K and
λ∗k in (16) with Kε and π∗k respectively, where

Kε :
{
k :

k∑
j=1

λ∗j ≥ ε, 1 ≤ k ≤ N0

}
, π∗k ,

λ∗k∑
j∈Kε λ

∗
j

, (20)

and |Kε| = K will typically be much smaller than the
number of data samples N0.

Multivariate Gaussian kernel The GCE method requires
solution of Cij(h) in (17c), which is not always analyti-
cally tractable. For the Gaussian case, i.e. κ(y; y0

k,h) =
N (y; y0

k, S(h)), it can be shown from completion of the
squares that

Cij(h) = N (y0
i ; y

0
j , 2S(h)), (21)

see the Appendix for a proof.

4. ESTIMATING THE BIAS CHANGE

For p̂0(y) achieved using either the KDE or the GCE
methods, the model for the alternative hypothesis in (2)
can be written as the finite mixture

p̂1(y|∆) = p̂0(y −∆) =

K∑
k=1

πkκk(y −∆), (22)

where κk(y) , κ(y; y0
k,h). The objective of this section

is to derive batch and sequential maximum likelihood
estimators of ∆ in (22). First, notice that for a mixture

density p(y), Ep[y] =
∑K
k=1 πkEκk [y]. Using this relation

with (4), an estimate of ∆ can be computed based on YN

from the sample estimate

∆̂
S

N =
1

N

N∑
i=1

yi−Ep̂0 [y]=
1

N

N∑
i=1

yi−
K∑
k=1

πkEκk [y]. (23)

This estimate is asymptotically unbiased. However, for a
given sample YN , it does not necessarily maximizes the
likelihood function (e.g. if the density has multiple modes)
and an alternative is needed. It is well known that direct
optimization of the likelihood function in mixture models
is problematic (Bishop, 2006, Sec. 9.2.1). For mixtures,
the EM algorithm can be used to compute maximum
likelihood estimates.

4.1 Batch Estimation using EM

The EM algorithm (Dempster et al., 1977), is a two step
iterative procedure for finding maximum likelihood pa-

rameter estimates in probabilistic models involving latent
variables. Let X and Y denote latent and measured vari-
ables, with joint distribution p(Y,X|θ) governed by the
parameter vector θ and let

Q
(
θ,θ′

)
,
∫

ln p(Y,X|θ)p(X|Y,θ′) dX

= Eθ′ [ln p(Y,X|θ)|Y].
(24)

For iterates θ(i), the expectation (24) is computed for

Q(θ,θ(i−1)) in the E-step. In the M-step, the resulting Q-

function is maximized w.r.t. θ to update the iterate θ(i).
The steps are repeated until a convergence criterion is sat-
isfied. The EM algorithm guarantees that the iterates sat-

isfy p(Y|θ(i)) ≥ p(Y|θ(i−1)) and therefore they eventually
converge to a stationary point of the likelihood function.
For a measurement batch YN , the estimate achieved after

convergence of the algorithm is denoted as θ̂N .

As previously noted, the model (22) can be interpreted as
a mixture model, where the parameter θ= ∆ is common
to all mixture components. Hence, the model (22) can be

written as p̂1(y|θ) =
∑K
k=1 πkκk(y|θ). Introducing a dis-

crete latent variable to denote which of the K components
that generated a certain measurement yn, it is possible to
show that the E-step amounts to (Bishop, 2006, Sec. 9.3.1)

Q(θ,θ′) =

N∑
n=1

K∑
k=1

ζnk(θ′) log πkκk(yn|θ), (25a)

ζnk(θ′) ,
πkκk(yn|θ′)∑K
j=1 πjκj(yn|θ

′)
. (25b)

The solution to the M-step depends on the form of the
kernel function and on how the unknown parameters enter
this function. Explicit solutions are given next for the
Gaussian mixture model (GMM) based on YN and with

θ = ∆, κk(y|θ)=κk(y −∆)=N (y −∆; y0
k, S). (26)

The M-step can be found explicitly by finding the solution
to ∂

∂∆Q
(
∆,∆′

)
=0. This gradient is given by

N∑
n=1

K∑
k=1

ζnk(∆′)

[
∂

∂∆
log κk(yn −∆)

]
the term in brackets simplifies to S−1[(yn−y0

k)−∆] giving

∆ =

∑N
n=1

∑K
k=1 ζnk(∆′)

(
yn − y0

k

)∑N
n=1

∑K
k=1 ζnk(∆′)

=
1

N

N∑
n=1

K∑
k=1

ζnk(∆′)
(
yn − y0

k

)
, (27)

where the last step follows since
∑K
k=1 ζnk(∆′) = 1. The

resulting iterates ∆(i) produced from the EM algorithm
are given in Algorithm 1 for a convergence criterion based

on ‖∆(i) − ∆(i−1)‖22. The algorithm can be initialized
using (23), which for the GMM gives

∆(0) =
1

N

N∑
n=1

yn −
K∑
k=1

πky
0
k. (28)

4.2 Sequential Estimation using Stochastic Approximation

To evaluate the E-step in the EM algorithm, all measure-
ments in Y must be available and the EM algorithm is



Algorithm 1 Batch EM for bias change in GMM

Set i=1, ∆(i−1) as (23) and ε > 0.
repeat

E-Step: compute ζnk(∆(i−1)) as in (25b)
M-step: compute ∆(i) according to (27)

until ‖∆(i)−∆(i−1)‖22 ≤ ε
return ∆̂N = ∆(i) {Return the estimate}

Algorithm 2 Sequential EM for bias change in GMM

Set n= t, ∆̂t:n−1 =0, γ0 ∈ (0, 1) and ρ ∈ ( 1
2
, 1]

for all incoming yn do

E-Step: compute ζnk(∆̂t:n−1) as in (25b) and set ñ=n−t+1.

M-step: set γñ=γ0ñ−ρ and compute ∆̂t:n as in (32)
end for

therefore a batch approach. A sequential version of EM
was suggested by Cappé and Moulines (2009), based on a
stochastic approximation of the E-step according to,

Q̃n(θ) = γnEθ̂n−1
[ln p(y, z|θ)|yn]+(1−γn)Q̃n−1(θ), (29)

where γn is the step-size, controlling the adaptation rate to
incoming measurements. The M-step is unchanged and the

estimate θ̂n is taken as the maximum of the Q̃-function.
Consistency and convergence rate for the estimator (29)
are studied in Cappé and Moulines (2009). For consistency,
γn must be chosen such that 0<γn<1,

∑∞
j=1 γj =∞ and∑∞

j=1 γ
2
j < ∞. To satisfy these conditions, the authors

suggest the use of γn=γ0n
−ρ for γ0∈ (0, 1) and ρ∈ ( 1

2 , 1].
The particular choice γ0 = ρ = 1 is equivalent to the
recursion of Equation 12 in Titterington (1984).

For mixture models, (29) follows as

Q̃n(θ) = γn

K∑
k=1

ζnk(θ̂n−1) log πkκk(yn|θ)

+(1−γn)Q̃n−1(θ)

(30)

where ζnk(·) is evaluated at the previous estimate θ̂n−1.
For a GMM as in (26), a recursive solution to the M-step

can be found. Starting with Q̃0(∆) = − 1
2∆TS−1∆ and

∆̂0 =0 (no change), direct maximization of Q̃1(∆), Q̃2(∆),

. . . , Q̃n(∆), for a sequence {yn} gives

∆̂n = γn

K∑
k=1

ζnk(∆̂n−1)(yn − y0
k) + (1−γn)∆̂n−1, (31)

see the Appendix for a proof. Similarly, to find ∆̂t:n

sequentially as described in Sec. 2.2, the recursion is

∆̂t:n=γñ

K∑
k=1

ζnk(∆̂t:n−1)(yn−y0
k)

+(1−γñ)∆̂t:n−1,

(32)

where ñ=n−t+1. Recursion (32) gives rise to Algorithm 2,

which produces an estimate ∆̂t:n sequentially at each new
measurement yn.

Notice that the computational complexities of Algo-
rithms 1 and 2 are directly proportional to the number
of kernels K. Therefore, the use of sparse models, such as
the ones given by the GCE method, gives the advantage
of a reduced computation load.

5. ILLUSTRATIVE EXAMPLES

5.1 Detection of Eruption Increase

The Old Faithful geyser dataset (Azzalini and Bowman,
1990) is considered here to illustrate the methods for the
batch multivariate case with known change time. The
dataset contains 272 measurements with d=2 dimensions
representing the registered length of the geyser’s eruptions
and the time in between them (both in minutes). A
fraction N0 =222 of the measurements are used to estimate
a density for the nominal model p̂0(y). Three different
models of p0(y) are considered:

• a Gaussian with parameters given from the standard
maximum likelihood equations,

• a nonparametric model given by the KDE with a
Gaussian kernel and bandwidth found using (15),

• a nonparametric model given by the GCE with a
Gaussian kernel and an ε=10−8 approximation.

The measurements YN0
are shown in Fig. 1(a) together

with contour lines for the density models. The components
chosen for the GCE model are also shown in Fig. 1(a)
with a colormap relating to the weights π∗. With K=32,
the GCE requires 86% less data to represent the density
compared to the KDE. The GCE is also richer in details
and with a tighter support compared to the KDE and
Gaussian models.

A bias change is considered to illustrate the situation
where the length of eruptions is increased by half a minute
and the interval between them is reduced by 2 minutes,
i.e. ∆= [0.5, −2]T . These values are added to the N = 50
remaining measurements, which can be seen in Fig.1(a).
Using these abnormal measurements YN , ∆ is estimated
for the three different models. For the Gaussian model,
a standard maximum likelihood estimate is used. The
estimates for the GCE and KDE models are based on
Algorithm 1 with initial values chosen ∆0 = [0, 0]T for
a comparison. Notice the large bias for the estimate given

by the Gaussian model. The iterates ∆(i) are shown in
Fig. 1(b) as a function of iterations. Due to the sparsity of

the GCE, ∆̂N is computed 40 times faster compared to the
one given by the KDE. After convergence of the iterates,

the GLR statistic ŜN is computed for the different models,
the values are 9.18, 21.71 and 83.71 for the Gaussian, KDE
and GCE models, respectively. Based on the asymptotic
expression (12a), a threshold η(0.01) = 4.60 is found. All
tests can detect the change, although the one based on the
GCE gives a much clearer response.

5.2 On-line Wear Detection in an Industrial Robot

By processing torque measurements collected from an
industrial robot joint, a scalar quantity y is generated
to infer the mechanical condition of the joint gearbox
(Bittencourt et al., 2014). The generated quantity y is
positive and remains close to zero under normal conditions,
deviating otherwise to indicate an anomaly. The data
processing used in the generation of y makes it difficult to
determine its distribution function. From this application,
it is however possible to collect nominal measurements
before the application of the test. Based on N0 = 66
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Fig. 1. GLR test for detection of eruptions increase in a geyser dataset. Notice how the test measurements YN in
Fig. 1(a) overlap with the support for the nominal models. Despite this, a detection is achieved with any of the
models.
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Fig. 2. GLR test for detection of abnormalities in the gearbox of a robot joint. Notice the false alarms triggered with
the use of a Gaussian model.

nominal samples, the three models from Sec. 5.1 are
considered. The resulting models and histogram of Y 0

N0

can be seen in Fig. 2(a). The measurements distribution
is multimodal and asymmetric, which makes the Gaussian
model a poor representation of the measurements and its
mean falls in a region of the support with little data.
The KDE estimate captures the asymmetry in the data,
but not the multiple modes and presents a wide support.
Perhaps a more sophisticated choice of bandwidth would
have improved the KDE estimate. The GCE estimate uses
only four components, a reduction of 96% compared to the
KDE. It also captures the multiple modes, asymmetry and
has a tighter support.

Using these models, the objective is to detect a wear fault
appearing around t=16 in a sequence {yn} with 1≤n≤22.
The change time is unknown and an online solution is
sought as described in Secs. 2.1 and 2.2. To reduce the
computational complexity, sequential maximum likelihood

estimates ∆̂t:n are found for 1≤ t≤ n. For the Gaussian
model, the standard maximum likelihood estimate is used.
Algorithm 2 is used for the KDE and GCE models with
γ0 = 0.6 and ρ= 1. The data {yn} and the different esti-

mates ∆̂t̂n:n
, with t̂n given in (9), are shown in Fig. 2(b).

Up to n=16, yn has values smaller than the mean for the
Gaussian model making the estimate to deviate towards
negative values.

The resulting models are used to find the GLR statistics

S̃n as given in (8), these are shown in Fig. 2(c) together
with the threshold η(0.01)=3.32 found according to (12a).
The Gaussian model generates false alarms from n = 7

and the KDE and GCE based tests detect a change from
n = 16. The error probabilities β(0.01) given by (12b)
are found based on numerical evaluation of the Fisher
information, the values are also shown in Fig. 2(c) as a
function of n. As can be seen, there is a sharp decay of β
for the Gaussian and GCE models, although the Gaussian
model gives smaller values of β for n<16. The value for β
achieved with the KDE decays more slowly compared to
the others, with a value of 0.73 at n=16.

In this application, an early detection is very important
to allow for condition based maintenance, giving enough
time to perform maintenance. To decide for maintenance
actions, it is also critical to have few false alarms and
that the detection error β can be used to support service
decisions. In this application, the test obtained using
the GCE model presented the best compromise for these
requirements.

6. CONCLUSIONS

This paper proposed a two step approach for anomaly
detection using a bias change model and GLR tests. In
the first step, a model for the normality is found based
on a nominal dataset. Nonparametric density estimates
are used which give high flexibility since specification of a
density function is not needed. In the second step, maxi-
mum likelihood estimates of a bias change are computed
using the EM algorithm. The use of a sparse density model
can considerably reduce the computations needed for the
estimators. The density model and bias change estimate
are then used in GLR tests to decide if an abnormality is



present or not. Both off-line and on-line cases are consid-
ered and the approach only requires availability of nominal
data and minimal/meaningful specification in terms of a
desired probability of false alarm (to find a threshold).
Using asymptotic expressions for the GLR statistic, it is
also possible to give estimates of the uncertainties asso-
ciated with the decision, which are important to support
higher level decisions. The efficacy of the approaches was
illustrated in real data examples to detect an increase of
eruptions in a geyser and a wear fault in an industrial
robot joint. The results achieved show clear improvements
compared to tests based on a Gaussian assumption.

Currently, the decision errors are estimated based on
asymptotic expressions which may differ for a finite num-
ber of measurements. In this direction, it would be in-
teresting to study approaches to provide estimates for the
finite sample behavior of the error probabilities. This could
possibly lead to the derivation of adaptive thresholds and
more accurate error estimates.

APPENDIX

Proof of (21). Let Cij ,
∫
Rd N (y; yi, S)N (y; yi, S) dy, P , S−1

and c=(2π)−d/2|S|−1/2 then

Cij = c

∫
e−

1
2{[y−yi]

TP [y−yi]+[y−yj ]
TP [y−yj ]} dy.

Using weighted inner product notation, the term in curly brackets is
written as 〈y − yi,y − yi〉P + 〈y − yj ,y − yj〉P and simplifies to

2〈y,y〉P − 2〈y,yi + yj〉P + 〈yi,yi〉P + 〈yj ,yj〉P+

+
(
1
2
〈yi + yj ,yi + yj〉P − 1

2
〈yi + yj ,yi + yj〉P

)
= 〈y − yi+yj

2
, y − yi+yj

2
〉2P + 〈yi − yj ,yi − yj〉P/2.

Rearranging c and taking the integral gives the result

Cij = N (yi; yj , 2S)

∫
N (y;

yi+yj
2

, S/2) dy = N (yi; yj , 2S).

Proof of (31). We show the results for n = 1 and n = 2, the

remaining follows by induction. Let P , S−1, Q̃0(∆)=− 1
2
∆TP∆=

− 1
2
‖∆‖2P , ∆̂0 =0, and (26), then (30) gives

Q̃1(∆) ∝ − 1
2
γ1

K∑
k=1

ζ1k(∆̂0)‖(y1 − yk)−∆‖2P −
1
2

(1−γ1)‖∆‖2P

∂

∂∆
Q̃1(∆) = γ1

K∑
k=1

ζ1k(∆̂0)P [(y1 − yk)−∆)]− (1−γ1)P∆

and therefore ∆̂1 =γ1
∑K

k=1
ζ1k(∆̂0)(y1 − yk). Similarly, for n=2

∂

∂∆
Q̃2(∆) = γ2

K∑
k=1

ζ2k(∆̂1)P [(y2 − yk)−∆)]

+ (1−γ1)

[
γ1

K∑
k=1

ζ1k(∆̂0)P [(y1 − yk)−∆)]− (1−γ1)P∆

]
which gives ∆̂2 =γ2

∑K

k=1
ζ2k(∆̂1)(y2 − y0

k) + (1−γ2)∆̂1.
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