Achievements and Prospects
of Program Synthesis

Pierre Flener

Information Technology, Department of Computing Science
Uppsala University, Box 337, S — 751 05 Uppsala, Sweden
http://www.csd.uu.se/~pierref/ pierref@csd.uu.se

Abstract. Program synthesis research aims at developing a program
that develops correct programs from specifications, with as much or as
little interaction as the specifier wants. I overview the main achievements
in deploying logic for program synthesis. I also outline the prospects of
such research, arguing that, while the technology scales up from toy
programs to real-life software and to commercially viable tools, compu-
tational logic will continue to be a driving force behind this progress.

1 Introduction

In his seminal book Logic for Problem Solving [53], Bob Kowalski introduced
the celebrated equation:

Algorithm = Logic + Control (A=L+0C)

expressing that for an algorithm, the statement of what it does — the logic
component — can be separated from the manner how it is done — the con-
trol component. Algorithms and programs in conventional languages feature a
merging of these components, whereas pure logic programs only express the logic
component, leaving the control component to the execution mechanism. In ac-
tual logic programming languages, such as PROLOG, some control directives can
be provided as annotations by the programmer. The logic component states only
the problem-specific part of an algorithm and determines only its correctness,
while the control component only expresses a problem-independent execution
strategy and determines only the efficiency of the algorithm.

Kowalski listed several advantages of this encapsulation, which is akin to the
abstraction achieved when separating the algorithm and data-structure compo-
nents of programs. These advantages include the following:

— The logic and control components of algorithms can be successively refined,
and improved, independently of each other.

— A default, and thus often sub-optimal, control can be provided for less experi-
enced programmers, who can thus focus their efforts on the logic component.



— The logic component of an algorithm can be mechanically generated from,
and verified against, a formal specification, using deduction, without consid-
ering the control component. Similarly, the logic component can be mechani-
cally transformed into another one, using deduction, without considering the
control component. One thus obtains what is known as program synthesis,
program wverification, and program transformation, respectively.

The objective of this chapter — whose title is by the way subsumed by the one of
Kowalski’s book — is to overview the main achievements in deploying logic for
program synthesis, and to outline its future prospects. As synthesis nowadays
starts scaling up from toy programs to real-life software and to commercially
viable tools, it can be argued that computational logic will continue to be a
driving force behind these developments.

Scope of this Chapter. In contrast to Kowalski’s intention, I here do not focus
on the synthesis of logic programs only, but rather take a wider approach and
tackle the synthesis of any kinds of programs. Indeed, the target language does
not really matter, but what does matter is the use of computational logic in
the synthesis process. Similarly, I shall not restrict myself to his advocated use
of deductive inference for synthesis, but will also discuss the role of inductive,
abductive, and analogical inference in synthesis.

Also, although there is a large overlap in concepts, notations, and techniques
between program synthesis and program transformation, verification, and anal-
ysis (which is the study of the semantics and properties of programs, such as
their termination), I here discuss concepts and techniques relevant to program
synthesis only — assuming it can be clearly delineated from those other areas
— and refer the reader to the prolific literature on these related research fields.

Having thus both widened and narrowed the scope of this chapter compared
to Kowalski’s original agenda, the literature to be overviewed is very voluminous
and thus cannot possibly be discussed in such a single, short chapter. I have
thus made a maybe subjective selection of the landmark research in program
synthesis, with particular attention to seminal work and to approaches that scale
up for eventual deployment in actual software development. For coverage of more
approaches, I thus refer the interested reader to the numerous overviews, surveys,
and paper collections periodically published before this one, such as those — in
chronological order — by Barr & Feigenbaum [3], Biermann et al. [14,15,12,13],
Partsch et al. [73,72], Smith [79], Balzer [2], IEEE TSE [70], Goldberg [41], Rich
& Waters [74, 75], Feather [30], Lowry et al. [60,61], Steier & Anderson [87], JSC
[16], Deville & Lau [27], and Flener [34, 37].

Organisation of this Chapter. The rest of this chapter is organised as fol-
lows. In Section 2, I describe my viewpoint on what program synthesis actually
is, and what it is not, especially in relation to other areas, such as compilation
and transformation. Classification criteria are also given. The technical core of
this chapter are Sections 3 to 5, where I overview past achievements of logic-



based program synthesis.! I devote one section each to the three main streams
of research, namely transformational (Section 3), constructive (Section 4), and
mixed-inference (Section 5) synthesis, exhibiting one or two representative sys-
tems for each of them, in terms of their underlying machineries, their actual syn-
thesis processes, and interesting excerpts of sample syntheses. From this sketch
of the state-of-the-art, I can then outline, in Section 6, the future prospects of
program synthesis, whether logic-based or not, especially in terms of the chal-
lenges it faces towards scaling up and eventual transfer of the technology to
commercial software development. Finally, in Section 7, I conclude.

2 What Is Program Synthesis?

I now describe my viewpoint on what program synthesis actually is, and what
it is not. In Section 2.1, I state the objective and rationale of program synthesis,
and contrast it with program transformation. Next, in Section 2.2, I propose
a classification scheme for synthesisers. Finally, in Section 2.3, I show that the
goalposts of synthesis have been moving very much over the years, and that
synthesis is in retrospect nothing else but compilation.

2.1 The Goal of Program Synthesis

The grand objective of program synthesis — also known as automatic program-
ming — research is to develop a program that develops correct programs from
specifications, with as much or as little interaction as the specifier wants. Nothing
in this formulation is meant to imply that the focus is on programming-in-the-
small. Synthesising real-life software only requires a scalable synthesis process.
Just like manual programming, synthesis is thus about translating a statement
from one language into another language, namely from the specification lan-
guage into the programming language, thereby switching from a statement of
what the program does and how it should be used to a statement of how the
program does it, hence ideally not only establishing correctness (the program
outputs satisfy the post-condition of the specification, provided the inputs meet
its pre-condition) but also achieving a reasonable level of efficiency (outputs are
computed within a reasonable amount of time and space).

The rationale for this objective is the notorious difficulty for most program-
mers of effectively developing correct and efficient programs, even when these
programs are small. The benefits of a synthesiser would be higher-quality pro-
grams and the disappearance of the program validation and maintenance steps,
and instead total focus on specification elaboration, validation, and maintenance,
because replay of program development would become less costly. Synthesis
would be especially useful in problem domains where there is a huge gap between

! Citations are not necessarily to the first paper on a specific approach, but to com-
prehensive papers that may have been published much later. In the latter case, I
indicate the year of the original paper in the running text.



the end-user formulation of a problem and an efficient program for solving it,
such as for constraint satisfaction problems, for instance.

The hope for synthesisers is as old as computing science itself, but it is often
dismissed as a dream. Indeed, we are way off a fully automatic, general-purpose,
end-user-oriented synthesiser [75], and pursuing one may well be illusory. Most
of the early synthesis projects aimed at starting from informal specifications. For
instance, the SAFE project [2] initially went to great efforts to do so, but eventu-
ally switched to defining GIST, a very-high-level formal language for conveying
formal descriptions of specifications. Nowadays, as a simplification, virtually all
synthesisers start from inputs in such formal languages. Another typical simplifi-
cation through division of work is to focus on the synthesis of the logic component
of programs, leaving the design of their data-structure and control components
to others. In this chapter, I focus on approaches to logic-based synthesis that
embody both of these usual simplifications.

A few words need to be said about the relationship between synthesis and
transformation. Whereas program synthesis is here defined as the translation of a
statement from a possibly informal specification description language into a pro-
gram in a necessarily formal programming language, with focus on correctness,
program transformation is here defined as the equivalence-preserving modifica-
tion of a program into another program of the same language, with focus on
achieving greater efficiency, in time or space or both. This makes transformation
different from synthesis in purpose, but complementary with it. In practice, they
share many concepts and techniques. Optimising transformation can be achieved
by changing any of the logic, control, or data-structure components of programs.
This raises many interesting issues:

— One can argue that synthesis and transformation should not be a sequence of
two separate but complementary tasks, because the correctness and efficiency
of algorithms are inevitably intertwined, even if separated in logic and control
components. But this division of work is appealing and has been useful.

— If only the text of a program enters transformation, then the rationale of its
synthesis steps is lost to the transformation and may have to be rediscovered,
in a costly way, in order to perform effective transformation. I am not aware
of any transformation approaches that take programming rationale as input.
In Kowalski’s words [53]: “Changing the logic component is a useful short-
term strategy, since the representation of the problem is generally easier
to change than the problem-solver. Changing the control component, on the
other hand, is a better long-term solution, since improving the problem-solver
improves its performance for many different problems.” A good example of
the effect of suitably changing control is the switch from logic programming
to constraint logic programming, thereby giving programs with a generate-
and-test logic component an often spectacular speedup. Such paradigm shifts
may well require a redefinition of what synthesis and transformation are.

No matter which way the purposes of synthesis and transformation are defined,
there is an unclear boundary between them, made even more confusing by other
considerations, examined in Section 2.3.



2.2 Classification Criteria

A huge variety of synthesis mechanisms exist, so I here propose a multi-dimensional
classification scheme for them. The criteria fall into three major categories,
grouping the attributes of the synthesis inputs, mechanisms, and outputs.

Synthesis Inputs. The input to synthesis is a specification of the informal
requirements. Sometimes, a domain theory stating the laws of the application
domain must also be provided. These inputs have the following attributes:

— Formality. An input to synthesis can be written in either an informal lan-
guage (whose syntax or semantics is not predefined), or a formal language
(whose syntax and semantics are predefined). The often encountered notion
of semi-formal language is strictly speaking meaningless: controlled natural
languages are formal, and UML and the likes are informal even though their
graphical parts may have a formal syntax and semantics.

— Language. When using a formal input language, a specification can be
either azioms, or input/output ezamples. Sometimes, the actual language is
disguised by a suitable graphical user interface, or it is sugared.

— Correctness wrt the Requirements. Informally, a statement S is correct
wrt another statement 7' iff S is consistent with T (everything that follows
from S also follows from T') as well as complete wrt T' (everything that
follows from T also follows from S). Input to synthesis is usually assumed to
be consistent with the requirements. On the other hand, the input is either
assumed to be complete or declared to be incomplete wrt the requirements. In
the former case, the synthesiser need only produce a program that is correct
wrt the input. In the latter case, the synthesiser must try to extrapolate the
actual complete requirements from the given input. In either case, actual
validation against the informal requirements is done by the programmer,
by changing the inputs to synthesis until the synthesised program has the
desired behaviour. As opposed to the external consistency and completeness
considered here, internal consistency and completeness are not classification
attributes, but rather quality criteria that may be mechanically checked
before synthesis begins: a statement S is internally consistent iff S has at
least one model, and internally complete iff every symbol in S is either
primitive to the language used or defined within S.

Synthesis Mechanisms. The mechanisms of program synthesis can also be
classified along a few dimensions:

— Level of Automation. Having by definition excluded manual program-
ming, synthesis is either semi-automatic or fully automatic.

— Initiative. In semi-automatic synthesis, the initiative in the interaction can
be on either side, making the mechanism synthesiser-guided or user-guided.

— Kinds of Inference. There are many kinds of inference and they can all be
used, and combined, towards synthesis. I here distinguish between purely-
deductive synthesis, which performs only deductive inference and is either



transformational (see Section 3) or constructive (see Section 4), and mized-
inference synthesis, which features any appropriate mix of deductive, induc-
tive, abductive, and analogical inference (see Section 5).

— Kinds of Knowledge. There is a great need for incorporating knowledge
into program synthesisers. There are essentially four kinds of useful syn-
thesis knowledge, namely knowledge about the mechanics of algorithm de-
sign, knowledge about the laws and refinement of data structures, knowledge
about the laws of the application domain (this was called the domain theory
above), and meta-knowledge, that is knowledge about how and when to use
the other kinds of knowledge.

— Determinism. A non-deterministic synthesiser can generate a family of
programs from a specification; otherwise, it is a deterministic synthesiser.

— Soundness. Synthesis should be a sound process, in the sense that it pro-
duces an output that is guaranteed to satisfy some pre-determined notion of
correctness wrt the input.

Synthesis Outputs. The output of synthesis is a program, and usually only
the logic component of its algorithm. The classification attribute is:

— Language. Technically, the synthesised program can be in any language,
because any code can be generated from the chosen internal representation.
In practice, the pure parts of the so-called declarative languages are usually
chosen as internal and external representation of programs, because they are
the highest-level languages compiled today and thus sufficient to make the
point. Common target languages thus are Horn clauses, recursion equations,
A-expressions, etc.

These classification attributes are not independent: choices made for one of
them affect the available choices for the others.

2.3 The Moving Goalposts of Program Synthesis

The first assemblers and compilers were seen as automatic programming sys-
tems, as they relieved the programmers from many of the burdens of binary
programming. Ever since, program synthesis research has been trying to be one
step ahead of the state-of-the-art in programming languages, but, in retrospect,
it is nothing else but the quest for new programming paradigms. To paraphrase
Tesler’s sentence, which was originally on Artificial Intelligence: Program syn-
thesis deals with whatever has not been compiled yet. Of course, as our notion
of program evolves, our understanding of compilation has to evolve as well: it is
not because today’s compilers are largely deterministic and automatic that to-
morrow’s compilers, that is today’s synthesisers, are not allowed to have search
spaces or to be semi-automatic.

The main problem with formal inputs to program synthesis is that there is
no way to construct them so that we have a formal proof that they capture our
informal requirements. In fact, the phrase ‘formal specification’ is a contradiction
in terms, as real specifications can only be informal [57]. An informal correctness



proof is needed somewhere, as the purpose of software engineering is after all
to obtain programs that implement our informal requirements. Writing such
formal inputs just shifts the obligation of performing an informal proof from the
program-vs-informal-requirements verification to the formal-inputs-vs-informal-
requirements verification, but it does not eliminate that obligation.

In my opinion, programs and such formal inputs to synthesis are intrinsically
the same thing. As synthesis research aims at raising the level of language in
which we can interact with the computer, compilation and synthesis are intrin-
sically the same process. In other words, real programming and synthesis are
only being done when going from informal requirements to a formal description,
which is then submitted to a compiler. In this sense, focusing synthesis on start-
ing from formal statements is not really a simplification, as claimed above, but
rather a redefinition of the task, making it identical to compilation.

I am not saying that formal methods are useless. Of course it is important
to be able to check whether a formal description is internally consistent and
complete, and to generate prototypes from executable descriptions, because all
this allows early error detection. But one cannot say that such formal descriptions
are specifications, and one still knows nothing about whether they are externally
consistent and complete, namely wrt the informal requirements. Formal inputs
to program synthesis are already programs, though not in a conventional sense.
But conventions change in time, and the so-called “formal specifications” of
today will be perceived as programs tomorrow.

In order to stick to the contemporary terminology and make this chapter in-
dependent of agreement or disagreement on this sub-section, I shall nevertheless
speak of formal specifications (without the quotes) in the following.

3 Achievements of Transformational Synthesis

In transformational synthesis, meaning-preserving transformation rules are ap-
plied to the specification, until a program is obtained. Usually, this is done within
a so-called wide-spectrum language — such as B, GIST, VDM, Z — containing both
non-executable specification constructs and executable programming constructs.
I shall use the word ‘description’ to designate the software representations in such
a language, be they formal specifications, programs, or hybrids in-between these
two extremes.

Given a logic specification of the following form, where there is no prejudice
about which parameters are inputs and which ones are outputs, at run-time:

VP .pre(P) — ( p(P) < post(P) )

where pre is the pre-condition (an assertion on all the parameters P, assumed
to hold when execution of a program for p starts), post is the post-condition (an
assertion on the parameters P, to be established after execution of a program
for p), and p is the specified predicate symbol, transformational synthesis iter-
ates over a single step, namely the application of a transformation rule to some
expression within the current description, until a program is obtained.



Transformation rules, or transforms, are often represented as rewrite rules
with pattern variables:
IP = OP [if C]

expressing that under the optional applicability condition C', an expression match-
ing input pattern IP under some substitution # may be replaced by the instance
OP# of the output pattern OP.

Transforms are either refinements, reducing the abstraction level of the cur-
rent description by replacing a specification construct by a program construct,
or optimisations, performing a simplification (reduction in expression size) or a
reduction in runtime or space, both at the same abstraction level. Refinements
can act on statements or datatype definitions, reducing non-determinism.

A sample refinement is the following unconditional transform of a high-level
non-recursive array summation into a recursive expression:

§ =2 Alil

=
(A Lu,S)—1>u,S=0 % Y(A,l,u,S)iff Sis the sum of A[l]..Alu]
YA Lu,S) > u,+(1,1,0), (AU, u,T),+(Al], T, S)

Sample optimisations are the following conditional transform for divisions:
zfr=1 ifc#0

and the following accumulator introduction, which amounts to replacing recur-
sion in the non-minimal case of a divide (d) and conquer (c¢) definition of predi-
cate p by tail-recursion — with the minimal (m) case being solved (s) without
recursion — as this can be compiled into more efficient code, like iteration:

p(X,Y) & m(X),s(X,Y)

p(X, Y) A _'m(X)7 d(X7 H, T)ap(Ta V)7 C(Ha v, Y)
=

p(X,Y) < p(X, Y, I)

(X, Y, A) « m(X),s(X,]),c(A,JY)

p(X7 Y7 A) <_ _|m(X)7 d(X7 H7 T)7 C(A7 H7 A,)7p(T7 Y7 A,)
if associative(c) A identity(c, left, I)

The latter transform is applicable to the output of the refinement above, because
+/3 is associative and has a left-identity element, namely 0. This illustrates how
transforms can be chained. Of course, the refinement above could immediately
have reflected such a chaining.

Other common transforms are unfolding (replacing a symbol by its defini-
tion), folding (the inverse of unfolding), definition (introduction of a new symbol
via its definition), instantiation (application of a substitution), abstraction (in-
troduction of a where clause, in functional programming), or reflect the laws of
the application domain.

Several control issues arise in the rewrite cycle, because the synthesis search
space is usually intractable due to the sheer number of transforms. First, who



checks the applicability condition? Usually, this is considered a synthesiser re-
sponsibility, and thus becomes a task for an automatic theorem proving com-
ponent thereof. Second, which transform should be applied next, and to which
expression? Usually, full automation is abandoned in favour of user-guided in-
teractive application of transforms, with the synthesiser automatically ensuring
that applicability conditions are met, as well as correctly applying the chosen
transform to the chosen expression, thus taking over all clerical work. Other ap-
proaches are based on rule ordering, heuristics, agendas, planning, replay, etc.
Third, when to stop transforming? Indeed, many transforms can also be ap-
plied during program transformation (as defined in Section 2.1), hence blurring
the transition and distinction between synthesis and transformation. Usually,
one considers that synthesis per se has finished when the current description
is entirely within the executable part of the wide-spectrum language, so that
synthesis is here defined as the translation from the full wide-spectrum language
into its executable subset.

When transforms are too fine-grained, they lead to very tedious and lengthy
syntheses. The idea is thus to define macroscopic transforms that are higher-
level in the sense that they are closer to actual programming decisions and that
they are compositions of such atomic transforms. Examples are finite differ-
encing (replacing expensive computations in a loop by incremental ones), loop
fusion (merging of nested or sequentially-composed loops into one loop), partial
evaluation (simplifying expressions for fixed arguments), generalisation (solving
a more general, easier problem), dynamic programming, memoing (caching re-
sults of computations to avoid useless recomputations), jittering (preparing the
application of other transforms).

To document a synthesis and ease its understanding, the applied sequence
of transforms is usually recorded, ideally with the rationale of their usage. This
also allows replay, though it remains unclear when this is suitable and when not.

I now discuss an entire product-line of representative transformational syn-
thesisers, chosen because of the objective of scaling the technology to real-life
software development tasks. Indeed, KIDS and its successors (see Section 3.1)
have been successfully deployed in many real-life applications. In Section 3.2, I
outline the efforts of the other research centres in transformational synthesis.

3.1 SPECWARE, DESIGNWARE, and PLANWARE

At Kestrel Institute (Palo Alto, California, USA, www.kestrel.edu), Smith and
his team have been designing, for over 15 years now, a series of synthesisers, all
with the same philosophy, which is specific to them (see below). Their Kestrel
Interactive Development System (KIDS) [81] extends its predecessor CYPRESS [80]
and automatically synthesises correct programs within the wide-spectrum lan-
guage REFINE, while leaving their transformation to a user-guided rewrite cycle.
I here describe the systems of their product-line — SPECWARE (for Specifica-
tion Ware) [86], DESIGNWARE [84], and PLANWARE [18] — as well as how they
relate to each other. They amount to more than just recasting, as described in
[83], the synthesis and transformation calculus of KIDS in category theory.



The overall Kestrel philosophy is as follows. Consider, for instance, pro-
grams that solve constraint satisfaction problems (CSPs) by exploring the entire
candidate-solution space, though with pruning of useless subspaces. They have a
common structure, called global search, of which the dataflow, control-flow, and
interactions between parts can be formally captured in a program schema. Sim-
ilarly, other program schemas can be designed for capturing the methodologies
leading to local search programs, divide-and-conquer programs, etc. Such pro-
gram schemas can then be used in synthesis to significantly reduce the candidate-
program space. Some proof obligations arise in such schema-guided synthesis, but
they are feasible by state-of-the-art automated theorem provers. The synthesised
programs are not very efficient, though, since they are just problem-specific in-
stances of program schemas that had been designed for entire problem families,
but without being able to take into account the specificities of their individual
problems. The synthesised programs can thus be transformed into equivalent
but more efficient ones by applying high-level transforms, in a user-guided way.
However, this transformation cycle also became the bottleneck of KIDS, because
the user really has to be an expert in applying these transforms in a suitable
order and to the appropriate sub-expressions. Moreover, the proof obligations
of synthesis are only automatable if the entire application domain knowledge is
formally captured, which is an often daunting task. Smith used KIDS to rather
quickly refine new, breakthrough algorithms for various CSPs [82].

The inputs to synthesis are a formal axiomatic higher-order algebraic spec-
ification, assumed to be consistent and complete wrt the requirements, and a
domain theory. The synthesis mechanism is purely deductive, interactive or au-
tomatic (depending on the system), non-deterministic, and sound. Algorithm
design, data structure, and application domain knowledge are exploited. The
output is a program in any supported language (e.g., COMMONLISP, C++).

The Transformation System. A category-theory approach to transformation
is taken. Viewing specifications as finite presentations of theories, which are the
closures of the specification axioms under the rules of inference, a specification
morphism S — S’ is a provability-preserving signature morphism between spec-
ifications S and S’, that is a map between their sort and operator symbols, such
that axioms translate into theorems.?

For instance, consider the specification of finite containers in Figure 1. It is
parameterised on the sort E of the container elements. Containers are either
empty, or singletons, or constructed by an infix binary join operator.

Also consider the following specification of binary operators:

spec BinOp is

sort T'
op_bop_: T, T —T
end

2 For typographic reasons, the ‘=’ symbol is thus overloaded, being used for both
morphisms and logical implication. The distinction should always be clear from
context. Under its morphism meaning, this symbol will be typeset here in other
directions of the wind rose, to facilitate the representation of graphs of morphisms.



spec Container is
sorts E,Cont
op empty : — Cont
op singleton : E — Cont
op - join _: Cont,Cont — Cont
. other operator declarations ...
ops {empty, singleton, join} construct Cont
axiom VX : Cont. X join empty = X
axiom VX : Cont. empty join X = X
. axioms for the other operators ...
end

Fig. 1. A specification of finite containers

spec ProtoSeq is
sorts E, Seq
op empty: — Seq
op singleton : E — Seq
op _ join _: Seq,Seq — Seq
. other operator declarations ...
ops {empty, singleton, join} construct Seq
axiom VX : Seq. X join empty = X
axiom VX : Seq. empty join X = X
axiom VXY, Z:T. (X join Y) join Z = X join (Y join Z)
. axioms for the other operators ...
end

Fig. 2. A specification of finite sequences

The following specification of associative operators reflects the specification mor-
phism BinOp — Associative, which is {T' — T, bop — bop}:

spec Associative is

import BinOp

axiom VX, Y, Z:T. (X bop Y) bop Z = X bop (Y bop Z)
end

Specifications and specification morphisms form a category, called SPEC, in
which push-outs can be computed. Informally, a diagram is a directed graph
with specifications as vertices and specification morphisms as arcs.

For instance, the push-out of Associative < BinOp — Container under
morphisms {T" — T, bop — bop} and {T — E, bop — join} is isomor-
phic to the specification of prototype finite sequences in Figure 2. Indeed, se-
quences are containers whose join operation is associative. By another mor-
phism, sequence-specific operators can be added to ProtoSeq, giving rise to a
specification Sequence of finite sequences. By another push-out Commutative <
BinOp — ProtoSeq, we can get a specification ProtoBag of prototype finite
bags, to which bag-specific operators can be added, giving rise to a specification



BinOp — Container Container

1 1 1
Associative — ProtoSeq <+ BinOp ProtoSeq

1 1 e i
BinOp — ProtoBag < Commutative Sequence  ProtoBag

\a \a v i
Idempotent — ProtoSet Bag ProtoSet

e
Set

Fig. 3. A chain of commuting diagrams (left) and a taxonomy of containers (right)

Bag of finite bags. Indeed, bags are sequences whose join operation is com-
mutative, because element order is irrelevant. Finally, by yet another push-out
Idempotent < BinOp — ProtoBag, we can obtain a specification ProtoSet of
prototype finite sets, to which set-specific operators can be added, giving rise to
a specification Set of finite sets. Indeed, sets are bags whose join operation is
idempotent, because multiplicity of elements is irrelevant. This process can be
captured in the chain of three commuting diagrams of the left of Figure 3. If
we graphically add the considered additional morphisms to the central vertical
chain, we obtain the tazonomy of containers in the right of Figure 3.

A diagram morphism D = D' is a set of specification morphisms between
the specifications of diagrams D and D’ such that certain squares commute.
It serves to preserve and extend the structure of specifications, as opposed to
flattening them out via co-limits. For instance, a not shown diagram morphism
BAG = BAGasSE(Q can be created to capture the refinement of bags into
sequences, where BAG and BAGasSEQ are diagrams involving specifications
Bag and Sequence, respectively. Diagrams and diagram morphisms also form a
category, in which co-limits can be computed, using the co-limits in SPEC. The
word ‘specification’ here denotes either a specification or a specification diagram,
and ‘refinement’ refers to a diagram morphism, unless otherwise noted.

In general now, specifications — as theory representations — can capture do-
main models (e.g., transportation), abstract datatypes (e.g., BAG), software re-
quirements (e.g., crew scheduling), algorithm theories (e.g., divide-and-conquer),
etc. Tool support and a large library of reusable specifications are provided for
structuring and composing new specifications. Also, specification morphisms and
diagram morphisms can capture specification structuring (e.g., via imports),
specification refinement (e.g., scheduling to transportation-scheduling), algo-
rithm design (e.g., global-search to scheduling), datatype refinement (e.g., BAG =
BAGasSEQ), expression optimisation (e.g., finite differencing), etc. Again, tool
support is provided for creating new refinements, and a large library of useful
refinements exists.

Finally, inter-logic morphisms are provided for translating from the speci-
fication logic into the logic of a programming language — thereby performing
code generation — or of a theorem-prover or any other supporting tool.



A = Speco

4 4
B = Spec; <= C
4 4
E = Speca < D
4 4
4 4
Spec, <= Z
l
Code

Fig. 4. The synthesis process

The Synthesis Process. The refinement of a specification Specy is an iterative
process of calculating push-outs in commuting squares, yielding new specifica-
tions Spec;, until the process is deemed finished and an inter-logic morphism is
used to generate a program Code from the final specification Spec,. This pro-
cess is depicted in Figure 4. Here, A = B, C' = D, etc, are refinements stored
in a library. With push-outs being calculated automatically, the creative steps
are the selection of a refinement and the construction of a classification arrow
[83,84] between the source diagram (A, C, etc) of a library refinement and the
current specification. The leverage can be quite dramatic, with push-outs often
generating many new lines, which might have been quite cumbersome, if not
difficult, to write by hand.

As the size and complexity of specification and refinement libraries increase,
support must be given for this approach to scale up. First, specification libraries
are organised in taxonomies, such as Figure 3 above, so as to allow the in-
cremental construction of classification arrows [84]. For instance, to apply the
BAG = BAGasSEQ refinement to the current specification S, one can first clas-
sify S as a C'ontainer, then as a ProtoSeq, next as a ProtoBag, then as a Bag,
and finally as a BAG, rather than classifying S as a BAG in one go. The deeper
one goes into a taxonomy, the more specification information can be exploited
and the more efficient the resulting code. Second, as patterns of useful classifica-
tion and refinement sequences emerge, parameterised macros, called tactics, can
be defined to provide higher-level, if not more automatic, operations to the user.
For instance, the divide-and-conquer algorithm theory admits two classification
tactics, depending on whether the decomposition or the composition operator is
manually selected from a library, and thus reused, in a classification step, leaving
the other operator to be inferred.

SPECWARE [86] is an abstract machine exporting high-level synthesis and
transformation primitives that hide their low-level implementation in terms
of category theory operations. Using it, one can more quickly write new syn-
thesisers. First, a new version of KIDS was implemented, called DESIGNWARE
[84], extending SPECWARE with domain-independent taxonomies of software de-
sign theories plus support for refining specifications using the latter. Then, on



top of DESIGNWARE, the PLANWARE [18] domain-specific synthesiser of high-
performance schedulers was developed. Both its synthesis and transformation
processes are fully automatic, and it even automatically generates the formal
specification and application domain knowledge — which are typically thou-
sands of lines — from the information provided by the specifier, who uses a very
intuitive domain-specific spreadsheet-like interface, without being aware of the
underlying category theory. PLANWARE extends DESIGNWARE with libraries of
design theories and refinements about scheduling, together with a specialised tac-
tic for controlling the application of this design knowledge. Other domain-specific
synthesisers are in preparation, and will also be built on top of DESIGNWARE.

A Sample Synthesis. A synthesis of a function sorting that sorts bags into
sequences may start from the following specification:

spec Sorting is
import BagSeqOverLinOrd
op sorted : Bag, Seq — Boolean
def sorted(X,Y) = ord(Y') A seqToBag(Y) = X
op sorting : Bag — Seq
axiom sorted(X, sorting(X))
end

where sorted is used to express the post-condition on sorting. Universal quan-
tification consistent with the signature declarations is assumed for unquantified
variables. Suppose the specifier wants to apply a divide-and-conquer algorithm
design, as embodied in the refinement DivCong = DivCongScheme, where the
source specification is in Figure 5. Here, a function F' from domain D into range
R is specified, with post-condition O. Three mutually exclusive predicates p;
(for i = 0..2) are defined over D, representing conditions for the existence of
decompositions, computed under post-conditions Op; (for i = 0..2), with Ops
enforcing that its decompositions are smaller than the given term, under well-
founded relation <. Soundness axioms require that the decompositions can be
composed, under post-conditions O¢; (for i = 0..2), to achieve the overall post-
condition O. The target specification of the refinement is in Figure 6. where
a schematic definition of the specified function F' is introduced, together with
composition operators C; whose post-conditions are O¢;.

Now, to apply the DivCong = DivCongScheme refinement, a classification
arrow Sorting = DivCong has to be manually constructed, so that the corre-
sponding push-out can be automatically calculated. The first part of the neces-
sary diagram morphism is straightforward, namely {D — Bag, R — Seq, F —
sorting, O + sorted, < > subBag, ...}. The remaining part gives rise
to dual alternatives, which can be captured in tactics, as discussed above: ei-
ther a set of simple standard decomposition operators is reused from a library
and the corresponding complex composition operators are inferred, or a set of
simple standard composition operators is reused and the corresponding com-
plex decomposition operators are inferred. Following the first approach, the bag
constructor set {emptyBag, singletonBag, bagUnion} could be reused as the ba-



spec DivCong is
sorts D, R, E, Unit
opF: D—R
op O: D,R — Boolean
op -<_: D;D — Boolean
axiom well Founded(<)
op po,p1,p2 . D — Boolean
op Opo : D,Unit — Boolean
op Op1: D,E — Boolean
op Op2: D,D,D — Boolean
op Oco : R,Unit — Boolean
op Oc1: R,E — Boolean
op Oc2: R,R,R — Boolean
axiom po(X) = Opo(X, ()
axiom p;(X) - 3IM : E. Op1(X, M)
axiom pg(X) — Ein,Xz . D. OD2(X,X1,X2) AX1 < XAXs <X
axiom Opo (X, (}) A Oco(Y,()) = O(X,Y)
axiom ODl(X, M) A Ool(Y, M) — O(X, Y)
axiom OD2(X7 Xl, Xg) A O(){l7 Yl) A O(XQ, Yz) A OC2(Y7 Yl, Yg) — O(X, Y)
axiom po(X) zor p1(X) zor p2(X)
end

Fig. 5. Specification of problems that have divide-and-conquer programs

sis for decomposition, giving rise to {..., po — emptyBag?, Opg > AX . X =
emptyBag, p1 — singletonBag?, Op1 — AX, M . X = singletonBag(M), ps —
nonSingletonBag?, Ops — AX, X1, Xo. X = bagUnion(X1, X5), ...}. By de-
ductive inference, the remaining part of the morphism can be obtained, yielding
translations to empty sequence construction, singleton sequence construction,
and sequence merging for O¢g, Oc1, and O¢o, respectively, ultimately leading
thus to a merge-sort algorithm. Under the second approach, the sequence con-
structor set {emptySeq, singletonSeq, seqConcat} could be reused as the basis
for composition, ultimately leading to a quick-sort algorithm.

Either way, after calculating the push-out, synthesis could continue by using
the BAG = BAGasSEQ datatype refinement, followed by simplification refine-
ments, etc, progressively bringing the specification closer to a programming level,
until a code-generating inter-logic morphism for translating the definition of F’
into a functional program can be applied.

3.2 Other Schools

Transformational synthesis is by far the dominant approach to program synthe-
sis, and many dozens of projects have been devoted to it, so I can here only
mention the seminal and dominant ones.

At the University of Edinburgh (UK), Burstall & Darlington [22,25] pro-
posed a small, fixed set of domain-independent, low-granularity, and rather



spec DivCongScheme is
import DivCong
opCo: —R
axiom Oco(Co, ())
opCi: E— R
axiom Oc¢1(C1 (M), M)
opCs: RRR— R
axiom OC2(C2(X1,X2),X1,X2)
definition of F' is
axiom po(X) = Opo(X,{})) A F(X) = Co
axiom pl(X) —dM : FE. ODl(X,M) /\F(X) = Cl(M)
axiom pz(X) — 3X1,X2 :D. Opz(X, Xl,Xz) A F(X) = Cz(F(Xl),F(Xz))
end
theorem O(X, F (X))
end

Fig. 6. Specification of divide-and-conquer programs

optimisation-oriented transforms (namely folding, unfolding, definition, instan-
tiation, and abstraction) for the synthesis and transformation of recursion equa-
tions. Laws of the application domain can also be used. They presented a strategy
and a semi-automated system for transforming recursive equations, say into tail-
recursive ones, with the user making the creative decisions. For synthesis, the
objective of applying such transforms often is to construct, through unfolding
and other rewriting, a description where recursion may be introduced through
folding. The atomic transforms are proven to constitute a correct set for explor-
ing the candidate program space.

At Stanford University (California, USA), at the same time, but indepen-
dently, Manna & Waldinger [63] discovered the same atomic rules and automati-
cally synthesised L1SP programs with their DEDuctive A Lgorithm Ur-Synthesiser
(DEDALUS). The system has over 100 rules, and also generates correctness and
termination proofs. See Section 4.1 for a detailed discussion of a redesign of
DEDALUS as a constructive synthesiser.

In the UK, much of the early efforts on the synthesis of logic programs were
conducted, based on the foundational fold/unfold work mentioned above. Un-
der a first approach, Clark et al. [23] execute the specification with symbolic
values that cover all possible forms of the type of the chosen induction param-
eter. For instance, if that parameter is a list, then the empty and non-empty
lists are considered. A similar approach was taken by Hogger [49], though with
slight differences. Induction on some parameter was only introduced as the need
arises. A highly structured top-down strategy for applying folding and unfolding,
guided by a recursion schema provided by the specifier, as well as the notion of
specification framework for synthesis, were proposed by Lau et al. [55,56]. This
approach is amenable to mechanisation. Specification frameworks enabled a first-
order logic reconstruction of Kips-like schema-guided synthesis [36, 35, 38].



Several researchers tried to make synthesis a deterministic process, akin to
compilation. For instance, implication formulas with arbitrary bodies may be
normalised into normal clauses by the Lloyd-Topor translation [59]. However,
this does not always yield useful logic programs, due to the deficiencies of SLDNF
resolution, such as floundering. Also, the obtained programs are sometimes hope-
lessly inefficient. Overcoming these flaws is the objective of program transfor-
mation. Another approach was taken by Sato & Tamaki’s first-order compiler
[77], whose synthesis of partially correct definite programs is fully automatic and
deterministic, but may fail, for lack of logical power.

At TU Munich and TU Darmstadt (Germany), Bibel leads synthesis projects
since 1974. Their LOPS (LOgical Program Synthesis) system [8-10], although pre-
sented as being a constructive synthesiser, was actually transformational. Syn-
thesis consisted of a four-phased application of heuristics that control special
transformations. A novel feature is the breaking of inputs into parts so as to
discover in what way they contribute to the construction of the outputs; in this
way, loops can be discovered without the need for recursively-expressed back-
ground axioms, which would be essentially identical to the synthesised programs.
The current MAPS project [11] takes a multi-level approach to synthesis, and is
essentially a re-implementation of KIDS within NUPRL, but without optimising
transformations yet.

At Stanford University (California, USA), the PsI project led by Green [45]
included the transformational engine PECOS [4], which is based on a large, fixed
catalog of domain-specific transforms. Cooperation with an efficiency expert,
called LIBRA [52], ensured efficient synthesis of efficient programs. A successor
system, called CHI [46], was partly developed at Kestrel Institute.

At the University of Southern California (USA), the 15-year-project SAFE/TI
(Specification Acquisition From Experts, and Transformational Implementation)
headed by Balzer [2] provided a fixed catalog of domain-specific transforms for
refining specifications within the wide-spectrum language GIST, via a knowledge-
based approach. Automation issues were tackled by the GLITTER sub-system [31].

At TU Munich (Germany), the long-term cip (Computer-aided Intuition-
guided Programming) project of Bauer and co-workers [6,72] led, since 1975,
to the wide-spectrum algebraic specification language Cip-L and the interac-
tive environment CIP-S. The main emphasis was on a user-extensible catalog of
transforms, starting from a small set of generative rules.

The Vienna Development Method (VvDM) by Bjgrner & Jones [17] is an ISO-
standardised comprehensive software development methodology, proceeding by
refinement from formal specifications of abstract datatypes in the META-1v wide-
spectrum language. Many tools are available, from different sources, but they
are not integrated. See www.csr.ncl.ac.uk/vdm for more details.

From Oxford University (UK) comes z [85], a very successful and soon-to-be-
ISO-standardised notation for formal specifications, based on set theory. There
is third-party tool support, though not integrated, on top of the HOL theorem
prover. Award-winning applications include the IBM CICS project and a specifi-
cation of the IEEE standard for floating-point arithmetic. See www.afm.sbu.ac.uk/z.



The B formal method was developed by Abrial [1]. A first-order logic spec-
ification language with sets is provided to specify and refine systems that are
modelled as abstract machines. Tool support for refinement and discharging
many of its proof obligations exists. See www.afm.sbu.ac.uk/b.

At the University of California at San Diego (USA), the 0BJ language fam-
ily of Goguen and his team [40] provides wide-spectrum algebraic languages,
based on order-sorted equational logic, possibly enriched with other logics. Tool
support for refinement exists. See www.cs.ucsd.edu/users/goguen/sys/obj.html.

At the Universities of Edinburgh (UK) and Warsaw (Poland), Sannella &
Tarlecki [78] propose EXTENDEDML as a wide-spectrum language for specifica-
tion and formal development of STANDARDML programs, through refinement.
See www.dcs.ed.ac.uk/home/dts/eml.

4 Achievements of Constructive Synthesis

Constructive synthesis — also known as proofs-as-programs synthesis, and, a
bit misleadingly, as deductive synthesis — is based on the Curry-Howard iso-
morphism [50], which says that there is a one-to-one relationship between a
constructive proof [7,68] of an existence theorem and a program that computes
witnesses of the existentially quantified variables of the theorem. Indeed, the use
of induction in proofs corresponds to the use of recursive or iterative composition
in programs, while case analysis corresponds to a conditional composition, and
lemma invocation to a procedure call.
Assume given a logic specification of the following form:

VX .3Y . pre(X) — post(X,Y) (1)

where pre is the pre-condition (an assertion on the input parameters X, assumed
to hold when execution of the program starts), and post is the post-condition (an
assertion on X and the output parameters Y, to be established after execution of
the program). Note that this specification form naturally leads to the synthesis
of total functions, but not of relations. A solution to this is to view relations as
functions into Booleans [20]. Constructive synthesis proceeds in two steps:

1. Constructively prove the satisfiability of the specification.
2. Obtain the procedure, embodied in the proof, of realising the specification.

For the second step, there are two approaches:

— The interpretative approach directly interprets the proof as a program, by
means of an operational semantics defined on proofs.

— The extractive approach mechanically extracts — or: compiles — a program,
in a given target language, from the proof.

The two approaches have complementary advantages and drawbacks: interpre-
tation is not as efficient as the execution of a compiled version, but the choice
of a target language might obscure computational properties of proofs.



The idea of exploiting constructive proofs as programs is actually way older
than its naming as the Curry-Howard isomorphism in 1980: the idea is inherent
to intuitionistic logic — see the work of Kleene in the 1940s — and the oldest
synthesisers of this approach are QA3 (Question-Answering system) by Green
[44], and PROW (PROgram Writer) by Waldinger & Lee [90], both from the
late 1960s. The terminology ‘proofs-as-programs’ seems to have been coined by
Constable in the early 1970s, according to [5].

The bottleneck is of course the state-of-the-art in automated theorem prov-
ing (ATP). In essence, the hard problem of synthesis has been translated into
the other hard — if not harder! — problem of ATP. The proof space for most
conjectures is indeed intractable, and formal specifications tend to be quite com-
plex conjectures. Solutions are thus being worked out to control the navigation
through this search space, namely synthesisers with reuse, interactive provers,
tactical provers, etc.

I here discuss two representative constructive synthesisers, chosen due to
their interesting relationship to each other. Indeed, AMPHION (see Section 4.2)
can be seen as an outgrowth of DEDALUS (see Section 4.1), with the objective
of scaling the technology to real-life software development tasks, and this was
the decisive criterion in my selection. In Section 4.3, I outline the efforts of the
other main research centres in constructive synthesis.

4.1 DEDALUS

The DEDuctive ALgorithm Ur-Synthesiser (DEDALUS) system of Manna & Waldinger
(at Stanford and SRI, California, USA) was originally developed as a trans-
formational synthesiser [63] (see Section 3.2), and then re-designed within the
proofs-as-programs paradigm, in a considerably more elegant manner [64,67].

The inputs to synthesis are a formal axiomatic first-order logic specification,
assumed to be consistent and complete wrt the requirements, as well as a domain
theory. The synthesis mechanism is purely deductive and fully automatable,
but an interactive interface with user guidance exists. Only application domain
knowledge is exploited. Synthesis is non-deterministic and sound. The outputs of
synthesis are a side-effect-free applicative program, as well as implicitly a proof
of its correctness and termination.

The Proof System. Constructive logics are not necessarily required for all of a
constructive synthesis. Indeed, many derivation steps during synthesis actually
are only verification steps, and need thus not be constructive at all. Classical
logic is thus sufficient, provided it is sufficiently constructive when needed.
Their deductive tableau proof system was developed especially for proofs-
as-program synthesis. A deductive tableau is a two-dimensional structure, where
each row is a sentence of the form (a, —,0) or (—, g, 0), where a is an assertion
and g a goal, both in classical first-order logic, while o is an optional output
term in LISP. The symbol ‘—’ denotes the absence of an entry in that column,
and is equivalent to true for assertions, false for goals, and any new variable
for output terms. For simplicity, [ assume there is only one output parameter in



specifications. For instance,
(- MeSANVMX.XeS—>M<LX),M)

is a sentence capturing a pre-condition-free specification of the minimum(S)
function, which returns the minimum element M of integer-set S.

The semantics of a sentence (a,g,0), in an interpretation Z, is the set of
closed terms t that, for some substitution #, are equal to instance of of the
output term, if any, and either the instance af of the assertion, if any, is closed
and false or the instance g of the goal, if any, is closed and true, in 7.

The semantics of a tableau is the union of the semantics of its sentences.
There is thus an implicit conjunction between the assertions of a tableau, and
an implicit disjunction between its goals. Note the dual role of assertions and
goals: a formula can be transferred between the assertions and goals columns by
negating it. Nevertheless, the distinction between assertions and goals provides
intuitive and strategic power, and is thus kept.

A set of deduction rules is provided to add new sentences to a tableau, not
necessarily in an equivalent way, but at least preserving the set of computable
expressions (which are quantifier-free expressions in terms of the basic functions
of the theory, plus the functions for which programs have already been synthe-
sised, including the function for which a program is currently being synthesised,
as this enables recursion formation). Hence the program denoted by a tableau
remains unchanged through application of these rules. Each user-provided new
rule needs to be first proven sound according to this precept.

A deduction rule has a set of required sentences in the old tableau, represent-
ing the applicability condition of the rule, and a set of generated sentences in
the new tableau, representing the difference between the old and new tableaus.

For instance, the if-split rule breaks required sentence (—,if a then g,t) into
the generated sentences (a, —,t) and (—, g, ). There are dual splitting rules.

Conditional output terms are normally introduced by four non-clausal reso-
lution rules, reflecting case analysis in informal proofs. For instance, the goal-goal
resolution rule is as follows:

<_7gl[p]7s> <_792[Q]7t>
(—, q10[false] A g20[true], if pf then 0 else sb) (GG)

where, assuming the required sentences are standardised apart, 8 is the most-
general unifier for formulas p and ¢. See below for an example. Similarly, there
are the dual assertion-assertion (AA), goal-assertion (GA), and assertion-goal
(AG) resolution rules.

There are also rules for equivalence (replacing a formula by an equivalent
one), theory-independent equality (replacing a term by an equal one, using a
non-clausal version of paramodulation), skolemisation (eliminating existential
quantifiers), and well-founded induction (allowing formation of terminating re-
cursion in the output term, when the induction hypothesis is actually used).

The Synthesis Process. Synthesis goes as follows, starting from a specification
of the form (1), for a function f, in a theory T



1. Form the initial tableau, with the sentence (—,pre(X) — post(X,Y),Y)
built from the specification, and assertion-only sentences for the axioms of
T. Add f to the set of functions of 7 and those already synthesised in 7.

2. Apply deduction rules to add new sentences to the tableau.

3. Stop with the final tableau when a sentence of the form (false, —,t) or
(—,true,t) appears, where t is a computable expression.

The extracted program then is the function definition f(X) = ¢[X]. It is correct
wrt specification (1) in the sense that the formula VX . pre(X) — post(X, f(X))
is valid in theory 7 augmented with the axiom VX . f(X) = ¢[X]. The program
is also guaranteed to terminate.

Equivalence-preserving simplification of sentences is automatically performed,
as a terminating rewrite process, before synthesis starts and after application of
any deduction rule. There are theory-independent logical simplifications, such as
replacing formula aAa by a, and theory-specific simplifications, such as replacing
integer expression n + 0 by n.

The resolution rules have a symmetric nature. For instance, applying the AG
rule to an assertion a and a goal g could be replaced by applying the GA rule
to g and a. However, typically, one of the two symmetric applications will not
advance the proof. The polarity search control strategy (not explained here) tries
to prevent such unsuitable applications of the resolution rules, and always does
so without lengthening the proof nor compromising the completion of the proof.

Two issues around recursion formation deserve discussion. First, there are
mechanisms for constructing new well-founded relations (wfr) from old ones,
for use in application of the induction rule. However, this makes the wir search
space rather large, and, worse, it is usually difficult to choose in advance the most
suitable wir, which only becomes apparent several steps later. To overcome this,
middle-out reasoning (originally explored in [48, 54]) is performed, here replacing
the required wir by a variable, so as to wait until its desired properties become
apparent. Second, there is a recurrence search control strategy that tries to match
goals and sub-goals so as to form recursion.

Specification-based reuse of existing programs within a theory 7 — such as,
but not exclusively, already synthesised programs — becomes possible through
the addition of formulas of the form VX . pre(X) — post(X, f(X)) to the axioms
of T, when starting a new synthesis.

Finally, it is worth stating that the deduction rules are powerful enough to
also perform program transformation.

A Sample Synthesis. Rather than showing a full synthesis for a toy function,
where the final program is virtually identical to the specification or to some of
the necessary axioms in the theory, I decided to exhibit an interesting passage
from a more difficult synthesis [66], highlighting the power of the resolution rules.
Consider the specification of a function returning the square-root R of a
non-negative rational number N, within a positive rational tolerance e:

e>0—> R < NAN < (R+¢)?



within a theory R for non-negative rationals, including addition (+), squaring
(x?), inequalities (<, >, <, >), etc.

Suppose synthesis leads to a tableau with the following sentence, after an
if-split in the initial sentence built from the specification, and after application
of the equivalence rule a < b + =(b < a):

(-,R*<NA-|(R+€¢*<N|,R) (2)

Let us apply resolution rule (GG) to this sentence and the following standardised-

apart copy of itself:
(—[$ < N] A-lS + 9 <N S)

The boxed sub-goals unify under most-general substitution {S/R + €}, so the
generated sentence is:

<_7
R? < N A =false A true A =[((R + €) + €)? < NJ,
if (R+¢€)?< N then R+¢€else R)

which is automatically simplified into:
(—, R?> < N A-[(R+2€)? < NJ,if (R+¢€)?> <N then R+¢else R) (3)

Whereas (2) expresses that the square-root of N is in the half-open interval
[R..R + €[, in which case R is a suitable output, sentence (3) expresses that
the square-root of N is in the wider half-open interval [R..R + 2¢[, in which
case conditional term ‘if (R + €)? < N then R + € else R’ is a suitable output.
Noting that R + € is the midpoint of that wider interval, sentence (3) simply
says that if a square-root is known to be in wide interval [R..R + 2¢], then it is
the first element of either its right half or its left half. In other words, sentence
(3) provides an idea for a binary search program, whereas sentence (2) does not.
This is very interesting, as this discovery can thus be made mechanically, by a
simple application of a resolution rule.

Using DEDALUS, rather intricate programs were synthesised, such as unifica-
tion [65], as well as interesting new ones [66].

4.2 AMPHION

AMPHION [88] (ase.arc.nasa.gov/docs/amphion.html) was developed by Lowry
and his team at NASA Ames and SRI (California, USA). It is of particular
interest due to its attention to real-life software engineering considerations, and
because it is actually deployed at NASA JPL.

The inputs to synthesis are a formal axiomatic first-order logic specifica-
tion, assumed to be consistent and complete wrt the requirements, as well as
a domain theory. The novelty is that specifications can be conveyed through a



menu-driven, domain-independent graphical user-interface. The synthesis mech-
anism is purely deductive, fully automatic, non-deterministic (though there is
no practical difference between alternate programs), and sound. Only applica-
tion domain knowledge is exploited. The output of synthesis is a side-effect-free
applicative program, which can be automatically translated into any other cur-
rently supported language (e.g., FORTRAN-77).

The Proof System. The proof system of AMPHION is essentially the deductive
tableau system of DEDALUS (see Section 4.1). The automated theorem prover
SNARK (SRI’s New Autornated Reasoning Kit) of Stickel and his colleagues was
chosen to carry out the proofs. Its initial lack of an induction rule was unprob-
lematic, as discussed below.

The Synthesis Process. AMPHION is domain-independent, but was first de-
ployed in the domain of interplanetary mission planning and data analysis. An
axiomatic theory, called NAIF, was formalised for this domain, comprising ba-
sic properties of solar-system astronomy as well as formal specifications of the
reusable routines of a solar-system kinematics library, developed in FORTRAN-77
at NASA JPL. Synthesised programs in the resulting AMPHION/NAIF are there-
fore compiled into FORTRAN-77. The options in the graphical user-interface for
capturing specifications also depend on the provided domain theory.

Library routines are often difficult to reuse, because of the time needed to
master their sheer number, if not because of inadequate specifications, and be-
cause competent library consultants may be in short supply. Reluctant or careless
programmers may thus well duplicate functionality in the library, thereby losing
time and being at the risk of errors. Automated support for correct reuse and
composition of library routines would thus come in very handy. But this is pre-
cisely what a DEDALUS-like system such as AMPHION can achieve, because reuse
is supported, as we have seen in the previous section. Synthesis need thus not
bottom out in the primitives of the target language.

Another practical insight concerns the choice of the composition mechanisms
— such as conditions and recursion — used during synthesis. Although construc-
tive synthesis can generate them all, recursion formation is by far the most diffi-
cult composition. If sufficiently many library routines performing sophisticated
calculations are provided, then synthesis need not really “lift” recursion from
them but may rather amount to generating an adequate straight-line program
— with just sequential and conditional composition — from the specification.
AMPHION was designed to synthesise only straight-line code, on the assumption
that not too sophisticated proofs would be performed in theories with a large
number of axioms. Synthesis is then not bottlenecked by recursion formation.

The synthesised programs can be optimised using the transforms of KIDS (see
Section 3.1). Heuristic considerations need to be dealt with when finetuning the
domain theory. For instance, a suitable recursive-path ordering and a suitable
agenda-ordering function have to be supplied. Also, heuristics, such as the set-
of-support strategy, may turn out very beneficial to the prover.

METAAMPHION [62] is a synthesiser synthesiser (sic) assisting domain ex-
perts in the creation and maintenance of a new instance of AMPHION, starting



from a domain theory, and this without requiring any substantial training in
deductive inference. This is done by applying AMPHION at the meta-level.

A Sample Synthesis. Considering the scale of synthesis tasks that can be han-
dled by AMPHION, I can here only point to the two on-line sample syntheses at
ase.arc.nasa.gov/docs/amphion-naif.html. One of them computes the solar inci-
dence angle at the point on Jupiter pointed to by a camera on the Galileo sonde.
A NAIF expert could construct such a program within half an hour, but may
not be available to do so. However, after a one-hour tutorial, non-programmer
planetary scientists can specify such problems within a few minutes, and synthe-
sis of a correct program usually takes less than three minutes. The synthesised
programs are indeed mostly straight-line code, which would however have been
quite hard to program for non NAIF-experts.

Other results are the Saturn viewer, developed for use during the time Sat-
urn’s ring plane crossed the Earth, or an animation visualising Saturn and its
moon Titan as seen from the Cassini sonde on its fly-by, with stars in the back-
ground. The latter helped planetary scientists evaluate whether proposed tours
of Cassini could satisfy their observational requirements.

4.3 Other Schools

A large number of additional constructive synthesis projects exist, so I can here
only skim over the most seminal and important ones.

At Cornell University (New York, USA), Constable and his group designed
the PRL [5] and NUPRL [24] interactive proof and functional program devel-
opment systems, the latter being based on the intuitionistic second-order type
theory of Martin-Lof [68].

At the University of Edinburgh (UK), NUPRL was used for the synthesis
of deterministic logic programs by Bundy and his team [19]. A first-order sub-
set of the OYSTER proof development system, which is a re-implementation of
NUPRL in PROLOG, was also used for logic program synthesis, with special focus
on the synthesis of programs that compute relations, and not just total func-
tions. A proof-planner called cLAM was adjoined to OYSTER [21], making it a
tactical prover, using Edinburgh LCF [42], which is based on Scott’s Logic for
Computable Functions. The overall effort also resulted in the WHELK proof de-
velopment system [91], which performs proofs in the Gentzen sequent calculus
and extracts logic programs, the PERIWINKLE synthesiser [54], which systema-
tises the use of middle-out reasoning in logic program synthesis, and many other
systems, as the group spawns around the world.

At Uppsala University (Sweden), the logic programming calculus of Tarnlund
[89], based on Prawitz’ natural deduction system for intuitionistic logic, provided
an elegant unified framework for logic program synthesis, verification, transfor-
mation, and execution. His team showed how to extract logic programs from
constructive proofs performed within this calculus [47], and synthesised a unifi-
cation algorithm [29], among others.

The INRIA (France) group uses Coquand & Huet’s calculus of inductive
constructions (C0Q), and the Chalmers (Sweden) group exploits Martin-Lof’s



type theory, both towards the synthesis of functional programs. Their results
are compiled in [71,51], for instance.

5 Achievements of Mixed-Inference Synthesis

Considering that human programmers rarely resort to only safe reasoning —
such as deductive inference — it would be unwise to focus all synthesis research
on only deduction-based mechanisms. Indeed, a growing importance needs to be
given to so-called unsafe reasoning — such as inductive, abductive, or analogical
inference — if we want synthesis to cope with the full range of human software
development activities.

I here discuss one representative mixed-inference synthesiser, namely MULTI-
TAC (see Section 5.1), which performs both deductive and inductive inference.
In Section 5.2, I outline the efforts of the other main research centres in mixed-
inference synthesis.

5.1 MULTI-TAC

MuLTI-TAC, the Multi-Tactic Analytic Compiler [69] of Minton, who was then
at NASA Ames (California, USA), automatically synthesises efficient problem-
specific solvers for constraint satisfaction problems (CSPs), such that they per-
form on par with solvers hand-written by competent programmers. While the
ability of human experts remains elusive, the results are very encouraging, and
popular general-purpose solvers are almost systematically outperformed.

This is so because there is no universally best solver for all CSPs, and, worse,
that there is not even a best solver for all instances of a given CSP. Today, the
programming of an efficient solver for any instance of some CSP is still consid-
ered a black art. Indeed, a CSP solver essentially consists of three components,
namely a search algorithm (such as backtracking search, with or without for-
ward checking), constraint propagation and pruning rules (based on consistency
techniques, such as node and arc consistency), as well as variable and value or-
dering heuristics (such as most-constrained-variable-first or least-constraining-
value-first), with each of these components having a lot of recognised problem-
independent incarnations, each of which usually has many problem-specific in-
stantiations. The right combination of components for a given instance of a
CSP lies thus in a huge solver space, often at an unintuitive place, and human
programmers rarely have the inclination or patience to experiment with many
alternatives. On the premise that synthesis time does not matter, say because the
synthesised program will be run many times for different instances, MULTI-TAC
undertakes a more systematic exploration of this solver space.

The inputs to synthesis are a formal first-order sorted logic specification of a
CSP, assumed to be consistent and complete wrt the requirements, as well as a
set of training instances (or an instance generator) reflecting the distribution —
in terms of the number of domain variables and the number of constraints be-
tween them — of instances on which the resulting solver will normally be run. In



procedure solve(FreeVars) :
begin
if FreeVars = () then return the solution;
Var < bestVar(FreeVars, VarOrdRules);
FreeVars < FreeVars —{Var};
PossVals < possVals(Var, PruneRules);
while PossVals # 0 do begin
Val < bestVal(Var, PossVals, ValOrdRules);
PossVals < PossVals — {Val};
if fwdChecking = true or Constraints on Var are satisfied by Val
then begin
assign(Var,Val);
if fwdChecking = true then update PossVals(FreeVars, Constraints);
if solve(FreeVars) then return the solution;
if fwdChecking = true then restorePossVals(FreeVars);
prune(Var, PossVals, PruneRules)
end;
end;
unassign(Var,Val);
fail
end

Fig. 7. Schema for backtracking search

the following, I only mention training instances, abstracting thus whether they
are given by the user or generated by the given instance generator. The synthesis
mechanism is mixed-inference, performing both inductive and deductive infer-
ence, and is fully automatic. Algorithm design and data structure knowledge are
exploited. Synthesis is non-deterministic and sound. The output of synthesis is
a solver in LISP that is finetuned not only for the problem at hand, but also for
the given instance distribution.

The Operationalisation System. MULTI-TAC is a schema-guided synthesiser,
with a schema being a syntactic program template showing how some search al-
gorithm can be parameterised by the other components of a CSP solver. For
instance, the backtracking schema for backtracking search is approximately as
in Figure 7, with the place-holders typeset in boldface. A full discussion of this
schema is beyond the scope of this paper, the important issues being as fol-
lows. At each iteration, a chosen “best” value is assigned to a chosen “best”
variable, with backtracking occurring when this is impossible without violating
some constraint. Also, the template is generic in the constraints, the variable and
value ordering rules, the pruning rules, and a flag controlling the use of forward
checking. Many well-known variations of backtracking search fit this schema.
Branch-and-bound and iterative-repair schemas are also available.

The cornerstone of synthesis is the problem-specific instantiation of the rules
of the chosen schema. This is done by operationalisation of generic heuristics into
rules, as described next. For instance, in problems where a subset of the edges



of a given graph is sought, the most-constrained-variable-first variable-ordering
heuristic — stating that the variable with the fewest possible values left should
be chosen next — could be operationalised into at least the following rules:

— Choose the edge with the most adjacent edges.

— Choose the edge with the most adjacent edges whose presence in or absence
from the sought subset has already been decided.

— Choose the edge with the most adjacent edges whose absence from the sought
subset has already been decided.

Operationalisation is thus non-deterministic. The obtained candidate rules have
different application costs in terms of evaluation time and different effectiveness
in terms of how much the search is reduced, so a trade-off analysis is needed (see
configuration search below).

MuLTI-TAC features two methods for operationalisation of generic heuristics,
as described next.

Analytic operationalisation is based only on the problem constraints and
ignores the training instances. Each heuristic is described by a meta-level the-
ory that enables the system to reason about the problem constraints. For in-
stance, the meta-theory of the most-constrained-variable-first heuristic describes
circumstances where some variable is likely to be more constrained than an-
other one. A good example thereof is that the tightness of the generic con-
straint VX : S. P(X) — Q(X) is directly related to the cardinality of the set
{X : S| P(X)}. From such algorithm design knowledge, candidate search control
rules can be inferred.

Inductive operationalisation is based mainly on the training instances, though
also uses the problem constraints. Brute-force simplest-first inductive inference
is achieved through a generate-and-test algorithm. First, all rules expressible
within a given grammar — based on the vocabulary of the problem constraints
— are generated, starting with the shortest, that is simplest, rules, until a pre-
determined upper bound on the number of atoms in the rule is reached, or until
a predetermined time bound is reached. The number of rules generated grows
exponentially with the size bound, but fortunately the most useful rules tend to
be relatively short. The testing step weeds out all the generated rules that do
not well approximate the desired effects of the generic heuristics. Towards this,
positive and negative examples are inferred from the training instances, and all
rules that are more often correct than incorrect on these examples are retained.
This is a surprisingly effective criterion.

The analytic method may fail to generate useful short rules, but can infer
longer rules. The inductive method often finds excellent short rules, but cannot
infer longer rules or may accidentally eliminate a good rule due to the statistical
nature of its testing process. The two methods are thus complementary and
should be used together to increase the robustness of the system.

The Synthesis Process. Once the generic heuristics have been somehow oper-
ationalised into candidate rules, a process called configuration search looks for a
suitable selection of these rules and for suitable flag values, such that, if plugged



into the schema with the problem-specific constraints, they interact nearly op-
timally in solving instances of the given CSP that fit the given distribution.

Since the space of such possible configurations of rules and flags is exponential
in the number of rules and flags, a beam search (a form of parallel hill-climbing)
is performed over only a small portion of that space. Given a beam width b, a
time bound ¢, and the training instances, one starts from the single parent con-
figuration that has no rules and where all flags are turned off. At each iteration,
child configurations are generated from all parent configurations, by adding one
rule from the candidate rules or by activating one flag. Several candidate rules
may be retained for a given place-holder in the schema, if this is found to be
advantageous; they are then sequenced, so that each rule acts as a tie-breaker
for its predecessors. The b configurations that solve the most instances within ¢
seconds enter the next iteration as parent configurations, provided they solve a
superset of their own parents’ instances. This process continues until no parent
configuration can be improved or until the user interrupts it.

Operationalisation and configuration search are able to discover rules for
many well-known heuristics from the literature, for each search algorithm.

Once the rules and flags of the chosen schema are instantiated — in a
problem-specific and instance-distribution-specific way thus — through oper-
ationalisation and configuration search, synthesis proceeds by automatically op-
timising the winning configuration through refinements (including the choice of
adequate data structures), formula simplifications, partial evaluation, and code
simplifications (including finite differencing).

A Sample Synthesis. Consider the Minimum-Mazimum-Matching (MMM)
problem: given an integer K and a graph with vertex set V and edge set FE,
determine whether there is a subset E' C E with |E'| < K such that no two
edges in E' share a vertex and every edge in F — E' shares a vertex with some
edge in E'. This is an NP-complete problem and can be modelled for MULTI-TAC
as follows, representing E’ as a set of m(I, B) atoms, where Boolean B is ¢ when
edge I of F is in E', and f otherwise:

VYV, E : set(term) . VK :int. mmm((V,E),K) <

VI:E.m(I,t) = (YW :V.NJ:E.I#JNeI,W)Ae(J,W) = m(J,
AVI:E.m(Lf)— 3W:V.3J:E.I1#JAe([,W)AelJ,W)Am(
A cardinality({I : E | m(I,t)}) < K

where problem instances are assumed given through a set of e(I, W) atoms,
stating that edge I has vertex W as one of its two endpoints.

In the first constraint, there are two sub-expressions matching the generic
expression VX : S. P(X) — Q(X) mentioned for analytic operationalisation,
namely the two formulas starting with the universal quantifications on W and J,
respectively. From the former, the variable-ordering rule ‘Choose the edge with
the most endpoints’ is inferred, though it is useless, as every edge has exactly
two endpoints; from the latter, the already mentioned rule ‘Choose the edge with
the most adjacent edges’ is inferred. All variable-ordering rules mentioned above
can also be generated by inductive operationalisation.



In three well-documented experiments [69] with different instance distribu-
tions for the MMM problem, the solvers synthesised by MULTI-TAC outperformed
at least one of two written by competent human programmers, while totally
outclassing general-purpose Boolean satisfiability algorithms and CSP solvers,
under their default heuristics. Interesting rules were discovered, and MULTI-TAC
won by the largest margin on the toughest instance distribution, confirming that
massive automated search does often better than human intuition.

5.2 Other Schools

The exclusive use of inductive and abductive inference in program synthesis, from
incomplete specifications, has been studied under two angles, for three decades.

First, in programming-by-example (PBE), also and more adequately known as
programming-by-demonstration (PBD), the specifier provides sample execution
traces of the task to be programmed, and the synthesiser generalises them into a
program that can re-enact at least these traces. The user thus has to know how
to perform the specified task, but there are interesting applications for this, such
as the synthesis of macro operations for word processors or operating systems.
See [58] for a collection of state-of-the-art papers, especially geared at enabling
children and other novices to program. Consult Biermann’s surveys [12,13] and
edited collections [14, 15] for details on underlying mechanisms.

Second, in what should be known as PBE, the specifier provides positive
and possibly negative input/output examples of the desired program, and the
synthesiser generalises them into a program that covers at least these positive
examples, but none of the negative examples. The user need thus not know how
to perform the specified task, nor even how to completely specify it, and there are
useful applications for this, say for novice programmers. The Machine Learning
community is looking extensively into such synthesis, especially its Inductive
Logic Programming (ILP) branch. Some surveys and edited collections include
[14,15,12,13,27,34] or are dedicated to [79,37] the underlying mechanisms.

Considering the difficulty of correctly extrapolating the desired behaviour
from such declared-to-be-incomplete specifications, it is not surprising that purely
inductive and abductive synthesis has not been shown yet to scale beyond toy
problems. The ensuing uncertainty for the specifier cannot be held against in-
ductive and abductive synthesis, because there also is uncertainty in deductive
synthesis, due to the difficulty of formalisation of assumed-to-be-complete spec-
ifications. Appropriate combinations of inductive, abductive, and deductive in-
ference do however give leverage in synthesis from incomplete specifications [34].

Even when starting from complete specifications, the use of examples and
a combination of deductive and inductive inference can still be interesting, if
not necessary, as shown for MULTI-TAC (see Section 5.1). Other successful such
combinations are reported by Ellman et al. [28], with applications to jet engine
nozzle and racing yacht design, as well as by Gratch & Chien [43], towards
scheduling ground-based radio antennas for maintaining communication with
research satellites and deep space probes.

Program synthesis by analogical inference was tackled by Dershowitz [26].



6 Prospects of Synthesis

Program synthesis research is as old as the first computer, and a lot of theoret-
ical research and practical development have gone into its various incarnations.
Today, we stand at the dawn of a new era in programming, with languages
moving away from the von Neumann model, with powerful tools generating sig-
nificant amounts of tedious low-level code from higher-level descriptions, and
with end-users becoming enabled to program by themselves. It is clear that
program synthesis, in its traditional Artificial Intelligence understanding, can
provide great leaps forward in this arena, in addition to the simpler advances
offered by conventional code generation, such as through visual programming,
spreadsheets, etc. The challenge is thus to scale up from techniques demonstrated
in research labs on toy problems to the development of real-life software and to
enable a technology transfer to commercial software development. I here propose
challenges and directions for future research, as far as the inputs (Section 6.1),
mechanisms (Section 6.2), and outputs (Section 6.3) of synthesis are concerned.

6.1 Synthesis Inputs

Formalisation Assistance. The acceptance bottleneck for synthesisers will al-
ways be the input language, in which the specification and domain theory have
to be formalised. Most professional programmers and IT students who became
somehow used to low-level languages are clearly reluctant to be re-trained in
the more advanced mathematics and logic necessary to interact with synthesis-
ers, despite the appeals of working at a higher level. They may well eventually
be bypassed and made obsolete by a synthesis-induced revolution in commer-
cial software development under web-speed market pressures, but that is yet an
uncertain outcome. At the same time, end-users — from engineers in other dis-
ciplines to computer novices — hope to be enabled to program by themselves,
and they will also resist the learning curve. Hence a significant challenge is to
assist users in the formalisation of the specification and domain theory.
PLANWARE and AMPHION can acquire and formalise them automatically
from information provided by the specifiers, due to adequate human-computer-
interface engineering. The current trend is thus towards domain-specific lan-
guages that are intuitive to qualified users, if not identical to the notations they
already use anyway, thus masking the underlying mathematics and logic. Turing
completeness often needs to be sacrificed, so that highly — if not fully — au-
tomated synthesisers can be developed. Research in domain analysis is needed,
because the acquisition of a suitable domain theory will always be a bottleneck
for synthesisers. Domains have to be identified where the payoff threshold is
suitable, in terms of the size and importance of the covered problem class, the
existence of a language and interface in which it is easy to describe these prob-
lems, and the difficulty of manually writing correct and efficient programs for
these problems. This does not mean that the previous trends on general-purpose
specification languages and semi-automatic synthesisers must decline.



6.2 Synthesis Mechanisms

Reuse. Most synthesisers are demonstrated on toy problems with little bearing
to real-world problems. A main cause is that the granularity of their building
blocks is too small. The challenge is to make synthesis bottom out in reusable,
assumed-correct components rather than in the primitives of the target language.

We have seen that some existing synthesis mechanisms were designed so that
libraries of formally-specified reusable components can be used during synthesis.

In KIDs/DESIGNWARE, reuse is attempted before synthesis for each speci-
fication, whether it is the initial one or one constructed during synthesis. The
number of reuse queries can be significantly reduced by applying heuristics de-
tecting that an ad hoc component can be trivially built from the specification.
This has the further advantage of keeping the index of the component-base
lean and thus accelerating reuse queries. It should be noted that the definition
schemas used in algorithm design refinements also represent reused code.

In DEDALUS, reuse is possible, but not especially catered for through heuris-
tics. Fischer & Whittle [33] propose a better integration of reuse into DEDALUS-
like constructive synthesisers.

In AMPHION, reuse is the leading principle: as there is no induction rule,
the mechanism is forced to reuse components that embody iterative or recursive
calculations, in its synthesis of straight-line code.

Other than for AMPHION-like approaches, the payoff of reuse versus brute-
force synthesis is however still unclear. Much research needs thus to be done to-
wards full-scale synthesis in the style of component-based software development,
i.e., bottom-up incremental programming. The synthesis of software architec-
tures, for instance, is still a rather unexplored topic.

Schemas. I believe that an important challenge is to make formalised algorithm
design schemas [36, 80, 81], design patterns [39], plans [31], or clichés [76] con-
tinue to play a major role in scaling synthesis up. Indeed, they allow the reuse
of recognised successful product or process skeletons, which have been somehow,
and not necessarily formally, proved off-line, once and for all.

Furthermore, they provide a nice division of concerns by focusing, at any
given moment, the user’s attention and the available options to just one well-
delimited part of the current description, as opposed to, say, having to decide
which transform to apply to which expression of the entire current description.
This also enables users to understand intermediate descriptions and the synthesis
process at a suitable level of abstraction.

Inference. As MULTI-TAC shows, inductive inference is sometimes necessary to
achieve synthesis of efficient programs, but virtually all research — except PBE
and PBD — so far has been on purely-deductive synthesis. Just like human
programmers perform all kinds of inference, the challenge is to further explore
mized-inference synthesis, in order to exploit complementary forms of reasoning.

Similarly, even within deductive inference, there is no single mechanism that
can handle all the proof obligations occurring during synthesis, hence another



challenge is to investigate suitable combinations of deductive proof mechanisms,
thereby achieving multi-level synthesis [11].

Finally, it seems that transformational and constructive synthesis are just
two facets of a same deductive approach,® so that their reconciliation should be
worth investigating.

6.3 Synthesis Outputs

Target Language. In order to facilitate the integration of synthesised programs
with otherwise developed code modules, it is important that target languages
other than the clean-semantics logic languages, that is the functional and re-
lational ones, are supported. This is not a major research challenge, except if
efficiency of the code is an issue, but rather a development issue, but it is often
neglected in favour of the more attractive research challenges, thereby missing
technology transfer and feedback opportunities.

Efficiency. For some problem classes, such as constraint satisfaction problems
(CSPs), the efficiency of programs is crucial, such as those solving NP-complete
CSPs with high constrainedness. The challenge is that effective code optimisation
must be somehow integrated with a program synthesiser towards its application
wn real-world circumstances.

For instance, in constraint programming, a lot of research has been made
about how to craft new variable-and-value-ordering heuristics. However, little
is said about the application domain of these heuristics, so programmers find
it hard to decide when to apply a particular heuristic, especially that there
is no universally best heuristic for all CSPs, and not even for all instances of a
given CSP (as we saw in Section 5.1). Adequate heuristics are thus problem-and-
instance-specific, and must therefore be dynamically chosen at run-time rather
than at programming time. It has also been noted that suitable implied con-
straints and symmetry-breaking constraints may considerably reduce the search
space, but few results are available on how to systematise their inference. Over-
all, effective constraint programming remains a black art thus. When targeting
constraint programming languages, the challenge is to infer implied constraints
and symmetry-breaking constraints and to synthesise problem-specific heuristics,
if not solvers, that perform well on all problem instances.

7 Conclusion

After introducing the topic and proposing a classification scheme for program
synthesis, I have overviewed past and current achievements in synthesis, across
three main research directions, with special focus on some of the most promising
systems. I have also laid out a set of directions for future research, believing that

3 At least the developers of DEDALUS, LOPS, and PERIWINKLE reported difficulties in
classifying their systems.



they will make the technology go beyond the already-reached break-even point,
compared to conventional programming and maintenance.

Program synthesis thus promises to revolutionise accepted practice in soft-
ware development. Ultimately, acceptance problems due to the necessity for rig-
orous formalisation are bound to disappear, because programming itself is ob-
viously a formalisation process and synthesis just provides other programming
languages or different ways of programming. Similarly, the steps of any followed
software lifecycle will not really change, because validation and verification will
not disappear, but rather become higher-level activities, at the level of what we
today call formal specifications.

Acknowledgements

I wish to thank the anonymous referees for their constructive comments on the
previous versions of this paper.

References

1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

2. R. Balzer. A 15 year perspective on automatic programming. IEEE TSE
11(11):1257-1268, 1985.

3. A. Barr and E.A. Feigenbaum. The Handbook of Artificial Intelligence, Chapter X:
Automatic Programming, pp. 297-379. Morgan Kaufmann, 1982.

4. D.R. Barstow. A perspective on automatic programming. Al Magazine, Spring
1984:5-27. Also in [74], pp. 537-559.

5. J.L. Bates and R.L. Constable. Proofs as programs. ACM TOPLAS 7(1):113-136,
1985.

6. F.L. Bauer, B. Moller, H. Partsch, and P. Pepper. Formal program construction
by transformations: Computer-aided, intuition-guided programming. IEEE TSE
15(2):165-180, 1989. Details in LNCS 183/292, Springer-Verlag, 1985/87.

7. M.J. Beeson. Foundations of Constructive Mathematics. Modern Surveys in Math-
ematics, Volume 6. Springer-Verlag, 1985.

8. W. Bibel. Syntax-directed, semantics-supported program synthesis. A 14(3):243—
261, 1980.

9. W. Bibel. Concurrent software production. In [61], pp. 243-261. Toward predicative
programming. In [61], pp. 405-424.

10. W. Bibel and K.M. Hérnig. LoPs: A system based on a strategic approach to
program synthesis. In [15], pp. 69-89.

11. W. Bibel et al. A multi-level approach to program synthesis. In N.E. Fuchs (ed),
Proc. of LOPSTR’97, pp. 1-28. LNCS 1463. Springer-Verlag, 1998.

12. A.W. Biermann. Automatic programming: A tutorial on formal methodologies. J.
of Symbolic Computation 1(2):119-142, 1985.

13. A.W. Biermann. Automatic programming. In S.C. Shapiro (ed), Encyclopedia of
Artificial Intelligence, pp. 59-83. John Wiley, 1992.

14. A'W. Biermann and G. Guiho (eds). Computer Program Synthesis Methodologies.
Volume ASI-C95. D. Reidel, 1983.



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

A.W. Biermann, G. Guiho, and Y. Kodratoff (eds). Automatic Program Construc-
tion Technigques. Macmillan, 1984.

A.W. Biermann and W. Bibel (guest eds), Special Issue on Automatic Program-
ming. J. of Symbolic Computation 15(5-6), 1993.

C.B. Jones. Systematic Software Development using vDM. Prentice-Hall, 1990.

L. Blaine, L. Gilham, J. Liu, D.R. Smith, and S. Westfold. PLANWARE: Domain-
specific synthesis of high-performance schedulers. In Proc. of ASE’98, pp. 270-279.
IEEE Computer Society Press, 1998.

A. Bundy. A broader interpretation of logic in logic programming. In R.A. Kowalski
and K.A. Bowen (eds), Proc. of ICLP’88, pp. 1624-1648. The MIT Press, 1988.
A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logic programs from in-
ductive proofs. In J.W. Lloyd (ed), Proc. of the ESPRIT Symp. on Computational
Logic, pp. 135-149. Springer-Verlag, 1990.

A. Bundy, F. van Harmelen, C. Horn, A. Smaill. The OYSTER/CLAM system. In
M.E. Stickel (ed), Proc. CADE’90, pp. 647—-648. LNCS 449. Springer-Verlag, 1990.
R.M. Burstall and J. Darlington. A transformation system for developing recursive
programs. J. of the ACM 24(1):44-67, 1977.

K.L. Clark and S. Sickel. Predicate logic: A calculus for deriving programs. In Proc.
of IJCAI’T7, pp. 410-411.

R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathematics with
the NUPRL Proof Development System. Prentice-Hall, 1986.

J. Darlington. An experimental program transformation and synthesis system. Al
16(1):1-46, 1981. Also in [74], pp. 99-121.

N. Dershowitz. The Evolution of Programs. Birkhauser, 1983.

Y. Deville and K.-K. Lau. Logic program synthesis. J. of Logic Programming 19—
20:321-350, 1994.

T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation system for
interactive reformulation of design optimization strategies. Research in Engineering
Design 10(1):30-61, 1998.

L.-H. Eriksson. Synthesis of a unification algorithm in a logic programming calcu-
lus. J. of Logic Programming 1(1):3-33, 1984.

M.S. Feather. A survey and classification of some program transformation ap-
proaches and techniques. In L.G.L.T. Meertens (ed), Program Specification and
Transformation, pp. 165-195. Elsevier, 1987.

S.F. Fickas. Automating the transformational development of software. IEEE T'SE
11(11):1268-1277, 1985.

B. Fischer, J. Schumann, and G. Snelting. Deduction-based software component
retrieval. In W. Bibel and P.H. Schmidt (eds), Automated Deduction: A Basis for
Applications, vol. ITI, chap. 11. Kluwer, 1998.

B. Fischer and J. Whittle. An integration of deductive retrieval into deductive
synthesis. In Proc. of ASE’99, pp. 52-61. IEEE Computer Society, 1999.

P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer Academic
Publishers, 1995.

P. Flener, K.-K. Lau, and M. Ornaghi. Correct-schema-guided synthesis of stead-
fast programs. In Proc. of ASE’97, pp. 153-160. IEEE Computer Society, 1997.
P. Flener, K.-K. Lau, M. Ornaghi, and J.D.C. Richardson. An abstract formal-
isation of correct schemas for program synthesis. J. of Symbolic Computation
30(1):93-127, July 2000.

P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs:
Achievements and prospects. J. of Logic Programming 41(2-3):141-195, Novem-
ber/December 1999.



38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

62.

P. Flener, H. Zidoum, and B. Hnich. Schema-guided synthesis of constraint logic
programs. In Proc. of ASE’98, pp. 168-176. IEEE Computer Society, 1998.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, 1994.

J. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs. The MIT
Press, 1997.

A.T. Goldberg. Knowledge-based programming: A survey of program design and
construction techniques. IEEE TSE 12(7):752-768, 1986.

M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh LCF — A Mechanised
Logic of Computation. LNCS 78. Springer-Verlag, 1979.

J.M. Gratch and S.A. Chien. Adaptive problem-solving for large scale scheduling
problems: A case study. J. of Artificial Intelligence Research 4:365-396, 1996.

C. Green. Application of theorem proving to problem solving. Proc. of IJCAI'69,
pp. 219-239. Also in B.L. Webber and N.J. Nilsson (eds), Readings in Artificial
Intelligence, pp. 202-222. Morgan Kaufmann, 1981.

C. Green and D.R. Barstow. On program synthesis knowledge. AT 10(3):241-270,
1978. Also in [74], pp. 455-474.

C. Green and S. Westfold. Knowledge-based programming self applied. Machine
Intelligence 10, 1982. Also in [74], pp. 259-284.

A.Hansson. A Formal Development of Programs. Ph.D. Thesis, Univ. of Stockholm
(Sweden), 1980.

J. Hesketh, A. Bundy, and A. Smaill. Using middle-out reasoning to control the
synthesis of tail-recursive programs. In D. Kapur (ed), Proc. of CADE’92. LNCS
606. Springer-Verlag, 1992.

C.J. Hogger. Derivation of logic programs. J. of the ACM 28(2):372-392, 1981.
W.A. Howard. The formulae-as-types notion of construction. In J.P. Seldin and
J.R. Hindley (eds), To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pp. 479-490. Academic Press, 1980.

G. Huet and G.D. Plotkin (eds). Logical Frameworks. Cambridge Univ. Press, 1991.
E. Kant. On the efficient synthesis of efficient programs. AI 20(3):253-305, 1983.
Also in [74], pp. 157-183.

R. Kowalski. Logic for Problem Solving. North-Holland, 1979.

I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and induc-
tion. J. of Automated Reasoning 16(1-2):113-145, 1996.

K.-K. Lau and S.D. Prestwich. Synthesis of a family of recursive sorting procedures.
In V. Saraswat and K. Ueda (eds), Proc. ILPS’91, pp. 641-658. MIT Press, 1991.
K.-K. Lau and M. Ornaghi. On specification frameworks and deductive synthesis
of logic programs. In L. Fribourg and F. Turini (eds), Proc. of LOPSTR’94 and
META’94, pp. 104-121. LNCS 883. Springer-Verlag, 1994.

B. Le Charlier and P. Flener. Specifications are necessarily informal, or: Some more
myths of formal methods. J. of Systems and Software 40(3):275-296, 1998.

H. Liebermann (guest ed), Special Section on Programming by Example. Comm.
of the ACM 43(3):72-114, 2000.

J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

M.R. Lowry and R. Duran. Knowledge-based software engineering. In A. Barr,
P.R. Cohen, and E.A. Feigenbaum (eds), The Handbook of Artificial Intelligence.
Volume IV, pp. 241-322. Addison-Wesley, 1989.

M.R. Lowry and R.D. McCartney (eds). Automnating Software Design. The MIT
Press, 1991.

M.R. Lowry, J. Van Baalen. METAAMPHION: Synthesis of efficient domain-specific
program synthesis systems. Automated Software Engineering 4:199-241, 1997.



63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.
86.

87.

Z. Manna and R.J. Waldinger. Synthesis: Dreams — Programs. IEEE TSE
5(4):294-328, 1979.

Z. Manna and R.J. Waldinger. A deductive approach to program synthesis. ACM
TOPLAS 2(1):90-121, 1980. Also in [15], pp. 33-68. Also in [74], pp. 3-34.

Z. Manna and R.J. Waldinger. Deductive synthesis of the unification algorithm.
Science of Computer Programming 1:5-48, 1981. Also in [14], pp. 251-307.

Z. Manna and R.J. Waldinger. The origin of a binary-search paradigm. Science of
Computer Programming 9:37-83, 1987.

Z. Manna and R.J. Waldinger. Fundamentals of deductive program synthesis. IJEEE
TSE 18(8):674-704, 1992.

P. Martin-Lof. Constructive mathematics and computer programming. In Proc.
of the 1979 Int’l Congress for Logic, Methodology, and Philosophy of Science, pp.
153-175. North-Holland, 1982.

S. Minton. Automatically configuring constraint satisfaction programs: A case
study. Constraints 1(1-2):7-43, 1996.

J. Mostow (guest ed), Special Issue on Al and Software Engineering. IEEE TSE
11(11), 1985.

B. Nordstrom, K. Petersson, and J.M. Smith. Programming in Martin-LJf’s Type
Theory: An Introduction. Clarendon Press, 1990.

H.A. Partsch. Specification and Transformation of Programs. Springer-Verlag,
1990.

H.A. Partsch and R. Steinbriiggen. Program transformation systems. Computing
Surveys 15(3):199-236, 1983.

C. Rich and R.C. Waters (eds). Readings in Artificial Intelligence and Software
Engineering. Morgan Kaufmann, 1986.

C. Rich and R.C. Waters. Automatic programming: Myths and prospects. IEEE
Computer 21(8):40-51, 1988.

C. Rich and R.C. Waters. The Programmer’s Apprentice: A research overview.
IEEE Computer 21(11):10-25, 1988.

T. Sato and H. Tamaki. First-order compiler: A deterministic logic program syn-
thesis algorithm. J. of Symbolic Computation 8(6):605-627, 1989.

D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and pro-
gram development. Formal Aspects of Computing 9:229-269, 1997.

D.R. Smith. The synthesis of LISP programs from examples: A survey. In [15], pp.
307-324.

D.R. Smith. Top-down synthesis of divide-and-conquer algorithms. AI 27(1):43-96,
1985.

D.R. Smith. KIDS: A semiautomatic program development system. IEEE TSE
16(9):1024-1043, 1990.

D.R. Smith. Towards the synthesis of constraint propagation algorithms. In Y.
Deville (ed), Proc. of LOPSTR’93, pp. 1-9, Springer-Verlag, 1994.

D.R. Smith. Constructing specification morphisms. J. of Symbolic Computation
15(5-6):571-606, 1993.

D.R. Smith. Toward a classification approach to design. Proc. of AMAST’96, pp.
62-84. LNCS 1101. Springer-Verlag, 1996.

J.M. Spivey. The z Notation: A reference manual. Prentice-Hall, 1992.

Y.V. Srinivas and R. Jillig. SPECWARE: Formal support for composing software.
In B. Moller (ed), Proc. of MPC’95, pp. 399-422. LNCS 947. Springer-Verlag, 1995.
D.M. Steier and A.P. Anderson. Algorithm Synthesis: A Comparative Study.
Springer-Verlag, 1989.



88.

89.

90.

91.

M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. Deductive
composition of astronomical software from subroutine libraries. In A. Bundy (ed),
Proc. of CADE’9, pp. 341-355. LNCS 814. Springer-Verlag, 1994.

S.-A. Térnlund. An axiomatic data base theory. In H. Gallaire and J. Minker (eds),
Logic and Databases, pp. 2569-289. Plenum Press, 1978.

R.J. Waldinger and R.C.T. Lee. PROW: A step toward automatic program writing.
Proc. of IJCAI’69, pp. 241-252.

G. Wiggins. Synthesis and transformation of logic programs in the WHELK proof
development system. In K. Apt (ed), Proc. of the JICSLP’92, pp. 351-365. The
MIT Press, 1992.



