
A
hievements and Prospe
tsof Program SynthesisPierre FlenerInformation Te
hnology, Department of Computing S
ien
eUppsala University, Box 337, S { 751 05 Uppsala, Swedenhttp://www.
sd.uu.se/�pierref/ pierref�
sd.uu.seAbstra
t. Program synthesis resear
h aims at developing a programthat develops
orre
t programs from spe
i�
ations, with as mu
h or aslittle intera
tion as the spe
i�er wants. I overview the main a
hievementsin deploying logi
 for program synthesis. I also outline the prospe
ts ofsu
h resear
h, arguing that, while the te
hnology s
ales up from toyprograms to real-life software and to
ommer
ially viable tools,
ompu-tational logi
 will
ontinue to be a driving for
e behind this progress.1 Introdu
tionIn his seminal book Logi
 for Problem Solving [53℄, Bob Kowalski introdu
edthe
elebrated equation:Algorithm = Logi
+ Control (A = L+ C)expressing that for an algorithm, the statement of what it does | the logi

omponent |
an be separated from the manner how it is done | the
on-trol
omponent. Algorithms and programs in
onventional languages feature amerging of these
omponents, whereas pure logi
 programs only express the logi

omponent, leaving the
ontrol
omponent to the exe
ution me
hanism. In a
-tual logi
 programming languages, su
h as prolog, some
ontrol dire
tives
anbe provided as annotations by the programmer. The logi

omponent states onlythe problem-spe
i�
 part of an algorithm and determines only its
orre
tness,while the
ontrol
omponent only expresses a problem-independent exe
utionstrategy and determines only the eÆ
ien
y of the algorithm.Kowalski listed several advantages of this en
apsulation, whi
h is akin to theabstra
tion a
hieved when separating the algorithm and data-stru
ture
ompo-nents of programs. These advantages in
lude the following:{ The logi
 and
ontrol
omponents of algorithms
an be su

essively re�ned,and improved, independently of ea
h other.{ A default, and thus often sub-optimal,
ontrol
an be provided for less experi-en
ed programmers, who
an thus fo
us their e�orts on the logi

omponent.

{ The logi

omponent of an algorithm
an be me
hani
ally generated from,and veri�ed against, a formal spe
i�
ation, using dedu
tion, without
onsid-ering the
ontrol
omponent. Similarly, the logi

omponent
an be me
hani-
ally transformed into another one, using dedu
tion, without
onsidering the
ontrol
omponent. One thus obtains what is known as program synthesis,program veri�
ation, and program transformation, respe
tively.The obje
tive of this
hapter | whose title is by the way subsumed by the one ofKowalski's book | is to overview the main a
hievements in deploying logi
 forprogram synthesis, and to outline its future prospe
ts. As synthesis nowadaysstarts s
aling up from toy programs to real-life software and to
ommer
iallyviable tools, it
an be argued that
omputational logi
 will
ontinue to be adriving for
e behind these developments.S
ope of this Chapter. In
ontrast to Kowalski's intention, I here do not fo
uson the synthesis of logi
 programs only, but rather take a wider approa
h andta
kle the synthesis of any kinds of programs. Indeed, the target language doesnot really matter, but what does matter is the use of
omputational logi
 inthe synthesis pro
ess. Similarly, I shall not restri
t myself to his advo
ated useof dedu
tive inferen
e for synthesis, but will also dis
uss the role of indu
tive,abdu
tive, and analogi
al inferen
e in synthesis.Also, although there is a large overlap in
on
epts, notations, and te
hniquesbetween program synthesis and program transformation, veri�
ation, and anal-ysis (whi
h is the study of the semanti
s and properties of programs, su
h astheir termination), I here dis
uss
on
epts and te
hniques relevant to programsynthesis only | assuming it
an be
learly delineated from those other areas| and refer the reader to the proli�
 literature on these related resear
h �elds.Having thus both widened and narrowed the s
ope of this
hapter
omparedto Kowalski's original agenda, the literature to be overviewed is very voluminousand thus
annot possibly be dis
ussed in su
h a single, short
hapter. I havethus made a maybe subje
tive sele
tion of the landmark resear
h in programsynthesis, with parti
ular attention to seminal work and to approa
hes that s
aleup for eventual deployment in a
tual software development. For
overage of moreapproa
hes, I thus refer the interested reader to the numerous overviews, surveys,and paper
olle
tions periodi
ally published before this one, su
h as those | in
hronologi
al order | by Barr & Feigenbaum [3℄, Biermann et al. [14, 15, 12, 13℄,Parts
h et al. [73, 72℄, Smith [79℄, Balzer [2℄, IEEE TSE [70℄, Goldberg [41℄, Ri
h& Waters [74, 75℄, Feather [30℄, Lowry et al. [60, 61℄, Steier & Anderson [87℄, JSC[16℄, Deville & Lau [27℄, and Flener [34, 37℄.Organisation of this Chapter. The rest of this
hapter is organised as fol-lows. In Se
tion 2, I des
ribe my viewpoint on what program synthesis a
tuallyis, and what it is not, espe
ially in relation to other areas, su
h as
ompilationand transformation. Classi�
ation
riteria are also given. The te
hni
al
ore ofthis
hapter are Se
tions 3 to 5, where I overview past a
hievements of logi
-

based program synthesis.1 I devote one se
tion ea
h to the three main streamsof resear
h, namely transformational (Se
tion 3),
onstru
tive (Se
tion 4), andmixed-inferen
e (Se
tion 5) synthesis, exhibiting one or two representative sys-tems for ea
h of them, in terms of their underlying ma
hineries, their a
tual syn-thesis pro
esses, and interesting ex
erpts of sample syntheses. From this sket
hof the state-of-the-art, I
an then outline, in Se
tion 6, the future prospe
ts ofprogram synthesis, whether logi
-based or not, espe
ially in terms of the
hal-lenges it fa
es towards s
aling up and eventual transfer of the te
hnology to
ommer
ial software development. Finally, in Se
tion 7, I
on
lude.2 What Is Program Synthesis?I now des
ribe my viewpoint on what program synthesis a
tually is, and whatit is not. In Se
tion 2.1, I state the obje
tive and rationale of program synthesis,and
ontrast it with program transformation. Next, in Se
tion 2.2, I proposea
lassi�
ation s
heme for synthesisers. Finally, in Se
tion 2.3, I show that thegoalposts of synthesis have been moving very mu
h over the years, and thatsynthesis is in retrospe
t nothing else but
ompilation.2.1 The Goal of Program SynthesisThe grand obje
tive of program synthesis | also known as automati
 program-ming | resear
h is to develop a program that develops
orre
t programs fromspe
i�
ations, with as mu
h or as little intera
tion as the spe
i�er wants. Nothingin this formulation is meant to imply that the fo
us is on programming-in-the-small. Synthesising real-life software only requires a s
alable synthesis pro
ess.Just like manual programming, synthesis is thus about translating a statementfrom one language into another language, namely from the spe
i�
ation lan-guage into the programming language, thereby swit
hing from a statement ofwhat the program does and how it should be used to a statement of how theprogram does it, hen
e ideally not only establishing
orre
tness (the programoutputs satisfy the post-
ondition of the spe
i�
ation, provided the inputs meetits pre-
ondition) but also a
hieving a reasonable level of eÆ
ien
y (outputs are
omputed within a reasonable amount of time and spa
e).The rationale for this obje
tive is the notorious diÆ
ulty for most program-mers of e�e
tively developing
orre
t and eÆ
ient programs, even when theseprograms are small. The bene�ts of a synthesiser would be higher-quality pro-grams and the disappearan
e of the program validation and maintenan
e steps,and instead total fo
us on spe
i�
ation elaboration, validation, and maintenan
e,be
ause replay of program development would be
ome less
ostly. Synthesiswould be espe
ially useful in problem domains where there is a huge gap between1 Citations are not ne
essarily to the �rst paper on a spe
i�
 approa
h, but to
om-prehensive papers that may have been published mu
h later. In the latter
ase, Iindi
ate the year of the original paper in the running text.

the end-user formulation of a problem and an eÆ
ient program for solving it,su
h as for
onstraint satisfa
tion problems, for instan
e.The hope for synthesisers is as old as
omputing s
ien
e itself, but it is oftendismissed as a dream. Indeed, we are way o� a fully automati
, general-purpose,end-user-oriented synthesiser [75℄, and pursuing one may well be illusory. Mostof the early synthesis proje
ts aimed at starting from informal spe
i�
ations. Forinstan
e, the safe proje
t [2℄ initially went to great e�orts to do so, but eventu-ally swit
hed to de�ning gist, a very-high-level formal language for
onveyingformal des
riptions of spe
i�
ations. Nowadays, as a simpli�
ation, virtually allsynthesisers start from inputs in su
h formal languages. Another typi
al simpli�-
ation through division of work is to fo
us on the synthesis of the logi

omponentof programs, leaving the design of their data-stru
ture and
ontrol
omponentsto others. In this
hapter, I fo
us on approa
hes to logi
-based synthesis thatembody both of these usual simpli�
ations.A few words need to be said about the relationship between synthesis andtransformation. Whereas program synthesis is here de�ned as the translation of astatement from a possibly informal spe
i�
ation des
ription language into a pro-gram in a ne
essarily formal programming language, with fo
us on
orre
tness,program transformation is here de�ned as the equivalen
e-preserving modi�
a-tion of a program into another program of the same language, with fo
us ona
hieving greater eÆ
ien
y, in time or spa
e or both. This makes transformationdi�erent from synthesis in purpose, but
omplementary with it. In pra
ti
e, theyshare many
on
epts and te
hniques. Optimising transformation
an be a
hievedby
hanging any of the logi
,
ontrol, or data-stru
ture
omponents of programs.This raises many interesting issues:{ One
an argue that synthesis and transformation should not be a sequen
e oftwo separate but
omplementary tasks, be
ause the
orre
tness and eÆ
ien
yof algorithms are inevitably intertwined, even if separated in logi
 and
ontrol
omponents. But this division of work is appealing and has been useful.{ If only the text of a program enters transformation, then the rationale of itssynthesis steps is lost to the transformation and may have to be redis
overed,in a
ostly way, in order to perform e�e
tive transformation. I am not awareof any transformation approa
hes that take programming rationale as input.{ In Kowalski's words [53℄: \Changing the logi

omponent is a useful short-term strategy, sin
e the representation of the problem is generally easierto
hange than the problem-solver. Changing the
ontrol
omponent, on theother hand, is a better long-term solution, sin
e improving the problem-solverimproves its performan
e for many di�erent problems." A good example ofthe e�e
t of suitably
hanging
ontrol is the swit
h from logi
 programmingto
onstraint logi
 programming, thereby giving programs with a generate-and-test logi

omponent an often spe
ta
ular speedup. Su
h paradigm shiftsmay well require a rede�nition of what synthesis and transformation are.No matter whi
h way the purposes of synthesis and transformation are de�ned,there is an un
lear boundary between them, made even more
onfusing by other
onsiderations, examined in Se
tion 2.3.

2.2 Classi�
ation CriteriaA huge variety of synthesis me
hanisms exist, so I here propose a multi-dimensional
lassi�
ation s
heme for them. The
riteria fall into three major
ategories,grouping the attributes of the synthesis inputs, me
hanisms, and outputs.Synthesis Inputs. The input to synthesis is a spe
i�
ation of the informalrequirements. Sometimes, a domain theory stating the laws of the appli
ationdomain must also be provided. These inputs have the following attributes:{ Formality. An input to synthesis
an be written in either an informal lan-guage (whose syntax or semanti
s is not prede�ned), or a formal language(whose syntax and semanti
s are prede�ned). The often en
ountered notionof semi-formal language is stri
tly speaking meaningless:
ontrolled naturallanguages are formal, and UML and the likes are informal even though theirgraphi
al parts may have a formal syntax and semanti
s.{ Language. When using a formal input language, a spe
i�
ation
an beeither axioms, or input/output examples. Sometimes, the a
tual language isdisguised by a suitable graphi
al user interfa
e, or it is sugared.{ Corre
tness wrt the Requirements. Informally, a statement S is
orre
twrt another statement T i� S is
onsistent with T (everything that followsfrom S also follows from T) as well as
omplete wrt T (everything thatfollows from T also follows from S). Input to synthesis is usually assumed tobe
onsistent with the requirements. On the other hand, the input is eitherassumed to be
omplete or de
lared to be in
omplete wrt the requirements. Inthe former
ase, the synthesiser need only produ
e a program that is
orre
twrt the input. In the latter
ase, the synthesiser must try to extrapolate thea
tual
omplete requirements from the given input. In either
ase, a
tualvalidation against the informal requirements is done by the programmer,by
hanging the inputs to synthesis until the synthesised program has thedesired behaviour. As opposed to the external
onsisten
y and
ompleteness
onsidered here, internal
onsisten
y and
ompleteness are not
lassi�
ationattributes, but rather quality
riteria that may be me
hani
ally
he
kedbefore synthesis begins: a statement S is internally
onsistent i� S has atleast one model, and internally
omplete i� every symbol in S is eitherprimitive to the language used or de�ned within S.Synthesis Me
hanisms. The me
hanisms of program synthesis
an also be
lassi�ed along a few dimensions:{ Level of Automation. Having by de�nition ex
luded manual program-ming, synthesis is either semi-automati
 or fully automati
.{ Initiative. In semi-automati
 synthesis, the initiative in the intera
tion
anbe on either side, making the me
hanism synthesiser-guided or user-guided.{ Kinds of Inferen
e. There are many kinds of inferen
e and they
an all beused, and
ombined, towards synthesis. I here distinguish between purely-dedu
tive synthesis, whi
h performs only dedu
tive inferen
e and is either

transformational (see Se
tion 3) or
onstru
tive (see Se
tion 4), and mixed-inferen
e synthesis, whi
h features any appropriate mix of dedu
tive, indu
-tive, abdu
tive, and analogi
al inferen
e (see Se
tion 5).{ Kinds of Knowledge. There is a great need for in
orporating knowledgeinto program synthesisers. There are essentially four kinds of useful syn-thesis knowledge, namely knowledge about the me
hani
s of algorithm de-sign, knowledge about the laws and re�nement of data stru
tures, knowledgeabout the laws of the appli
ation domain (this was
alled the domain theoryabove), and meta-knowledge, that is knowledge about how and when to usethe other kinds of knowledge.{ Determinism. A non-deterministi
 synthesiser
an generate a family ofprograms from a spe
i�
ation; otherwise, it is a deterministi
 synthesiser.{ Soundness. Synthesis should be a sound pro
ess, in the sense that it pro-du
es an output that is guaranteed to satisfy some pre-determined notion of
orre
tness wrt the input.Synthesis Outputs. The output of synthesis is a program, and usually onlythe logi

omponent of its algorithm. The
lassi�
ation attribute is:{ Language. Te
hni
ally, the synthesised program
an be in any language,be
ause any
ode
an be generated from the
hosen internal representation.In pra
ti
e, the pure parts of the so-
alled de
larative languages are usually
hosen as internal and external representation of programs, be
ause they arethe highest-level languages
ompiled today and thus suÆ
ient to make thepoint. Common target languages thus are Horn
lauses, re
ursion equations,�-expressions, et
.These
lassi�
ation attributes are not independent:
hoi
es made for one ofthem a�e
t the available
hoi
es for the others.2.3 The Moving Goalposts of Program SynthesisThe �rst assemblers and
ompilers were seen as automati
 programming sys-tems, as they relieved the programmers from many of the burdens of binaryprogramming. Ever sin
e, program synthesis resear
h has been trying to be onestep ahead of the state-of-the-art in programming languages, but, in retrospe
t,it is nothing else but the quest for new programming paradigms. To paraphraseTesler's senten
e, whi
h was originally on Arti�
ial Intelligen
e: Program syn-thesis deals with whatever has not been
ompiled yet. Of
ourse, as our notionof program evolves, our understanding of
ompilation has to evolve as well: it isnot be
ause today's
ompilers are largely deterministi
 and automati
 that to-morrow's
ompilers, that is today's synthesisers, are not allowed to have sear
hspa
es or to be semi-automati
.The main problem with formal inputs to program synthesis is that there isno way to
onstru
t them so that we have a formal proof that they
apture ourinformal requirements. In fa
t, the phrase `formal spe
i�
ation' is a
ontradi
tionin terms, as real spe
i�
ations
an only be informal [57℄. An informal
orre
tness

proof is needed somewhere, as the purpose of software engineering is after allto obtain programs that implement our informal requirements. Writing su
hformal inputs just shifts the obligation of performing an informal proof from theprogram-vs-informal-requirements veri�
ation to the formal-inputs-vs-informal-requirements veri�
ation, but it does not eliminate that obligation.In my opinion, programs and su
h formal inputs to synthesis are intrinsi
allythe same thing. As synthesis resear
h aims at raising the level of language inwhi
h we
an intera
t with the
omputer,
ompilation and synthesis are intrin-si
ally the same pro
ess. In other words, real programming and synthesis areonly being done when going from informal requirements to a formal des
ription,whi
h is then submitted to a
ompiler. In this sense, fo
using synthesis on start-ing from formal statements is not really a simpli�
ation, as
laimed above, butrather a rede�nition of the task, making it identi
al to
ompilation.I am not saying that formal methods are useless. Of
ourse it is importantto be able to
he
k whether a formal des
ription is internally
onsistent and
omplete, and to generate prototypes from exe
utable des
riptions, be
ause allthis allows early error dete
tion. But one
annot say that su
h formal des
riptionsare spe
i�
ations, and one still knows nothing about whether they are externally
onsistent and
omplete, namely wrt the informal requirements. Formal inputsto program synthesis are already programs, though not in a
onventional sense.But
onventions
hange in time, and the so-
alled \formal spe
i�
ations" oftoday will be per
eived as programs tomorrow.In order to sti
k to the
ontemporary terminology and make this
hapter in-dependent of agreement or disagreement on this sub-se
tion, I shall neverthelessspeak of formal spe
i�
ations (without the quotes) in the following.3 A
hievements of Transformational SynthesisIn transformational synthesis, meaning-preserving transformation rules are ap-plied to the spe
i�
ation, until a program is obtained. Usually, this is done withina so-
alled wide-spe
trum language| su
h as b, gist, vdm, z|
ontaining bothnon-exe
utable spe
i�
ation
onstru
ts and exe
utable programming
onstru
ts.I shall use the word `des
ription' to designate the software representations in su
ha language, be they formal spe
i�
ations, programs, or hybrids in-between thesetwo extremes.Given a logi
 spe
i�
ation of the following form, where there is no prejudi
eabout whi
h parameters are inputs and whi
h ones are outputs, at run-time:8P : pre(P)! (p(P)$ post(P))where pre is the pre-
ondition (an assertion on all the parameters P , assumedto hold when exe
ution of a program for p starts), post is the post-
ondition (anassertion on the parameters P , to be established after exe
ution of a programfor p), and p is the spe
i�ed predi
ate symbol, transformational synthesis iter-ates over a single step, namely the appli
ation of a transformation rule to someexpression within the
urrent des
ription, until a program is obtained.

Transformation rules, or transforms, are often represented as rewrite ruleswith pattern variables: IP) OP [if C ℄expressing that under the optional appli
ability
ondition C, an expression mat
h-ing input pattern IP under some substitution � may be repla
ed by the instan
eOP� of the output pattern OP .Transforms are either re�nements, redu
ing the abstra
tion level of the
ur-rent des
ription by repla
ing a spe
i�
ation
onstru
t by a program
onstru
t,or optimisations, performing a simpli�
ation (redu
tion in expression size) or aredu
tion in runtime or spa
e, both at the same abstra
tion level. Re�nements
an a
t on statements or datatype de�nitions, redu
ing non-determinism.A sample re�nement is the following un
onditional transform of a high-levelnon-re
ursive array summation into a re
ursive expression:S =Pui=l A[i℄) �(A; l; u; S) l > u; S = 0 % �(A; l; u; S) i� S is the sum of A[l℄::A[u℄�(A; l; u; S) : l > u;+(l; 1; l0); �(A; l0; u; T);+(A[l℄; T; S)Sample optimisations are the following
onditional transform for divisions:x=x) 1 if x 6= 0and the following a

umulator introdu
tion, whi
h amounts to repla
ing re
ur-sion in the non-minimal
ase of a divide (d) and
onquer (
) de�nition of predi-
ate p by tail-re
ursion | with the minimal (m)
ase being solved (s) withoutre
ursion | as this
an be
ompiled into more eÆ
ient
ode, like iteration:p(X;Y) m(X); s(X;Y)p(X;Y) :m(X); d(X;H; T); p(T; V);
(H;V; Y)) p(X;Y) p(X;Y; I)p(X;Y;A) m(X); s(X; J);
(A; J; Y)p(X;Y;A) :m(X); d(X;H; T);
(A;H;A0); p(T; Y;A0)if asso
iative(
) ^ identity(
; left ; I)The latter transform is appli
able to the output of the re�nement above, be
ause+=3 is asso
iative and has a left-identity element, namely 0. This illustrates howtransforms
an be
hained. Of
ourse, the re�nement above
ould immediatelyhave re
e
ted su
h a
haining.Other
ommon transforms are unfolding (repla
ing a symbol by its de�ni-tion), folding (the inverse of unfolding), de�nition (introdu
tion of a new symbolvia its de�nition), instantiation (appli
ation of a substitution), abstra
tion (in-trodu
tion of a where
lause, in fun
tional programming), or re
e
t the laws ofthe appli
ation domain.Several
ontrol issues arise in the rewrite
y
le, be
ause the synthesis sear
hspa
e is usually intra
table due to the sheer number of transforms. First, who

he
ks the appli
ability
ondition? Usually, this is
onsidered a synthesiser re-sponsibility, and thus be
omes a task for an automati
 theorem proving
om-ponent thereof. Se
ond, whi
h transform should be applied next, and to whi
hexpression? Usually, full automation is abandoned in favour of user-guided in-tera
tive appli
ation of transforms, with the synthesiser automati
ally ensuringthat appli
ability
onditions are met, as well as
orre
tly applying the
hosentransform to the
hosen expression, thus taking over all
leri
al work. Other ap-proa
hes are based on rule ordering, heuristi
s, agendas, planning, replay, et
.Third, when to stop transforming? Indeed, many transforms
an also be ap-plied during program transformation (as de�ned in Se
tion 2.1), hen
e blurringthe transition and distin
tion between synthesis and transformation. Usually,one
onsiders that synthesis per se has �nished when the
urrent des
riptionis entirely within the exe
utable part of the wide-spe
trum language, so thatsynthesis is here de�ned as the translation from the full wide-spe
trum languageinto its exe
utable subset.When transforms are too �ne-grained, they lead to very tedious and lengthysyntheses. The idea is thus to de�ne ma
ros
opi
 transforms that are higher-level in the sense that they are
loser to a
tual programming de
isions and thatthey are
ompositions of su
h atomi
 transforms. Examples are �nite di�er-en
ing (repla
ing expensive
omputations in a loop by in
remental ones), loopfusion (merging of nested or sequentially-
omposed loops into one loop), partialevaluation (simplifying expressions for �xed arguments), generalisation (solvinga more general, easier problem), dynami
 programming, memoing (
a
hing re-sults of
omputations to avoid useless re
omputations), jittering (preparing theappli
ation of other transforms).To do
ument a synthesis and ease its understanding, the applied sequen
eof transforms is usually re
orded, ideally with the rationale of their usage. Thisalso allows replay, though it remains un
lear when this is suitable and when not.I now dis
uss an entire produ
t-line of representative transformational syn-thesisers,
hosen be
ause of the obje
tive of s
aling the te
hnology to real-lifesoftware development tasks. Indeed, kids and its su

essors (see Se
tion 3.1)have been su

essfully deployed in many real-life appli
ations. In Se
tion 3.2, Ioutline the e�orts of the other resear
h
entres in transformational synthesis.3.1 Spe
Ware, DesignWare, and PlanWareAt Kestrel Institute (Palo Alto, California, USA, www.kestrel.edu), Smith andhis team have been designing, for over 15 years now, a series of synthesisers, allwith the same philosophy, whi
h is spe
i�
 to them (see below). Their KestrelIntera
tive Development System (kids) [81℄ extends its prede
essor
ypress [80℄and automati
ally synthesises
orre
t programs within the wide-spe
trum lan-guage refine, while leaving their transformation to a user-guided rewrite
y
le.I here des
ribe the systems of their produ
t-line | Spe
Ware (for Spe
i�
a-tion Ware) [86℄, DesignWare [84℄, and PlanWare [18℄ | as well as how theyrelate to ea
h other. They amount to more than just re
asting, as des
ribed in[83℄, the synthesis and transformation
al
ulus of kids in
ategory theory.

The overall Kestrel philosophy is as follows. Consider, for instan
e, pro-grams that solve
onstraint satisfa
tion problems (CSPs) by exploring the entire
andidate-solution spa
e, though with pruning of useless subspa
es. They have a
ommon stru
ture,
alled global sear
h, of whi
h the data
ow,
ontrol-
ow, andintera
tions between parts
an be formally
aptured in a program s
hema. Sim-ilarly, other program s
hemas
an be designed for
apturing the methodologiesleading to lo
al sear
h programs, divide-and-
onquer programs, et
. Su
h pro-gram s
hemas
an then be used in synthesis to signi�
antly redu
e the
andidate-program spa
e. Some proof obligations arise in su
h s
hema-guided synthesis, butthey are feasible by state-of-the-art automated theorem provers. The synthesisedprograms are not very eÆ
ient, though, sin
e they are just problem-spe
i�
 in-stan
es of program s
hemas that had been designed for entire problem families,but without being able to take into a

ount the spe
i�
ities of their individualproblems. The synthesised programs
an thus be transformed into equivalentbut more eÆ
ient ones by applying high-level transforms, in a user-guided way.However, this transformation
y
le also be
ame the bottlene
k of kids, be
ausethe user really has to be an expert in applying these transforms in a suitableorder and to the appropriate sub-expressions. Moreover, the proof obligationsof synthesis are only automatable if the entire appli
ation domain knowledge isformally
aptured, whi
h is an often daunting task. Smith used kids to ratherqui
kly re�ne new, breakthrough algorithms for various CSPs [82℄.The inputs to synthesis are a formal axiomati
 higher-order algebrai
 spe
-i�
ation, assumed to be
onsistent and
omplete wrt the requirements, and adomain theory. The synthesis me
hanism is purely dedu
tive, intera
tive or au-tomati
 (depending on the system), non-deterministi
, and sound. Algorithmdesign, data stru
ture, and appli
ation domain knowledge are exploited. Theoutput is a program in any supported language (e.g., CommonLisp,
++).The Transformation System. A
ategory-theory approa
h to transformationis taken. Viewing spe
i�
ations as �nite presentations of theories, whi
h are the
losures of the spe
i�
ation axioms under the rules of inferen
e, a spe
i�
ationmorphism S ! S0 is a provability-preserving signature morphism between spe
-i�
ations S and S0, that is a map between their sort and operator symbols, su
hthat axioms translate into theorems.2For instan
e,
onsider the spe
i�
ation of �nite
ontainers in Figure 1. It isparameterised on the sort E of the
ontainer elements. Containers are eitherempty, or singletons, or
onstru
ted by an in�x binary join operator.Also
onsider the following spe
i�
ation of binary operators:spe
 BinOp issort Top bop : T; T �! Tend2 For typographi
 reasons, the `!' symbol is thus overloaded, being used for bothmorphisms and logi
al impli
ation. The distin
tion should always be
lear from
ontext. Under its morphism meaning, this symbol will be typeset here in otherdire
tions of the wind rose, to fa
ilitate the representation of graphs of morphisms.

spe
 Container issorts E;Contop empty : �! Contop singleton : E �! Contop join : Cont; Cont �! Cont: : : other operator de
larations : : :ops fempty; singleton; joing
onstru
t Contaxiom 8X : Cont : X join empty = Xaxiom 8X : Cont : empty join X = X: : : axioms for the other operators : : :endFig. 1. A spe
i�
ation of �nite
ontainersspe
 ProtoSeq issorts E; Seqop empty : �! Seqop singleton : E �! Seqop join : Seq; Seq �! Seq: : : other operator de
larations : : :ops fempty; singleton; joing
onstru
t Seqaxiom 8X : Seq : X join empty = Xaxiom 8X : Seq : empty join X = Xaxiom 8X;Y; Z : T : (X join Y) join Z = X join (Y join Z): : : axioms for the other operators : : :end Fig. 2. A spe
i�
ation of �nite sequen
esThe following spe
i�
ation of asso
iative operators re
e
ts the spe
i�
ation mor-phism BinOp! Asso
iative, whi
h is fT 7! T; bop 7! bopg:spe
 Asso
iative isimport BinOpaxiom 8X;Y; Z : T : (X bop Y) bop Z = X bop (Y bop Z)endSpe
i�
ations and spe
i�
ation morphisms form a
ategory,
alled SPEC , inwhi
h push-outs
an be
omputed. Informally, a diagram is a dire
ted graphwith spe
i�
ations as verti
es and spe
i�
ation morphisms as ar
s.For instan
e, the push-out of Asso
iative BinOp ! Container undermorphisms fT 7! T; bop 7! bopg and fT 7! E; bop 7! joing is isomor-phi
 to the spe
i�
ation of prototype �nite sequen
es in Figure 2. Indeed, se-quen
es are
ontainers whose join operation is asso
iative. By another mor-phism, sequen
e-spe
i�
 operators
an be added to ProtoSeq, giving rise to aspe
i�
ation Sequen
e of �nite sequen
es. By another push-out Commutative BinOp ! ProtoSeq, we
an get a spe
i�
ation ProtoBag of prototype �nitebags, to whi
h bag-spe
i�
 operators
an be added, giving rise to a spe
i�
ation

BinOp ! Container# #Asso
iative! ProtoSeq BinOp# #BinOp ! ProtoBag Commutative# #Idempotent! ProtoSet
Container#ProtoSeq. #Sequen
e ProtoBag. #Bag ProtoSet.SetFig. 3. A
hain of
ommuting diagrams (left) and a taxonomy of
ontainers (right)Bag of �nite bags. Indeed, bags are sequen
es whose join operation is
om-mutative, be
ause element order is irrelevant. Finally, by yet another push-outIdempotent BinOp ! ProtoBag, we
an obtain a spe
i�
ation ProtoSet ofprototype �nite sets, to whi
h set-spe
i�
 operators
an be added, giving rise toa spe
i�
ation Set of �nite sets. Indeed, sets are bags whose join operation isidempotent, be
ause multipli
ity of elements is irrelevant. This pro
ess
an be
aptured in the
hain of three
ommuting diagrams of the left of Figure 3. Ifwe graphi
ally add the
onsidered additional morphisms to the
entral verti
al
hain, we obtain the taxonomy of
ontainers in the right of Figure 3.A diagram morphism D) D0 is a set of spe
i�
ation morphisms betweenthe spe
i�
ations of diagrams D and D0 su
h that
ertain squares
ommute.It serves to preserve and extend the stru
ture of spe
i�
ations, as opposed to
attening them out via
o-limits. For instan
e, a not shown diagram morphismBAG) BAGasSEQ
an be
reated to
apture the re�nement of bags intosequen
es, where BAG and BAGasSEQ are diagrams involving spe
i�
ationsBag and Sequen
e, respe
tively. Diagrams and diagram morphisms also form a
ategory, in whi
h
o-limits
an be
omputed, using the
o-limits in SPEC . Theword `spe
i�
ation' here denotes either a spe
i�
ation or a spe
i�
ation diagram,and `re�nement' refers to a diagram morphism, unless otherwise noted.In general now, spe
i�
ations | as theory representations |
an
apture do-main models (e.g., transportation), abstra
t datatypes (e.g., BAG), software re-quirements (e.g.,
rew s
heduling), algorithm theories (e.g., divide-and-
onquer),et
. Tool support and a large library of reusable spe
i�
ations are provided forstru
turing and
omposing new spe
i�
ations. Also, spe
i�
ation morphisms anddiagram morphisms
an
apture spe
i�
ation stru
turing (e.g., via imports),spe
i�
ation re�nement (e.g., s
heduling to transportation-s
heduling), algo-rithm design (e.g., global-sear
h to s
heduling), datatype re�nement (e.g., BAG)BAGasSEQ), expression optimisation (e.g., �nite di�eren
ing), et
. Again, toolsupport is provided for
reating new re�nements, and a large library of usefulre�nements exists.Finally, inter-logi
 morphisms are provided for translating from the spe
i-�
ation logi
 into the logi
 of a programming language | thereby performing
ode generation | or of a theorem-prover or any other supporting tool.

A) Spe
0+ +B) Spe
1 (C+ +E) Spe
2 (D+ +: : : : : : : : :+ +Spe
n (Z#CodeFig. 4. The synthesis pro
essThe Synthesis Pro
ess. The re�nement of a spe
i�
ation Spe
0 is an iterativepro
ess of
al
ulating push-outs in
ommuting squares, yielding new spe
i�
a-tions Spe
i, until the pro
ess is deemed �nished and an inter-logi
 morphism isused to generate a program Code from the �nal spe
i�
ation Spe
n. This pro-
ess is depi
ted in Figure 4. Here, A) B, C) D, et
, are re�nements storedin a library. With push-outs being
al
ulated automati
ally, the
reative stepsare the sele
tion of a re�nement and the
onstru
tion of a
lassi�
ation arrow[83, 84℄ between the sour
e diagram (A, C, et
) of a library re�nement and the
urrent spe
i�
ation. The leverage
an be quite dramati
, with push-outs oftengenerating many new lines, whi
h might have been quite
umbersome, if notdiÆ
ult, to write by hand.As the size and
omplexity of spe
i�
ation and re�nement libraries in
rease,support must be given for this approa
h to s
ale up. First, spe
i�
ation librariesare organised in taxonomies, su
h as Figure 3 above, so as to allow the in-
remental
onstru
tion of
lassi�
ation arrows [84℄. For instan
e, to apply theBAG) BAGasSEQ re�nement to the
urrent spe
i�
ation S, one
an �rst
las-sify S as a Container, then as a ProtoSeq, next as a ProtoBag, then as a Bag,and �nally as a BAG , rather than
lassifying S as a BAG in one go. The deeperone goes into a taxonomy, the more spe
i�
ation information
an be exploitedand the more eÆ
ient the resulting
ode. Se
ond, as patterns of useful
lassi�
a-tion and re�nement sequen
es emerge, parameterised ma
ros,
alled ta
ti
s,
anbe de�ned to provide higher-level, if not more automati
, operations to the user.For instan
e, the divide-and-
onquer algorithm theory admits two
lassi�
ationta
ti
s, depending on whether the de
omposition or the
omposition operator ismanually sele
ted from a library, and thus reused, in a
lassi�
ation step, leavingthe other operator to be inferred.Spe
Ware [86℄ is an abstra
t ma
hine exporting high-level synthesis andtransformation primitives that hide their low-level implementation in termsof
ategory theory operations. Using it, one
an more qui
kly write new syn-thesisers. First, a new version of kids was implemented,
alled DesignWare[84℄, extending Spe
Ware with domain-independent taxonomies of software de-sign theories plus support for re�ning spe
i�
ations using the latter. Then, on

top of DesignWare, the PlanWare [18℄ domain-spe
i�
 synthesiser of high-performan
e s
hedulers was developed. Both its synthesis and transformationpro
esses are fully automati
, and it even automati
ally generates the formalspe
i�
ation and appli
ation domain knowledge | whi
h are typi
ally thou-sands of lines | from the information provided by the spe
i�er, who uses a veryintuitive domain-spe
i�
 spreadsheet-like interfa
e, without being aware of theunderlying
ategory theory. PlanWare extends DesignWare with libraries ofdesign theories and re�nements about s
heduling, together with a spe
ialised ta
-ti
 for
ontrolling the appli
ation of this design knowledge. Other domain-spe
i�
synthesisers are in preparation, and will also be built on top of DesignWare.A Sample Synthesis. A synthesis of a fun
tion sorting that sorts bags intosequen
es may start from the following spe
i�
ation:spe
 Sorting isimport BagSeqOverLinOrdop sorted : Bag; Seq �! Booleandef sorted(X;Y) = ord(Y) ^ seqToBag(Y) = Xop sorting : Bag �! Seqaxiom sorted(X; sorting(X))endwhere sorted is used to express the post-
ondition on sorting. Universal quan-ti�
ation
onsistent with the signature de
larations is assumed for unquanti�edvariables. Suppose the spe
i�er wants to apply a divide-and-
onquer algorithmdesign, as embodied in the re�nement DivConq) DivConqS
heme, where thesour
e spe
i�
ation is in Figure 5. Here, a fun
tion F from domain D into rangeR is spe
i�ed, with post-
ondition O. Three mutually ex
lusive predi
ates pi(for i = 0::2) are de�ned over D, representing
onditions for the existen
e ofde
ompositions,
omputed under post-
onditions ODi (for i = 0::2), with OD2enfor
ing that its de
ompositions are smaller than the given term, under well-founded relation �. Soundness axioms require that the de
ompositions
an be
omposed, under post-
onditions OCi (for i = 0::2), to a
hieve the overall post-
ondition O. The target spe
i�
ation of the re�nement is in Figure 6. wherea s
hemati
 de�nition of the spe
i�ed fun
tion F is introdu
ed, together with
omposition operators Ci whose post-
onditions are OCi.Now, to apply the DivConq) DivConqS
heme re�nement, a
lassi�
ationarrow Sorting) DivConq has to be manually
onstru
ted, so that the
orre-sponding push-out
an be automati
ally
al
ulated. The �rst part of the ne
es-sary diagram morphism is straightforward, namely fD 7! Bag; R 7! Seq; F 7!sorting; O 7! sorted; � 7! subBag; : : :g. The remaining part gives riseto dual alternatives, whi
h
an be
aptured in ta
ti
s, as dis
ussed above: ei-ther a set of simple standard de
omposition operators is reused from a libraryand the
orresponding
omplex
omposition operators are inferred, or a set ofsimple standard
omposition operators is reused and the
orresponding
om-plex de
omposition operators are inferred. Following the �rst approa
h, the bag
onstru
tor set femptyBag; singletonBag; bagUniong
ould be reused as the ba-

spe
 DivConq issorts D;R;E; Unitop F : D �! Rop O : D;R �! Booleanop � : D;D �! Booleanaxiom wellFounded(�)op p0; p1; p2 : D �! Booleanop OD0 : D;Unit �! Booleanop OD1 : D;E �! Booleanop OD2 : D;D;D �! Booleanop OC0 : R;Unit �! Booleanop OC1 : R;E �! Booleanop OC2 : R;R;R �! Booleanaxiom p0(X)! OD0(X; hi)axiom p1(X)! 9M : E : OD1(X;M)axiom p2(X)! 9X1; X2 : D : OD2(X;X1; X2) ^X1 � X ^X2 � Xaxiom OD0(X; hi) ^ OC0(Y; hi)! O(X; Y)axiom OD1(X;M) ^OC1(Y;M)! O(X; Y)axiom OD2(X;X1; X2) ^O(X1; Y1) ^O(X2; Y2) ^OC2(Y; Y1; Y2)! O(X; Y)axiom p0(X) xor p1(X) xor p2(X)endFig. 5. Spe
i�
ation of problems that have divide-and-
onquer programssis for de
omposition, giving rise to f: : : ; p0 7! emptyBag?; OD0 7! �X : X =emptyBag; p1 7! singletonBag?; OD1 7! �X;M : X = singletonBag(M); p2 7!nonSingletonBag?; OD2 7! �X;X1; X2 : X = bagUnion(X1; X2); : : :g. By de-du
tive inferen
e, the remaining part of the morphism
an be obtained, yieldingtranslations to empty sequen
e
onstru
tion, singleton sequen
e
onstru
tion,and sequen
e merging for OC0, OC1, and OC2, respe
tively, ultimately leadingthus to a merge-sort algorithm. Under the se
ond approa
h, the sequen
e
on-stru
tor set femptySeq; singletonSeq; seqCon
atg
ould be reused as the basisfor
omposition, ultimately leading to a qui
k-sort algorithm.Either way, after
al
ulating the push-out, synthesis
ould
ontinue by usingthe BAG) BAGasSEQ datatype re�nement, followed by simpli�
ation re�ne-ments, et
, progressively bringing the spe
i�
ation
loser to a programming level,until a
ode-generating inter-logi
 morphism for translating the de�nition of Finto a fun
tional program
an be applied.3.2 Other S
hoolsTransformational synthesis is by far the dominant approa
h to program synthe-sis, and many dozens of proje
ts have been devoted to it, so I
an here onlymention the seminal and dominant ones.At the University of Edinburgh (UK), Burstall & Darlington [22, 25℄ pro-posed a small, �xed set of domain-independent, low-granularity, and rather

spe
 DivConqS
heme isimport DivConqop C0 : �! Raxiom OC0(C0; hi)op C1 : E �! Raxiom OC1(C1(M);M)op C2 : R;R �! Raxiom OC2(C2(X1; X2); X1; X2)de�nition of F isaxiom p0(X)! OD0(X; hi) ^ F (X) = C0axiom p1(X)! 9M : E : OD1(X;M) ^ F (X) = C1(M)axiom p2(X)! 9X1; X2 : D : OD2(X;X1; X2) ^ F (X) = C2(F (X1); F (X2))endtheorem O(X; F (X))end Fig. 6. Spe
i�
ation of divide-and-
onquer programsoptimisation-oriented transforms (namely folding, unfolding, de�nition, instan-tiation, and abstra
tion) for the synthesis and transformation of re
ursion equa-tions. Laws of the appli
ation domain
an also be used. They presented a strategyand a semi-automated system for transforming re
ursive equations, say into tail-re
ursive ones, with the user making the
reative de
isions. For synthesis, theobje
tive of applying su
h transforms often is to
onstru
t, through unfoldingand other rewriting, a des
ription where re
ursion may be introdu
ed throughfolding. The atomi
 transforms are proven to
onstitute a
orre
t set for explor-ing the
andidate program spa
e.At Stanford University (California, USA), at the same time, but indepen-dently, Manna & Waldinger [63℄ dis
overed the same atomi
 rules and automati-
ally synthesised lisp programs with their DEDu
tive ALgorithm Ur-Synthesiser(dedalus). The system has over 100 rules, and also generates
orre
tness andtermination proofs. See Se
tion 4.1 for a detailed dis
ussion of a redesign ofdedalus as a
onstru
tive synthesiser.In the UK, mu
h of the early e�orts on the synthesis of logi
 programs were
ondu
ted, based on the foundational fold/unfold work mentioned above. Un-der a �rst approa
h, Clark et al. [23℄ exe
ute the spe
i�
ation with symboli
values that
over all possible forms of the type of the
hosen indu
tion param-eter. For instan
e, if that parameter is a list, then the empty and non-emptylists are
onsidered. A similar approa
h was taken by Hogger [49℄, though withslight di�eren
es. Indu
tion on some parameter was only introdu
ed as the needarises. A highly stru
tured top-down strategy for applying folding and unfolding,guided by a re
ursion s
hema provided by the spe
i�er, as well as the notion ofspe
i�
ation framework for synthesis, were proposed by Lau et al. [55, 56℄. Thisapproa
h is amenable to me
hanisation. Spe
i�
ation frameworks enabled a �rst-order logi
 re
onstru
tion of kids-like s
hema-guided synthesis [36, 35, 38℄.

Several resear
hers tried to make synthesis a deterministi
 pro
ess, akin to
ompilation. For instan
e, impli
ation formulas with arbitrary bodies may benormalised into normal
lauses by the Lloyd-Topor translation [59℄. However,this does not always yield useful logi
 programs, due to the de�
ien
ies of SLDNFresolution, su
h as
oundering. Also, the obtained programs are sometimes hope-lessly ineÆ
ient. Over
oming these
aws is the obje
tive of program transfor-mation. Another approa
h was taken by Sato & Tamaki's �rst-order
ompiler[77℄, whose synthesis of partially
orre
t de�nite programs is fully automati
 anddeterministi
, but may fail, for la
k of logi
al power.At TU Muni
h and TU Darmstadt (Germany), Bibel leads synthesis proje
tssin
e 1974. Their lops (LOgi
al Program Synthesis) system [8{10℄, although pre-sented as being a
onstru
tive synthesiser, was a
tually transformational. Syn-thesis
onsisted of a four-phased appli
ation of heuristi
s that
ontrol spe
ialtransformations. A novel feature is the breaking of inputs into parts so as todis
over in what way they
ontribute to the
onstru
tion of the outputs; in thisway, loops
an be dis
overed without the need for re
ursively-expressed ba
k-ground axioms, whi
h would be essentially identi
al to the synthesised programs.The
urrent maps proje
t [11℄ takes a multi-level approa
h to synthesis, and isessentially a re-implementation of kids within NuPrl, but without optimisingtransformations yet.At Stanford University (California, USA), the psi proje
t led by Green [45℄in
luded the transformational engine pe
os [4℄, whi
h is based on a large, �xed
atalog of domain-spe
i�
 transforms. Cooperation with an eÆ
ien
y expert,
alled libra [52℄, ensured eÆ
ient synthesis of eÆ
ient programs. A su

essorsystem,
alled
hi [46℄, was partly developed at Kestrel Institute.At the University of Southern California (USA), the 15-year-proje
t safe/ti(Spe
i�
ation A
quisition From Experts, and Transformational Implementation)headed by Balzer [2℄ provided a �xed
atalog of domain-spe
i�
 transforms forre�ning spe
i�
ations within the wide-spe
trum language gist, via a knowledge-based approa
h. Automation issues were ta
kled by the glitter sub-system [31℄.At TU Muni
h (Germany), the long-term
ip (Computer-aided Intuition-guided Programming) proje
t of Bauer and
o-workers [6, 72℄ led, sin
e 1975,to the wide-spe
trum algebrai
 spe
i�
ation language
ip-l and the intera
-tive environment
ip-s. The main emphasis was on a user-extensible
atalog oftransforms, starting from a small set of generative rules.The Vienna Development Method (vdm) by Bj�rner & Jones [17℄ is an ISO-standardised
omprehensive software development methodology, pro
eeding byre�nement from formal spe
i�
ations of abstra
t datatypes in the meta-iv wide-spe
trum language. Many tools are available, from di�erent sour
es, but theyare not integrated. See www.
sr.n
l.a
.uk/vdm for more details.From Oxford University (UK)
omes z [85℄, a very su

essful and soon-to-be-ISO-standardised notation for formal spe
i�
ations, based on set theory. Thereis third-party tool support, though not integrated, on top of the hol theoremprover. Award-winning appli
ations in
lude the IBM CICS proje
t and a spe
i�-
ation of the IEEE standard for
oating-point arithmeti
. See www.afm.sbu.a
.uk/z.

The b formal method was developed by Abrial [1℄. A �rst-order logi
 spe
-i�
ation language with sets is provided to spe
ify and re�ne systems that aremodelled as abstra
t ma
hines. Tool support for re�nement and dis
hargingmany of its proof obligations exists. See www.afm.sbu.a
.uk/b.At the University of California at San Diego (USA), the obj language fam-ily of Goguen and his team [40℄ provides wide-spe
trum algebrai
 languages,based on order-sorted equational logi
, possibly enri
hed with other logi
s. Toolsupport for re�nement exists. See www.
s.u
sd.edu/users/goguen/sys/obj.html.At the Universities of Edinburgh (UK) and Warsaw (Poland), Sannella &Tarle
ki [78℄ propose ExtendedML as a wide-spe
trum language for spe
i�
a-tion and formal development of StandardML programs, through re�nement.See www.d
s.ed.a
.uk/home/dts/eml.4 A
hievements of Constru
tive SynthesisConstru
tive synthesis | also known as proofs-as-programs synthesis, and, abit misleadingly, as dedu
tive synthesis | is based on the Curry-Howard iso-morphism [50℄, whi
h says that there is a one-to-one relationship between a
onstru
tive proof [7, 68℄ of an existen
e theorem and a program that
omputeswitnesses of the existentially quanti�ed variables of the theorem. Indeed, the useof indu
tion in proofs
orresponds to the use of re
ursive or iterative
ompositionin programs, while
ase analysis
orresponds to a
onditional
omposition, andlemma invo
ation to a pro
edure
all.Assume given a logi
 spe
i�
ation of the following form:8X : 9Y : pre(X)! post(X;Y) (1)where pre is the pre-
ondition (an assertion on the input parametersX , assumedto hold when exe
ution of the program starts), and post is the post-
ondition (anassertion on X and the output parameters Y , to be established after exe
ution ofthe program). Note that this spe
i�
ation form naturally leads to the synthesisof total fun
tions, but not of relations. A solution to this is to view relations asfun
tions into Booleans [20℄. Constru
tive synthesis pro
eeds in two steps:1. Constru
tively prove the satis�ability of the spe
i�
ation.2. Obtain the pro
edure, embodied in the proof, of realising the spe
i�
ation.For the se
ond step, there are two approa
hes:{ The interpretative approa
h dire
tly interprets the proof as a program, bymeans of an operational semanti
s de�ned on proofs.{ The extra
tive approa
h me
hani
ally extra
ts | or:
ompiles | a program,in a given target language, from the proof.The two approa
hes have
omplementary advantages and drawba
ks: interpre-tation is not as eÆ
ient as the exe
ution of a
ompiled version, but the
hoi
eof a target language might obs
ure
omputational properties of proofs.

The idea of exploiting
onstru
tive proofs as programs is a
tually way olderthan its naming as the Curry-Howard isomorphism in 1980: the idea is inherentto intuitionisti
 logi
 | see the work of Kleene in the 1940s | and the oldestsynthesisers of this approa
h are qa3 (Question-Answering system) by Green[44℄, and ProW (PROgram Writer) by Waldinger & Lee [90℄, both from thelate 1960s. The terminology `proofs-as-programs' seems to have been
oined byConstable in the early 1970s, a

ording to [5℄.The bottlene
k is of
ourse the state-of-the-art in automated theorem prov-ing (ATP). In essen
e, the hard problem of synthesis has been translated intothe other hard | if not harder! | problem of ATP. The proof spa
e for most
onje
tures is indeed intra
table, and formal spe
i�
ations tend to be quite
om-plex
onje
tures. Solutions are thus being worked out to
ontrol the navigationthrough this sear
h spa
e, namely synthesisers with reuse, intera
tive provers,ta
ti
al provers, et
.I here dis
uss two representative
onstru
tive synthesisers,
hosen due totheir interesting relationship to ea
h other. Indeed, amphion (see Se
tion 4.2)
an be seen as an outgrowth of dedalus (see Se
tion 4.1), with the obje
tiveof s
aling the te
hnology to real-life software development tasks, and this wasthe de
isive
riterion in my sele
tion. In Se
tion 4.3, I outline the e�orts of theother main resear
h
entres in
onstru
tive synthesis.4.1 dedalusTheDEDu
tive ALgorithm Ur-Synthesiser (dedalus) system of Manna &Waldinger(at Stanford and SRI, California, USA) was originally developed as a trans-formational synthesiser [63℄ (see Se
tion 3.2), and then re-designed within theproofs-as-programs paradigm, in a
onsiderably more elegant manner [64, 67℄.The inputs to synthesis are a formal axiomati
 �rst-order logi
 spe
i�
ation,assumed to be
onsistent and
omplete wrt the requirements, as well as a domaintheory. The synthesis me
hanism is purely dedu
tive and fully automatable,but an intera
tive interfa
e with user guidan
e exists. Only appli
ation domainknowledge is exploited. Synthesis is non-deterministi
 and sound. The outputs ofsynthesis are a side-e�e
t-free appli
ative program, as well as impli
itly a proofof its
orre
tness and termination.The Proof System. Constru
tive logi
s are not ne
essarily required for all of a
onstru
tive synthesis. Indeed, many derivation steps during synthesis a
tuallyare only veri�
ation steps, and need thus not be
onstru
tive at all. Classi
allogi
 is thus suÆ
ient, provided it is suÆ
iently
onstru
tive when needed.Their dedu
tive tableau proof system was developed espe
ially for proofs-as-program synthesis. A dedu
tive tableau is a two-dimensional stru
ture, whereea
h row is a senten
e of the form ha;�; oi or h�; g; oi, where a is an assertionand g a goal, both in
lassi
al �rst-order logi
, while o is an optional outputterm in lisp. The symbol `�' denotes the absen
e of an entry in that
olumn,and is equivalent to true for assertions, false for goals, and any new variablefor output terms. For simpli
ity, I assume there is only one output parameter in

spe
i�
ations. For instan
e,h�;M 2 S ^ (8X : X 2 S !M � X);Miis a senten
e
apturing a pre-
ondition-free spe
i�
ation of the minimum(S)fun
tion, whi
h returns the minimum element M of integer-set S.The semanti
s of a senten
e ha; g; oi, in an interpretation I, is the set of
losed terms t that, for some substitution �, are equal to instan
e o� of theoutput term, if any, and either the instan
e a� of the assertion, if any, is
losedand false or the instan
e g� of the goal, if any, is
losed and true, in I.The semanti
s of a tableau is the union of the semanti
s of its senten
es.There is thus an impli
it
onjun
tion between the assertions of a tableau, andan impli
it disjun
tion between its goals. Note the dual role of assertions andgoals: a formula
an be transferred between the assertions and goals
olumns bynegating it. Nevertheless, the distin
tion between assertions and goals providesintuitive and strategi
 power, and is thus kept.A set of dedu
tion rules is provided to add new senten
es to a tableau, notne
essarily in an equivalent way, but at least preserving the set of
omputableexpressions (whi
h are quanti�er-free expressions in terms of the basi
 fun
tionsof the theory, plus the fun
tions for whi
h programs have already been synthe-sised, in
luding the fun
tion for whi
h a program is
urrently being synthesised,as this enables re
ursion formation). Hen
e the program denoted by a tableauremains un
hanged through appli
ation of these rules. Ea
h user-provided newrule needs to be �rst proven sound a

ording to this pre
ept.A dedu
tion rule has a set of required senten
es in the old tableau, represent-ing the appli
ability
ondition of the rule, and a set of generated senten
es inthe new tableau, representing the di�eren
e between the old and new tableaus.For instan
e, the if-split rule breaks required senten
e h�; if a then g; ti intothe generated senten
es ha;�; ti and h�; g; ti. There are dual splitting rules.Conditional output terms are normally introdu
ed by four non-
lausal reso-lution rules, re
e
ting
ase analysis in informal proofs. For instan
e, the goal-goalresolution rule is as follows:h�; g1[p℄; si h�; g2[q℄; tih�; g1�[false℄ ^ g2�[true℄; if p� then t� else s�i (GG)where, assuming the required senten
es are standardised apart, � is the most-general uni�er for formulas p and q. See below for an example. Similarly, thereare the dual assertion-assertion (AA), goal-assertion (GA), and assertion-goal(AG) resolution rules.There are also rules for equivalen
e (repla
ing a formula by an equivalentone), theory-independent equality (repla
ing a term by an equal one, using anon-
lausal version of paramodulation), skolemisation (eliminating existentialquanti�ers), and well-founded indu
tion (allowing formation of terminating re-
ursion in the output term, when the indu
tion hypothesis is a
tually used).The Synthesis Pro
ess. Synthesis goes as follows, starting from a spe
i�
ationof the form (1), for a fun
tion f , in a theory T :

1. Form the initial tableau, with the senten
e h�; pre(X) ! post(X;Y); Y ibuilt from the spe
i�
ation, and assertion-only senten
es for the axioms ofT . Add f to the set of fun
tions of T and those already synthesised in T .2. Apply dedu
tion rules to add new senten
es to the tableau.3. Stop with the �nal tableau when a senten
e of the form hfalse;�; ti orh�; true; ti appears, where t is a
omputable expression.The extra
ted program then is the fun
tion de�nition f(X) = t[X ℄. It is
orre
twrt spe
i�
ation (1) in the sense that the formula 8X : pre(X)! post(X; f(X))is valid in theory T augmented with the axiom 8X : f(X) = t[X ℄. The programis also guaranteed to terminate.Equivalen
e-preserving simpli�
ation of senten
es is automati
ally performed,as a terminating rewrite pro
ess, before synthesis starts and after appli
ation ofany dedu
tion rule. There are theory-independent logi
al simpli�
ations, su
h asrepla
ing formula a^a by a, and theory-spe
i�
 simpli�
ations, su
h as repla
inginteger expression n+ 0 by n.The resolution rules have a symmetri
 nature. For instan
e, applying the AGrule to an assertion a and a goal g
ould be repla
ed by applying the GA ruleto g and a. However, typi
ally, one of the two symmetri
 appli
ations will notadvan
e the proof. The polarity sear
h
ontrol strategy (not explained here) triesto prevent su
h unsuitable appli
ations of the resolution rules, and always doesso without lengthening the proof nor
ompromising the
ompletion of the proof.Two issues around re
ursion formation deserve dis
ussion. First, there areme
hanisms for
onstru
ting new well-founded relations (wfr) from old ones,for use in appli
ation of the indu
tion rule. However, this makes the wfr sear
hspa
e rather large, and, worse, it is usually diÆ
ult to
hoose in advan
e the mostsuitable wfr, whi
h only be
omes apparent several steps later. To over
ome this,middle-out reasoning (originally explored in [48, 54℄) is performed, here repla
ingthe required wfr by a variable, so as to wait until its desired properties be
omeapparent. Se
ond, there is a re
urren
e sear
h
ontrol strategy that tries to mat
hgoals and sub-goals so as to form re
ursion.Spe
i�
ation-based reuse of existing programs within a theory T | su
h as,but not ex
lusively, already synthesised programs | be
omes possible throughthe addition of formulas of the form 8X : pre(X)! post(X; f(X)) to the axiomsof T , when starting a new synthesis.Finally, it is worth stating that the dedu
tion rules are powerful enough toalso perform program transformation.A Sample Synthesis. Rather than showing a full synthesis for a toy fun
tion,where the �nal program is virtually identi
al to the spe
i�
ation or to some ofthe ne
essary axioms in the theory, I de
ided to exhibit an interesting passagefrom a more diÆ
ult synthesis [66℄, highlighting the power of the resolution rules.Consider the spe
i�
ation of a fun
tion returning the square-root R of anon-negative rational number N , within a positive rational toleran
e �:� > 0! R2 � N ^N < (R + �)2

within a theory R for non-negative rationals, in
luding addition (+), squaring(x2), inequalities (<, >, �, �), et
.Suppose synthesis leads to a tableau with the following senten
e, after anif-split in the initial senten
e built from the spe
i�
ation, and after appli
ationof the equivalen
e rule a < b$:(b � a):h�; R2 � N ^ : (R+ �)2 � N ;R i (2)Let us apply resolution rule (GG) to this senten
e and the following standardised-apart
opy of itself: h�; S2 � N ^ :[(S + �)2 � N ℄; S iThe boxed sub-goals unify under most-general substitution fS=R + �g, so thegenerated senten
e is:h�;R2 � N ^ :false ^ true ^ :[((R + �) + �)2 � N ℄;if (R + �)2 � N then R+ � else R iwhi
h is automati
ally simpli�ed into:h�; R2 � N ^ :[(R + 2�)2 � N ℄; if (R+ �)2 � N then R+ � else R i (3)Whereas (2) expresses that the square-root of N is in the half-open interval[R::R + �[, in whi
h
ase R is a suitable output, senten
e (3) expresses thatthe square-root of N is in the wider half-open interval [R::R + 2�[, in whi
h
ase
onditional term `if (R + �)2 � N then R + � else R' is a suitable output.Noting that R + � is the midpoint of that wider interval, senten
e (3) simplysays that if a square-root is known to be in wide interval [R::R + 2�[, then it isthe �rst element of either its right half or its left half. In other words, senten
e(3) provides an idea for a binary sear
h program, whereas senten
e (2) does not.This is very interesting, as this dis
overy
an thus be made me
hani
ally, by asimple appli
ation of a resolution rule.Using dedalus, rather intri
ate programs were synthesised, su
h as uni�
a-tion [65℄, as well as interesting new ones [66℄.4.2 amphionamphion [88℄ (ase.ar
.nasa.gov/do
s/amphion.html) was developed by Lowryand his team at NASA Ames and SRI (California, USA). It is of parti
ularinterest due to its attention to real-life software engineering
onsiderations, andbe
ause it is a
tually deployed at NASA JPL.The inputs to synthesis are a formal axiomati
 �rst-order logi
 spe
i�
a-tion, assumed to be
onsistent and
omplete wrt the requirements, as well asa domain theory. The novelty is that spe
i�
ations
an be
onveyed through a

menu-driven, domain-independent graphi
al user-interfa
e. The synthesis me
h-anism is purely dedu
tive, fully automati
, non-deterministi
 (though there isno pra
ti
al di�eren
e between alternate programs), and sound. Only appli
a-tion domain knowledge is exploited. The output of synthesis is a side-e�e
t-freeappli
ative program, whi
h
an be automati
ally translated into any other
ur-rently supported language (e.g., fortran-77).The Proof System. The proof system of amphion is essentially the dedu
tivetableau system of dedalus (see Se
tion 4.1). The automated theorem proversnark (SRI's New Automated Reasoning Kit) of Sti
kel and his
olleagues was
hosen to
arry out the proofs. Its initial la
k of an indu
tion rule was unprob-lemati
, as dis
ussed below.The Synthesis Pro
ess. amphion is domain-independent, but was �rst de-ployed in the domain of interplanetary mission planning and data analysis. Anaxiomati
 theory,
alled naif, was formalised for this domain,
omprising ba-si
 properties of solar-system astronomy as well as formal spe
i�
ations of thereusable routines of a solar-system kinemati
s library, developed in fortran-77at NASA JPL. Synthesised programs in the resulting amphion/naif are there-fore
ompiled into fortran-77. The options in the graphi
al user-interfa
e for
apturing spe
i�
ations also depend on the provided domain theory.Library routines are often diÆ
ult to reuse, be
ause of the time needed tomaster their sheer number, if not be
ause of inadequate spe
i�
ations, and be-
ause
ompetent library
onsultants may be in short supply. Relu
tant or
arelessprogrammers may thus well dupli
ate fun
tionality in the library, thereby losingtime and being at the risk of errors. Automated support for
orre
t reuse and
omposition of library routines would thus
ome in very handy. But this is pre-
isely what a dedalus-like system su
h as amphion
an a
hieve, be
ause reuseis supported, as we have seen in the previous se
tion. Synthesis need thus notbottom out in the primitives of the target language.Another pra
ti
al insight
on
erns the
hoi
e of the
omposition me
hanisms| su
h as
onditions and re
ursion | used during synthesis. Although
onstru
-tive synthesis
an generate them all, re
ursion formation is by far the most diÆ-
ult
omposition. If suÆ
iently many library routines performing sophisti
ated
al
ulations are provided, then synthesis need not really \lift" re
ursion fromthem but may rather amount to generating an adequate straight-line program| with just sequential and
onditional
omposition | from the spe
i�
ation.amphion was designed to synthesise only straight-line
ode, on the assumptionthat not too sophisti
ated proofs would be performed in theories with a largenumber of axioms. Synthesis is then not bottlene
ked by re
ursion formation.The synthesised programs
an be optimised using the transforms of kids (seeSe
tion 3.1). Heuristi

onsiderations need to be dealt with when �netuning thedomain theory. For instan
e, a suitable re
ursive-path ordering and a suitableagenda-ordering fun
tion have to be supplied. Also, heuristi
s, su
h as the set-of-support strategy, may turn out very bene�
ial to the prover.MetaAmphion [62℄ is a synthesiser synthesiser (si
) assisting domain ex-perts in the
reation and maintenan
e of a new instan
e of amphion, starting

from a domain theory, and this without requiring any substantial training indedu
tive inferen
e. This is done by applying amphion at the meta-level.A Sample Synthesis. Considering the s
ale of synthesis tasks that
an be han-dled by amphion, I
an here only point to the two on-line sample syntheses atase.ar
.nasa.gov/do
s/amphion-naif.html. One of them
omputes the solar in
i-den
e angle at the point on Jupiter pointed to by a
amera on the Galileo sonde.A naif expert
ould
onstru
t su
h a program within half an hour, but maynot be available to do so. However, after a one-hour tutorial, non-programmerplanetary s
ientists
an spe
ify su
h problems within a few minutes, and synthe-sis of a
orre
t program usually takes less than three minutes. The synthesisedprograms are indeed mostly straight-line
ode, whi
h would however have beenquite hard to program for non naif-experts.Other results are the Saturn viewer, developed for use during the time Sat-urn's ring plane
rossed the Earth, or an animation visualising Saturn and itsmoon Titan as seen from the Cassini sonde on its
y-by, with stars in the ba
k-ground. The latter helped planetary s
ientists evaluate whether proposed toursof Cassini
ould satisfy their observational requirements.4.3 Other S
hoolsA large number of additional
onstru
tive synthesis proje
ts exist, so I
an hereonly skim over the most seminal and important ones.At Cornell University (New York, USA), Constable and his group designedthe prl [5℄ and NuPrl [24℄ intera
tive proof and fun
tional program devel-opment systems, the latter being based on the intuitionisti
 se
ond-order typetheory of Martin-L�of [68℄.At the University of Edinburgh (UK), NuPrl was used for the synthesisof deterministi
 logi
 programs by Bundy and his team [19℄. A �rst-order sub-set of the oyster proof development system, whi
h is a re-implementation ofNuPrl in prolog, was also used for logi
 program synthesis, with spe
ial fo
uson the synthesis of programs that
ompute relations, and not just total fun
-tions. A proof-planner
alled
lam was adjoined to oyster [21℄, making it ata
ti
al prover, using Edinburgh l
f [42℄, whi
h is based on S
ott's Logi
 forComputable Fun
tions. The overall e�ort also resulted in the whelk proof de-velopment system [91℄, whi
h performs proofs in the Gentzen sequent
al
ulusand extra
ts logi
 programs, the periwinkle synthesiser [54℄, whi
h systema-tises the use of middle-out reasoning in logi
 program synthesis, and many othersystems, as the group spawns around the world.At Uppsala University (Sweden), the logi
 programming
al
ulus of T�arnlund[89℄, based on Prawitz' natural dedu
tion system for intuitionisti
 logi
, providedan elegant uni�ed framework for logi
 program synthesis, veri�
ation, transfor-mation, and exe
ution. His team showed how to extra
t logi
 programs from
onstru
tive proofs performed within this
al
ulus [47℄, and synthesised a uni�-
ation algorithm [29℄, among others.The INRIA (Fran
e) group uses Coquand & Huet's
al
ulus of indu
tive
onstru
tions (
oq), and the Chalmers (Sweden) group exploits Martin-L�of's

type theory, both towards the synthesis of fun
tional programs. Their resultsare
ompiled in [71, 51℄, for instan
e.5 A
hievements of Mixed-Inferen
e SynthesisConsidering that human programmers rarely resort to only safe reasoning |su
h as dedu
tive inferen
e | it would be unwise to fo
us all synthesis resear
hon only dedu
tion-based me
hanisms. Indeed, a growing importan
e needs to begiven to so-
alled unsafe reasoning | su
h as indu
tive, abdu
tive, or analogi
alinferen
e | if we want synthesis to
ope with the full range of human softwaredevelopment a
tivities.I here dis
uss one representative mixed-inferen
e synthesiser, namelyMulti-ta
 (see Se
tion 5.1), whi
h performs both dedu
tive and indu
tive inferen
e.In Se
tion 5.2, I outline the e�orts of the other main resear
h
entres in mixed-inferen
e synthesis.5.1 Multi-ta
Multi-ta
, the Multi-Ta
ti
 Analyti
 Compiler [69℄ of Minton, who was thenat NASA Ames (California, USA), automati
ally synthesises eÆ
ient problem-spe
i�
 solvers for
onstraint satisfa
tion problems (CSPs), su
h that they per-form on par with solvers hand-written by
ompetent programmers. While theability of human experts remains elusive, the results are very en
ouraging, andpopular general-purpose solvers are almost systemati
ally outperformed.This is so be
ause there is no universally best solver for all CSPs, and, worse,that there is not even a best solver for all instan
es of a given CSP. Today, theprogramming of an eÆ
ient solver for any instan
e of some CSP is still
onsid-ered a bla
k art. Indeed, a CSP solver essentially
onsists of three
omponents,namely a sear
h algorithm (su
h as ba
ktra
king sear
h, with or without for-ward
he
king),
onstraint propagation and pruning rules (based on
onsisten
yte
hniques, su
h as node and ar

onsisten
y), as well as variable and value or-dering heuristi
s (su
h as most-
onstrained-variable-�rst or least-
onstraining-value-�rst), with ea
h of these
omponents having a lot of re
ognised problem-independent in
arnations, ea
h of whi
h usually has many problem-spe
i�
 in-stantiations. The right
ombination of
omponents for a given instan
e of aCSP lies thus in a huge solver spa
e, often at an unintuitive pla
e, and humanprogrammers rarely have the in
lination or patien
e to experiment with manyalternatives. On the premise that synthesis time does not matter, say be
ause thesynthesised program will be run many times for di�erent instan
es, Multi-ta
undertakes a more systemati
 exploration of this solver spa
e.The inputs to synthesis are a formal �rst-order sorted logi
 spe
i�
ation of aCSP, assumed to be
onsistent and
omplete wrt the requirements, as well as aset of training instan
es (or an instan
e generator) re
e
ting the distribution |in terms of the number of domain variables and the number of
onstraints be-tween them | of instan
es on whi
h the resulting solver will normally be run. In

pro
edure solve(FreeV ars) :beginif FreeV ars = ; then return the solution;V ar bestV ar(FreeV ars;VarOrdRules);FreeV ars FreeV ars� fV arg;PossV als possV als(V ar;PruneRules);while PossV als 6= ; do beginV al bestV al(V ar; PossV als;ValOrdRules);PossV als PossV als� fV alg;if fwdChe
king = true or Constraints on V ar are satis�ed by V althen beginassign(V ar; V al);if fwdChe
king = true then updatePossV als(FreeV ars;Constraints);if solve(FreeV ars) then return the solution;if fwdChe
king = true then restorePossV als(FreeV ars);prune(V ar; PossV als;PruneRules)end;end;unassign(V ar; V al);failend Fig. 7. S
hema for ba
ktra
king sear
hthe following, I only mention training instan
es, abstra
ting thus whether theyare given by the user or generated by the given instan
e generator. The synthesisme
hanism is mixed-inferen
e, performing both indu
tive and dedu
tive infer-en
e, and is fully automati
. Algorithm design and data stru
ture knowledge areexploited. Synthesis is non-deterministi
 and sound. The output of synthesis isa solver in lisp that is �netuned not only for the problem at hand, but also forthe given instan
e distribution.The Operationalisation System.Multi-ta
 is a s
hema-guided synthesiser,with a s
hema being a synta
ti
 program template showing how some sear
h al-gorithm
an be parameterised by the other
omponents of a CSP solver. Forinstan
e, the ba
ktra
king s
hema for ba
ktra
king sear
h is approximately asin Figure 7, with the pla
e-holders typeset in boldfa
e. A full dis
ussion of thiss
hema is beyond the s
ope of this paper, the important issues being as fol-lows. At ea
h iteration, a
hosen \best" value is assigned to a
hosen \best"variable, with ba
ktra
king o

urring when this is impossible without violatingsome
onstraint. Also, the template is generi
 in the
onstraints, the variable andvalue ordering rules, the pruning rules, and a
ag
ontrolling the use of forward
he
king. Many well-known variations of ba
ktra
king sear
h �t this s
hema.Bran
h-and-bound and iterative-repair s
hemas are also available.The
ornerstone of synthesis is the problem-spe
i�
 instantiation of the rulesof the
hosen s
hema. This is done by operationalisation of generi
 heuristi
s intorules, as des
ribed next. For instan
e, in problems where a subset of the edges

of a given graph is sought, the most-
onstrained-variable-�rst variable-orderingheuristi
 | stating that the variable with the fewest possible values left shouldbe
hosen next |
ould be operationalised into at least the following rules:{ Choose the edge with the most adja
ent edges.{ Choose the edge with the most adja
ent edges whose presen
e in or absen
efrom the sought subset has already been de
ided.{ Choose the edge with the most adja
ent edges whose absen
e from the soughtsubset has already been de
ided.Operationalisation is thus non-deterministi
. The obtained
andidate rules havedi�erent appli
ation
osts in terms of evaluation time and di�erent e�e
tivenessin terms of how mu
h the sear
h is redu
ed, so a trade-o� analysis is needed (see
on�guration sear
h below).Multi-ta
 features two methods for operationalisation of generi
 heuristi
s,as des
ribed next.Analyti
 operationalisation is based only on the problem
onstraints andignores the training instan
es. Ea
h heuristi
 is des
ribed by a meta-level the-ory that enables the system to reason about the problem
onstraints. For in-stan
e, the meta-theory of the most-
onstrained-variable-�rst heuristi
 des
ribes
ir
umstan
es where some variable is likely to be more
onstrained than an-other one. A good example thereof is that the tightness of the generi

on-straint 8X : S : P (X) ! Q(X) is dire
tly related to the
ardinality of the setfX : S j P (X)g. From su
h algorithm design knowledge,
andidate sear
h
ontrolrules
an be inferred.Indu
tive operationalisation is based mainly on the training instan
es, thoughalso uses the problem
onstraints. Brute-for
e simplest-�rst indu
tive inferen
eis a
hieved through a generate-and-test algorithm. First, all rules expressiblewithin a given grammar | based on the vo
abulary of the problem
onstraints| are generated, starting with the shortest, that is simplest, rules, until a pre-determined upper bound on the number of atoms in the rule is rea
hed, or untila predetermined time bound is rea
hed. The number of rules generated growsexponentially with the size bound, but fortunately the most useful rules tend tobe relatively short. The testing step weeds out all the generated rules that donot well approximate the desired e�e
ts of the generi
 heuristi
s. Towards this,positive and negative examples are inferred from the training instan
es, and allrules that are more often
orre
t than in
orre
t on these examples are retained.This is a surprisingly e�e
tive
riterion.The analyti
 method may fail to generate useful short rules, but
an inferlonger rules. The indu
tive method often �nds ex
ellent short rules, but
annotinfer longer rules or may a

identally eliminate a good rule due to the statisti
alnature of its testing pro
ess. The two methods are thus
omplementary andshould be used together to in
rease the robustness of the system.The Synthesis Pro
ess. On
e the generi
 heuristi
s have been somehow oper-ationalised into
andidate rules, a pro
ess
alled
on�guration sear
h looks for asuitable sele
tion of these rules and for suitable
ag values, su
h that, if plugged

into the s
hema with the problem-spe
i�

onstraints, they intera
t nearly op-timally in solving instan
es of the given CSP that �t the given distribution.Sin
e the spa
e of su
h possible
on�gurations of rules and
ags is exponentialin the number of rules and
ags, a beam sear
h (a form of parallel hill-
limbing)is performed over only a small portion of that spa
e. Given a beam width b, atime bound t, and the training instan
es, one starts from the single parent
on-�guration that has no rules and where all
ags are turned o�. At ea
h iteration,
hild
on�gurations are generated from all parent
on�gurations, by adding onerule from the
andidate rules or by a
tivating one
ag. Several
andidate rulesmay be retained for a given pla
e-holder in the s
hema, if this is found to beadvantageous; they are then sequen
ed, so that ea
h rule a
ts as a tie-breakerfor its prede
essors. The b
on�gurations that solve the most instan
es within tse
onds enter the next iteration as parent
on�gurations, provided they solve asuperset of their own parents' instan
es. This pro
ess
ontinues until no parent
on�guration
an be improved or until the user interrupts it.Operationalisation and
on�guration sear
h are able to dis
over rules formany well-known heuristi
s from the literature, for ea
h sear
h algorithm.On
e the rules and
ags of the
hosen s
hema are instantiated | in aproblem-spe
i�
 and instan
e-distribution-spe
i�
 way thus | through oper-ationalisation and
on�guration sear
h, synthesis pro
eeds by automati
ally op-timising the winning
on�guration through re�nements (in
luding the
hoi
e ofadequate data stru
tures), formula simpli�
ations, partial evaluation, and
odesimpli�
ations (in
luding �nite di�eren
ing).A Sample Synthesis. Consider the Minimum-Maximum-Mat
hing (MMM)problem: given an integer K and a graph with vertex set V and edge set E,determine whether there is a subset E0 � E with jE0j � K su
h that no twoedges in E0 share a vertex and every edge in E �E0 shares a vertex with someedge in E0. This is an NP-
omplete problem and
an be modelled forMulti-ta
as follows, representing E0 as a set of m(I; B) atoms, where Boolean B is t whenedge I of E is in E0, and f otherwise:8V;E : set(term) : 8K : int : mmm(hV;Ei;K)$8I : E : m(I; t)! (8W : V : 8J : E : I 6= J ^ e(I;W) ^ e(J;W)! m(J; f))^ 8I : E : m(I; f)! (9W : V : 9J : E : I 6= J ^ e(I;W) ^ e(J;W) ^m(J; t))^
ardinality(fI : E j m(I; t)g) � Kwhere problem instan
es are assumed given through a set of e(I;W) atoms,stating that edge I has vertex W as one of its two endpoints.In the �rst
onstraint, there are two sub-expressions mat
hing the generi
expression 8X : S : P (X) ! Q(X) mentioned for analyti
 operationalisation,namely the two formulas starting with the universal quanti�
ations onW and J ,respe
tively. From the former, the variable-ordering rule `Choose the edge withthe most endpoints' is inferred, though it is useless, as every edge has exa
tlytwo endpoints; from the latter, the already mentioned rule `Choose the edge withthe most adja
ent edges' is inferred. All variable-ordering rules mentioned above
an also be generated by indu
tive operationalisation.

In three well-do
umented experiments [69℄ with di�erent instan
e distribu-tions for the MMM problem, the solvers synthesised byMulti-ta
 outperformedat least one of two written by
ompetent human programmers, while totallyout
lassing general-purpose Boolean satis�ability algorithms and CSP solvers,under their default heuristi
s. Interesting rules were dis
overed, andMulti-ta
won by the largest margin on the toughest instan
e distribution,
on�rming thatmassive automated sear
h does often better than human intuition.5.2 Other S
hoolsThe ex
lusive use of indu
tive and abdu
tive inferen
e in program synthesis, fromin
omplete spe
i�
ations, has been studied under two angles, for three de
ades.First, in programming-by-example (PBE), also and more adequately known asprogramming-by-demonstration (PBD), the spe
i�er provides sample exe
utiontra
es of the task to be programmed, and the synthesiser generalises them into aprogram that
an re-ena
t at least these tra
es. The user thus has to know howto perform the spe
i�ed task, but there are interesting appli
ations for this, su
has the synthesis of ma
ro operations for word pro
essors or operating systems.See [58℄ for a
olle
tion of state-of-the-art papers, espe
ially geared at enabling
hildren and other novi
es to program. Consult Biermann's surveys [12, 13℄ andedited
olle
tions [14, 15℄ for details on underlying me
hanisms.Se
ond, in what should be known as PBE, the spe
i�er provides positiveand possibly negative input/output examples of the desired program, and thesynthesiser generalises them into a program that
overs at least these positiveexamples, but none of the negative examples. The user need thus not know howto perform the spe
i�ed task, nor even how to
ompletely spe
ify it, and there areuseful appli
ations for this, say for novi
e programmers. The Ma
hine Learning
ommunity is looking extensively into su
h synthesis, espe
ially its Indu
tiveLogi
 Programming (ILP) bran
h. Some surveys and edited
olle
tions in
lude[14, 15, 12, 13, 27, 34℄ or are dedi
ated to [79, 37℄ the underlying me
hanisms.Considering the diÆ
ulty of
orre
tly extrapolating the desired behaviourfrom su
h de
lared-to-be-in
omplete spe
i�
ations, it is not surprising that purelyindu
tive and abdu
tive synthesis has not been shown yet to s
ale beyond toyproblems. The ensuing un
ertainty for the spe
i�er
annot be held against in-du
tive and abdu
tive synthesis, be
ause there also is un
ertainty in dedu
tivesynthesis, due to the diÆ
ulty of formalisation of assumed-to-be-
omplete spe
-i�
ations. Appropriate
ombinations of indu
tive, abdu
tive, and dedu
tive in-feren
e do however give leverage in synthesis from in
omplete spe
i�
ations [34℄.Even when starting from
omplete spe
i�
ations, the use of examples anda
ombination of dedu
tive and indu
tive inferen
e
an still be interesting, ifnot ne
essary, as shown for Multi-ta
 (see Se
tion 5.1). Other su

essful su
h
ombinations are reported by Ellman et al. [28℄, with appli
ations to jet enginenozzle and ra
ing ya
ht design, as well as by Grat
h & Chien [43℄, towardss
heduling ground-based radio antennas for maintaining
ommuni
ation withresear
h satellites and deep spa
e probes.Program synthesis by analogi
al inferen
e was ta
kled by Dershowitz [26℄.

6 Prospe
ts of SynthesisProgram synthesis resear
h is as old as the �rst
omputer, and a lot of theoret-i
al resear
h and pra
ti
al development have gone into its various in
arnations.Today, we stand at the dawn of a new era in programming, with languagesmoving away from the von Neumann model, with powerful tools generating sig-ni�
ant amounts of tedious low-level
ode from higher-level des
riptions, andwith end-users be
oming enabled to program by themselves. It is
lear thatprogram synthesis, in its traditional Arti�
ial Intelligen
e understanding,
anprovide great leaps forward in this arena, in addition to the simpler advan
eso�ered by
onventional
ode generation, su
h as through visual programming,spreadsheets, et
. The
hallenge is thus to s
ale up from te
hniques demonstratedin resear
h labs on toy problems to the development of real-life software and toenable a te
hnology transfer to
ommer
ial software development. I here propose
hallenges and dire
tions for future resear
h, as far as the inputs (Se
tion 6.1),me
hanisms (Se
tion 6.2), and outputs (Se
tion 6.3) of synthesis are
on
erned.6.1 Synthesis InputsFormalisation Assistan
e. The a

eptan
e bottlene
k for synthesisers will al-ways be the input language, in whi
h the spe
i�
ation and domain theory haveto be formalised. Most professional programmers and IT students who be
amesomehow used to low-level languages are
learly relu
tant to be re-trained inthe more advan
ed mathemati
s and logi
 ne
essary to intera
t with synthesis-ers, despite the appeals of working at a higher level. They may well eventuallybe bypassed and made obsolete by a synthesis-indu
ed revolution in
ommer-
ial software development under web-speed market pressures, but that is yet anun
ertain out
ome. At the same time, end-users | from engineers in other dis-
iplines to
omputer novi
es | hope to be enabled to program by themselves,and they will also resist the learning
urve. Hen
e a signi�
ant
hallenge is toassist users in the formalisation of the spe
i�
ation and domain theory.PlanWare and amphion
an a
quire and formalise them automati
allyfrom information provided by the spe
i�ers, due to adequate human-
omputer-interfa
e engineering. The
urrent trend is thus towards domain-spe
i�
 lan-guages that are intuitive to quali�ed users, if not identi
al to the notations theyalready use anyway, thus masking the underlying mathemati
s and logi
. Turing
ompleteness often needs to be sa
ri�
ed, so that highly | if not fully | au-tomated synthesisers
an be developed. Resear
h in domain analysis is needed,be
ause the a
quisition of a suitable domain theory will always be a bottlene
kfor synthesisers. Domains have to be identi�ed where the payo� threshold issuitable, in terms of the size and importan
e of the
overed problem
lass, theexisten
e of a language and interfa
e in whi
h it is easy to des
ribe these prob-lems, and the diÆ
ulty of manually writing
orre
t and eÆ
ient programs forthese problems. This does not mean that the previous trends on general-purposespe
i�
ation languages and semi-automati
 synthesisers must de
line.

6.2 Synthesis Me
hanismsReuse. Most synthesisers are demonstrated on toy problems with little bearingto real-world problems. A main
ause is that the granularity of their buildingblo
ks is too small. The
hallenge is to make synthesis bottom out in reusable,assumed-
orre
t
omponents rather than in the primitives of the target language.We have seen that some existing synthesis me
hanisms were designed so thatlibraries of formally-spe
i�ed reusable
omponents
an be used during synthesis.In kids/DesignWare, reuse is attempted before synthesis for ea
h spe
i-�
ation, whether it is the initial one or one
onstru
ted during synthesis. Thenumber of reuse queries
an be signi�
antly redu
ed by applying heuristi
s de-te
ting that an ad ho

omponent
an be trivially built from the spe
i�
ation.This has the further advantage of keeping the index of the
omponent-baselean and thus a

elerating reuse queries. It should be noted that the de�nitions
hemas used in algorithm design re�nements also represent reused
ode.In dedalus, reuse is possible, but not espe
ially
atered for through heuris-ti
s. Fis
her & Whittle [33℄ propose a better integration of reuse into dedalus-like
onstru
tive synthesisers.In amphion, reuse is the leading prin
iple: as there is no indu
tion rule,the me
hanism is for
ed to reuse
omponents that embody iterative or re
ursive
al
ulations, in its synthesis of straight-line
ode.Other than for amphion-like approa
hes, the payo� of reuse versus brute-for
e synthesis is however still un
lear. Mu
h resear
h needs thus to be done to-wards full-s
ale synthesis in the style of
omponent-based software development,i.e., bottom-up in
remental programming. The synthesis of software ar
hite
-tures, for instan
e, is still a rather unexplored topi
.S
hemas. I believe that an important
hallenge is to make formalised algorithmdesign s
hemas [36, 80, 81℄, design patterns [39℄, plans [31℄, or
li
h�es [76℄
on-tinue to play a major role in s
aling synthesis up. Indeed, they allow the reuseof re
ognised su

essful produ
t or pro
ess skeletons, whi
h have been somehow,and not ne
essarily formally, proved o�-line, on
e and for all.Furthermore, they provide a ni
e division of
on
erns by fo
using, at anygiven moment, the user's attention and the available options to just one well-delimited part of the
urrent des
ription, as opposed to, say, having to de
idewhi
h transform to apply to whi
h expression of the entire
urrent des
ription.This also enables users to understand intermediate des
riptions and the synthesispro
ess at a suitable level of abstra
tion.Inferen
e. As Multi-ta
 shows, indu
tive inferen
e is sometimes ne
essary toa
hieve synthesis of eÆ
ient programs, but virtually all resear
h | ex
ept PBEand PBD | so far has been on purely-dedu
tive synthesis. Just like humanprogrammers perform all kinds of inferen
e, the
hallenge is to further exploremixed-inferen
e synthesis, in order to exploit
omplementary forms of reasoning.Similarly, even within dedu
tive inferen
e, there is no single me
hanism that
an handle all the proof obligations o

urring during synthesis, hen
e another

hallenge is to investigate suitable
ombinations of dedu
tive proof me
hanisms,thereby a
hieving multi-level synthesis [11℄.Finally, it seems that transformational and
onstru
tive synthesis are justtwo fa
ets of a same dedu
tive approa
h,3 so that their re
on
iliation should beworth investigating.6.3 Synthesis OutputsTarget Language. In order to fa
ilitate the integration of synthesised programswith otherwise developed
ode modules, it is important that target languagesother than the
lean-semanti
s logi
 languages, that is the fun
tional and re-lational ones, are supported. This is not a major resear
h
hallenge, ex
ept ifeÆ
ien
y of the
ode is an issue, but rather a development issue, but it is oftennegle
ted in favour of the more attra
tive resear
h
hallenges, thereby missingte
hnology transfer and feedba
k opportunities.EÆ
ien
y. For some problem
lasses, su
h as
onstraint satisfa
tion problems(CSPs), the eÆ
ien
y of programs is
ru
ial, su
h as those solving NP-
ompleteCSPs with high
onstrainedness. The
hallenge is that e�e
tive
ode optimisationmust be somehow integrated with a program synthesiser towards its appli
ationin real-world
ir
umstan
es.For instan
e, in
onstraint programming, a lot of resear
h has been madeabout how to
raft new variable-and-value-ordering heuristi
s. However, littleis said about the appli
ation domain of these heuristi
s, so programmers �ndit hard to de
ide when to apply a parti
ular heuristi
, espe
ially that thereis no universally best heuristi
 for all CSPs, and not even for all instan
es of agiven CSP (as we saw in Se
tion 5.1). Adequate heuristi
s are thus problem-and-instan
e-spe
i�
, and must therefore be dynami
ally
hosen at run-time ratherthan at programming time. It has also been noted that suitable implied
on-straints and symmetry-breaking
onstraints may
onsiderably redu
e the sear
hspa
e, but few results are available on how to systematise their inferen
e. Over-all, e�e
tive
onstraint programming remains a bla
k art thus. When targeting
onstraint programming languages, the
hallenge is to infer implied
onstraintsand symmetry-breaking
onstraints and to synthesise problem-spe
i�
 heuristi
s,if not solvers, that perform well on all problem instan
es.7 Con
lusionAfter introdu
ing the topi
 and proposing a
lassi�
ation s
heme for programsynthesis, I have overviewed past and
urrent a
hievements in synthesis, a
rossthree main resear
h dire
tions, with spe
ial fo
us on some of the most promisingsystems. I have also laid out a set of dire
tions for future resear
h, believing that3 At least the developers of dedalus, lops, and periwinkle reported diÆ
ulties in
lassifying their systems.

they will make the te
hnology go beyond the already-rea
hed break-even point,
ompared to
onventional programming and maintenan
e.Program synthesis thus promises to revolutionise a

epted pra
ti
e in soft-ware development. Ultimately, a

eptan
e problems due to the ne
essity for rig-orous formalisation are bound to disappear, be
ause programming itself is ob-viously a formalisation pro
ess and synthesis just provides other programminglanguages or di�erent ways of programming. Similarly, the steps of any followedsoftware life
y
le will not really
hange, be
ause validation and veri�
ation willnot disappear, but rather be
ome higher-level a
tivities, at the level of what wetoday
all formal spe
i�
ations.A
knowledgementsI wish to thank the anonymous referees for their
onstru
tive
omments on theprevious versions of this paper.Referen
es1. J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge UniversityPress, 1996.2. R. Balzer. A 15 year perspe
tive on automati
 programming. IEEE TSE11(11):1257{1268, 1985.3. A. Barr and E.A. Feigenbaum. The Handbook of Arti�
ial Intelligen
e, Chapter X:Automati
 Programming, pp. 297{379. Morgan Kaufmann, 1982.4. D.R. Barstow. A perspe
tive on automati
 programming. AI Magazine, Spring1984:5{27. Also in [74℄, pp. 537{559.5. J.L. Bates and R.L. Constable. Proofs as programs. ACM TOPLAS 7(1):113{136,1985.6. F.L. Bauer, B. M�oller, H. Parts
h, and P. Pepper. Formal program
onstru
tionby transformations: Computer-aided, intuition-guided programming. IEEE TSE15(2):165{180, 1989. Details in LNCS 183/292, Springer-Verlag, 1985/87.7. M.J. Beeson. Foundations of Constru
tive Mathemati
s. Modern Surveys in Math-emati
s, Volume 6. Springer-Verlag, 1985.8. W. Bibel. Syntax-dire
ted, semanti
s-supported program synthesis. AI 14(3):243{261, 1980.9. W. Bibel. Con
urrent software produ
tion. In [61℄, pp. 243{261. Toward predi
ativeprogramming. In [61℄, pp. 405{424.10. W. Bibel and K.M. H�ornig. lops: A system based on a strategi
 approa
h toprogram synthesis. In [15℄, pp. 69{89.11. W. Bibel et al. A multi-level approa
h to program synthesis. In N.E. Fu
hs (ed),Pro
. of LOPSTR'97, pp. 1{28. LNCS 1463. Springer-Verlag, 1998.12. A.W. Biermann. Automati
 programming: A tutorial on formal methodologies. J.of Symboli
 Computation 1(2):119{142, 1985.13. A.W. Biermann. Automati
 programming. In S.C. Shapiro (ed), En
y
lopedia ofArti�
ial Intelligen
e, pp. 59{83. John Wiley, 1992.14. A.W. Biermann and G. Guiho (eds). Computer Program Synthesis Methodologies.Volume ASI-C95. D. Reidel, 1983.

15. A.W. Biermann, G. Guiho, and Y. Kodrato� (eds). Automati
 Program Constru
-tion Te
hniques. Ma
millan, 1984.16. A.W. Biermann and W. Bibel (guest eds), Spe
ial Issue on Automati
 Program-ming. J. of Symboli
 Computation 15(5{6), 1993.17. C.B. Jones. Systemati
 Software Development using vdm. Prenti
e-Hall, 1990.18. L. Blaine, L. Gilham, J. Liu, D.R. Smith, and S. Westfold. PlanWare: Domain-spe
i�
 synthesis of high-performan
e s
hedulers. In Pro
. of ASE'98, pp. 270{279.IEEE Computer So
iety Press, 1998.19. A. Bundy. A broader interpretation of logi
 in logi
 programming. In R.A. Kowalskiand K.A. Bowen (eds), Pro
. of ICLP'88, pp. 1624{1648. The MIT Press, 1988.20. A. Bundy, A. Smaill, and G. Wiggins. The synthesis of logi
 programs from in-du
tive proofs. In J.W. Lloyd (ed), Pro
. of the ESPRIT Symp. on ComputationalLogi
, pp. 135{149. Springer-Verlag, 1990.21. A. Bundy, F. van Harmelen, C. Horn, A. Smaill. The oyster/
lam system. InM.E. Sti
kel (ed), Pro
. CADE'90, pp. 647{648. LNCS 449. Springer-Verlag, 1990.22. R.M. Burstall and J. Darlington. A transformation system for developing re
ursiveprograms. J. of the ACM 24(1):44{67, 1977.23. K.L. Clark and S. Si
kel. Predi
ate logi
: A
al
ulus for deriving programs. In Pro
.of IJCAI'77, pp. 410{411.24. R.L. Constable, S.F. Allen, H.M. Bromley, et al. Implementing Mathemati
s withthe NuPrl Proof Development System. Prenti
e-Hall, 1986.25. J. Darlington. An experimental program transformation and synthesis system. AI16(1):1{46, 1981. Also in [74℄, pp. 99{121.26. N. Dershowitz. The Evolution of Programs. Birkh�auser, 1983.27. Y. Deville and K.-K. Lau. Logi
 program synthesis. J. of Logi
 Programming 19{20:321{350, 1994.28. T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation system forintera
tive reformulation of design optimization strategies. Resear
h in EngineeringDesign 10(1):30{61, 1998.29. L.-H. Eriksson. Synthesis of a uni�
ation algorithm in a logi
 programming
al
u-lus. J. of Logi
 Programming 1(1):3{33, 1984.30. M.S. Feather. A survey and
lassi�
ation of some program transformation ap-proa
hes and te
hniques. In L.G.L.T. Meertens (ed), Program Spe
i�
ation andTransformation, pp. 165{195. Elsevier, 1987.31. S.F. Fi
kas. Automating the transformational development of software. IEEE TSE11(11):1268{1277, 1985.32. B. Fis
her, J. S
humann, and G. Snelting. Dedu
tion-based software
omponentretrieval. In W. Bibel and P.H. S
hmidt (eds), Automated Dedu
tion: A Basis forAppli
ations, vol. III,
hap. 11. Kluwer, 1998.33. B. Fis
her and J. Whittle. An integration of dedu
tive retrieval into dedu
tivesynthesis. In Pro
. of ASE'99, pp. 52{61. IEEE Computer So
iety, 1999.34. P. Flener. Logi
 Program Synthesis from In
omplete Information. Kluwer A
ademi
Publishers, 1995.35. P. Flener, K.-K. Lau, and M. Ornaghi. Corre
t-s
hema-guided synthesis of stead-fast programs. In Pro
. of ASE'97, pp. 153{160. IEEE Computer So
iety, 1997.36. P. Flener, K.-K. Lau, M. Ornaghi, and J.D.C. Ri
hardson. An abstra
t formal-isation of
orre
t s
hemas for program synthesis. J. of Symboli
 Computation30(1):93{127, July 2000.37. P. Flener and S. Y�lmaz. Indu
tive synthesis of re
ursive logi
 programs:A
hievements and prospe
ts. J. of Logi
 Programming 41(2{3):141{195, Novem-ber/De
ember 1999.

38. P. Flener, H. Zidoum, and B. Hni
h. S
hema-guided synthesis of
onstraint logi
programs. In Pro
. of ASE'98, pp. 168{176. IEEE Computer So
iety, 1998.39. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Obje
t-Oriented Software. Addison-Wesley, 1994.40. J. Goguen and G. Mal
olm. Algebrai
 Semanti
s of Imperative Programs. The MITPress, 1997.41. A.T. Goldberg. Knowledge-based programming: A survey of program design and
onstru
tion te
hniques. IEEE TSE 12(7):752{768, 1986.42. M.J. Gordon, A.J. Milner, and C.P. Wadsworth. Edinburgh l
f { A Me
hanisedLogi
 of Computation. LNCS 78. Springer-Verlag, 1979.43. J.M. Grat
h and S.A. Chien. Adaptive problem-solving for large s
ale s
hedulingproblems: A
ase study. J. of Arti�
ial Intelligen
e Resear
h 4:365{396, 1996.44. C. Green. Appli
ation of theorem proving to problem solving. Pro
. of IJCAI'69,pp. 219{239. Also in B.L. Webber and N.J. Nilsson (eds), Readings in Arti�
ialIntelligen
e, pp. 202{222. Morgan Kaufmann, 1981.45. C. Green and D.R. Barstow. On program synthesis knowledge. AI 10(3):241{270,1978. Also in [74℄, pp. 455{474.46. C. Green and S. Westfold. Knowledge-based programming self applied. Ma
hineIntelligen
e 10, 1982. Also in [74℄, pp. 259{284.47. �A. Hansson. A Formal Development of Programs. Ph.D. Thesis, Univ. of Sto
kholm(Sweden), 1980.48. J. Hesketh, A. Bundy, and A. Smaill. Using middle-out reasoning to
ontrol thesynthesis of tail-re
ursive programs. In D. Kapur (ed), Pro
. of CADE'92. LNCS606. Springer-Verlag, 1992.49. C.J. Hogger. Derivation of logi
 programs. J. of the ACM 28(2):372{392, 1981.50. W.A. Howard. The formulae-as-types notion of
onstru
tion. In J.P. Seldin andJ.R. Hindley (eds), To H.B. Curry: Essays on Combinatory Logi
, Lambda Cal
ulusand Formalism, pp. 479{490. A
ademi
 Press, 1980.51. G. Huet and G.D. Plotkin (eds). Logi
al Frameworks. Cambridge Univ. Press, 1991.52. E. Kant. On the eÆ
ient synthesis of eÆ
ient programs. AI 20(3):253{305, 1983.Also in [74℄, pp. 157{183.53. R. Kowalski. Logi
 for Problem Solving. North-Holland, 1979.54. I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and indu
-tion. J. of Automated Reasoning 16(1{2):113{145, 1996.55. K.-K. Lau and S.D. Prestwi
h. Synthesis of a family of re
ursive sorting pro
edures.In V. Saraswat and K. Ueda (eds), Pro
. ILPS'91, pp. 641{658. MIT Press, 1991.56. K.-K. Lau and M. Ornaghi. On spe
i�
ation frameworks and dedu
tive synthesisof logi
 programs. In L. Fribourg and F. Turini (eds), Pro
. of LOPSTR'94 andMETA'94, pp. 104{121. LNCS 883. Springer-Verlag, 1994.57. B. Le Charlier and P. Flener. Spe
i�
ations are ne
essarily informal, or: Some moremyths of formal methods. J. of Systems and Software 40(3):275{296, 1998.58. H. Liebermann (guest ed), Spe
ial Se
tion on Programming by Example. Comm.of the ACM 43(3):72{114, 2000.59. J.W. Lloyd. Foundations of Logi
 Programming. Springer-Verlag, 1987.60. M.R. Lowry and R. Duran. Knowledge-based software engineering. In A. Barr,P.R. Cohen, and E.A. Feigenbaum (eds), The Handbook of Arti�
ial Intelligen
e.Volume IV, pp. 241{322. Addison-Wesley, 1989.61. M.R. Lowry and R.D. M
Cartney (eds). Automating Software Design. The MITPress, 1991.62. M.R. Lowry, J. Van Baalen. MetaAmphion: Synthesis of eÆ
ient domain-spe
i�
program synthesis systems. Automated Software Engineering 4:199{241, 1997.

63. Z. Manna and R.J. Waldinger. Synthesis: Dreams ! Programs. IEEE TSE5(4):294{328, 1979.64. Z. Manna and R.J. Waldinger. A dedu
tive approa
h to program synthesis. ACMTOPLAS 2(1):90{121, 1980. Also in [15℄, pp. 33{68. Also in [74℄, pp. 3{34.65. Z. Manna and R.J. Waldinger. Dedu
tive synthesis of the uni�
ation algorithm.S
ien
e of Computer Programming 1:5{48, 1981. Also in [14℄, pp. 251{307.66. Z. Manna and R.J. Waldinger. The origin of a binary-sear
h paradigm. S
ien
e ofComputer Programming 9:37{83, 1987.67. Z. Manna and R.J. Waldinger. Fundamentals of dedu
tive program synthesis. IEEETSE 18(8):674{704, 1992.68. P. Martin-L�of. Constru
tive mathemati
s and
omputer programming. In Pro
.of the 1979 Int'l Congress for Logi
, Methodology, and Philosophy of S
ien
e, pp.153{175. North-Holland, 1982.69. S. Minton. Automati
ally
on�guring
onstraint satisfa
tion programs: A
asestudy. Constraints 1(1{2):7{43, 1996.70. J. Mostow (guest ed), Spe
ial Issue on AI and Software Engineering. IEEE TSE11(11), 1985.71. B. Nordstr�om, K. Petersson, and J.M. Smith. Programming in Martin-L�of's TypeTheory: An Introdu
tion. Clarendon Press, 1990.72. H.A. Parts
h. Spe
i�
ation and Transformation of Programs. Springer-Verlag,1990.73. H.A. Parts
h and R. Steinbr�uggen. Program transformation systems. ComputingSurveys 15(3):199{236, 1983.74. C. Ri
h and R.C. Waters (eds). Readings in Arti�
ial Intelligen
e and SoftwareEngineering. Morgan Kaufmann, 1986.75. C. Ri
h and R.C. Waters. Automati
 programming: Myths and prospe
ts. IEEEComputer 21(8):40{51, 1988.76. C. Ri
h and R.C. Waters. The Programmer's Apprenti
e: A resear
h overview.IEEE Computer 21(11):10{25, 1988.77. T. Sato and H. Tamaki. First-order
ompiler: A deterministi
 logi
 program syn-thesis algorithm. J. of Symboli
 Computation 8(6):605{627, 1989.78. D. Sannella and A. Tarle
ki. Essential
on
epts of algebrai
 spe
i�
ation and pro-gram development. Formal Aspe
ts of Computing 9:229{269, 1997.79. D.R. Smith. The synthesis of lisp programs from examples: A survey. In [15℄, pp.307{324.80. D.R. Smith. Top-down synthesis of divide-and-
onquer algorithms. AI 27(1):43{96,1985.81. D.R. Smith. kids: A semiautomati
 program development system. IEEE TSE16(9):1024{1043, 1990.82. D.R. Smith. Towards the synthesis of
onstraint propagation algorithms. In Y.Deville (ed), Pro
. of LOPSTR'93, pp. 1{9, Springer-Verlag, 1994.83. D.R. Smith. Constru
ting spe
i�
ation morphisms. J. of Symboli
 Computation15(5{6):571{606, 1993.84. D.R. Smith. Toward a
lassi�
ation approa
h to design. Pro
. of AMAST'96, pp.62{84. LNCS 1101. Springer-Verlag, 1996.85. J.M. Spivey. The z Notation: A referen
e manual. Prenti
e-Hall, 1992.86. Y.V. Srinivas and R. J�ullig. Spe
Ware: Formal support for
omposing software.In B. M�oller (ed), Pro
. of MPC'95, pp. 399{422. LNCS 947. Springer-Verlag, 1995.87. D.M. Steier and A.P. Anderson. Algorithm Synthesis: A Comparative Study.Springer-Verlag, 1989.

88. M. Sti
kel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. Dedu
tive
omposition of astronomi
al software from subroutine libraries. In A. Bundy (ed),Pro
. of CADE'94, pp. 341{355. LNCS 814. Springer-Verlag, 1994.89. S.-�A. T�arnlund. An axiomati
 data base theory. In H. Gallaire and J. Minker (eds),Logi
 and Databases, pp. 259{289. Plenum Press, 1978.90. R.J. Waldinger and R.C.T. Lee. ProW: A step toward automati
 program writing.Pro
. of IJCAI'69, pp. 241{252.91. G. Wiggins. Synthesis and transformation of logi
 programs in the whelk proofdevelopment system. In K. Apt (ed), Pro
. of the JICSLP'92, pp. 351{365. TheMIT Press, 1992.

