Pierre Flener and Gustav Björdal

Optimisation Group
Department of Information Technology
Uppsala University
Sweden

Course 1DL442:
Combinatorial Optimisation and Constraint Programming, whose part 1 is Course 1DL451: Modelling for Combinatorial Optimisation

[^0]
Outline

1. Viewpoints \& Dummy Values
2. Implied Constraints
3. Redundant Variables \& Channelling Constraints

4. Pre-Computation

UPPSALA UNIVERSITET

Outline

1. Viewpoints \& Dummy Values

2. Implied Constraints
3. Redundant Variables \& Channelling Constraints
4. Pre-Computation

Recap

Viewpoints \& Dummy Values

1 Modelling: express problem in terms of

- parameters,
- decision variables,
- constraints, and
- objective.

2 Solving: solve using a state-of-the-art solver.

Example (Student Seating Problem)

nStudents $=15$
nPgms $=3$
nChairs $=20 \geq$ nStudents
nTables $=5$
Chairs $=[1 . .4,5 . .8,9 . .12,13 . .16,17 . .20]$

Given:
■ nStudents students,
■ nPgms study programmes

- nChairs chairs around nTables tables, and
- Chairs [t] as the set of chairs of table t, find a seating arrangement such that:

1 each table has students of distinct study programmes;
2 each table has either at least half or none of its chairs occupied;
3 a maximum number of student preferences on being seated at the same table are satisfied.

What are suitable decision variables for this problem?

A viewpoint is a choice of decision variables.

Example (Student Seating Problem)

Viewpoint 1: Which chair does each student sit on?

```
% Chair[s] = the chair of student s:
array[1..nStudents] of var 1..nChairs: Chair;
constraint all_different(Chair); % max 1 student per chair
```

Viewpoint 2: Which student, if any, sits on each chair?

```
int: dummyS = 0; % Advice: also experiment with nStudents+1
set of int: StudentsAndDummy = 1..nStudents union {dummyS};
% Student[c] = the student, possibly dummy, sitting on chair c:
array[1..nChairs] of var StudentsAndDummy: Student;
constraint global_cardinality_closed(Student, [dummyS]++[i|i in 1..nStudents],
    [nChairs - nStudents] ++ [1 | i in 1..nStudents]);
    %all_different(Student) if nStudents+1..nChairs are dummy students
```

We revisit this problem at slide 19 and the choice of dummy values in Topic 5: Symmetry, as well as in Topic 8: Inference \& Search in CP \& LCG.
Let us see how viewpoints differ when stating constraints.

Example (Objects, Shapes, and Colours)

There are n objects, s shapes, and c colours, with $s \geq n$.
Assign a shape and a colour to each object such that:
1 the objects have distinct shapes;
2 the numbers of objects of the actually used colours are distinct;
3 other constraints, yielding NP-hardness and actually distinguishing the objects from the shapes, are satisfied.

This problem can be modelled from different viewpoints:
1 Which colour, if any, does each shape have?
2 Which shapes, if any, does each colour have?
3 Which shape and colour does each object have?
4 ...
Each viewpoint comes with benefits and drawbacks.

Example (Objects, Shapes, and Colours)

Viewpoint 1: Which colour, if any, does each shape have?

```
int: n; % number of objects
int: s; % number of shapes
constraint assert(s >= n, "Not enough shapes");
int: c; % number of colours
int: dummyColour = 0; % Advice: also experiment with c+1
set of int: ColoursAndDummy = 1..c union {dummyColour};
% Colour[i] = the colour, possibly dummy, of the object of shape i:
array[1..s] of var ColoursAndDummy: Colour;
% There are n objects:
constraint count(Colour, dummyColour) = s - n;
% The numbers of objects of the actually used colours are distinct:
constraint all_different_except(global_cardinality(Colour,1..c),{0});
% The objects have distinct shapes:
% implied by lines 6 and 8!
% ... state here the other constraints ...
solve satisfy;
```

So what are the shape and colour of a particular object?! Map the objects onto the shapes with non-dummy colour!

Example (Objects, Shapes, and Colours)

Viewpoint 2: Which shapes, if any, does each colour have?

```
int: n; % number of objects
int: s; % number of shapes
constraint assert(s >= n, "Not enough shapes");
int: c; % number of colours
%
%
% Shapes[i] = the set of shapes of colour i:
array[1..c] of var set of 1..s: Shapes;
% There are n objects:
% implied by line 14 below!
% The numbers of objects of the actually used colours are distinct:
constraint all_different_except([card(Shapes[colour]) | colour in 1..c],{0});
% The objects have distinct shapes:
constraint }n=card(array_union(Shapes))
% ... state here the other constraints ...
solve satisfy;
```

Post-process: map the objects onto actually used shapes.
Can we also model this viewpoint without set variables? Yes, see next slide!

Example (Objects, Shapes, and Colours)

Viewpoint 2: Which shapes, if any, does each colour have?

```
int: n; % number of objects
int: s; % number of shapes
constraint assert(s >= n, "Not enough shapes");
int: c; % number of colours
%
%
% NbrObj[i,j] = the number of objects of colour i and shape j:
array[1..c,1..s] of var 0..1: NbrObj;
% There are n objects:
constraint n = sum(NbrObj);
% The numbers of objects of the actually used colours are distinct:
constraint all_different_except([sum(NbrObj[colour,..]) | colour in 1..c],{0});
% The objects have distinct shapes:
constraint forall(shape in 1..s)(sum(NbrObj[..,shape]) <=1 );
% ... state here the other constraints ...
solve satisfy;
```

Which model for viewpoint 2 is clearer or better? Ask others and try!

Example (Objects, Shapes, and Colours)

Viewpoint 3: Which shape and colour does each object have?

```
int: n; % number of objects
int: s; % number of shapes
constraint assert(s >= n, "Not enough shapes");
int: c; % number of colours
% Shape[i] = the shape of object i:
array[1..n] of var 1..s: Shape;
% Colour[i] = the colour of object i:
array[1..n] of var 1..c: Colour;
% There are n objects:
    implied by lines 6 and 8!
% The numbers of objects of the actually used colours are distinct:
constraint all_different_except(global_cardinality_closed(Colour,1..c),{0});
% The objects have distinct shapes:
constraint all_different(Shape);
% ... state here the other constraints ...
solve satisfy;
```

We needed to use two parallel arrays in lines 6 and 8 with the same index set but different domains in order to mimic records of two decision variables.

Which viewpoint is better in terms of:
■ Size of the search space:

- Viewpoint 1: $\mathcal{O}\left((c+1)^{s}\right)$, which is independent of n
- Viewpoint 2: $\mathcal{O}\left(2^{s \cdot c}\right)$, which is independent of n
- Viewpoint 3: $\mathcal{O}\left(\mathrm{s}^{\mathrm{n}} \cdot \mathrm{c}^{\mathrm{n}}\right)$

Does this actually matter?
■ Ease of formulating the constraints and the objective:

- It depends on the unstated other constraints.
- Ideally, we want a viewpoint that allows global constraints to be used.

■ Performance:

- Hard to tell: we have to run experiments!

■ Readability:

- Who is going to read the model?
- What is their background?

There are no correct answers here:
we actually need to think about this and run experiments.

UPPSALA UNIVERSITET

Outline

1. Viewpoints \& Dummy Values

2. Implied Constraints

3. Redundant Variables \& Channelling Constraints
4. Pre-Computation

Example (Magic Series of length n: model [J)
The element at index i in $I=0 \ldots(n-1)$ is the number of occurrences of i. Solutions: Magic=[1,2,1,0] and Magic=[2,0,2,0] for $n=4$.

Viewpoints \& Dummy Values Implied Constraints

Decision variables: Magic $=$| | 1 | 1 | \cdots |
| :---: | :---: | :---: | :---: |
| $\in I$ | $\in I$ | \cdots | $\in I$ |

Problem Constraint:

```
    forall(i in I)(Magic[i] = sum(j in I) (Magic[j] = i))
```

or, logically equivalently but better:
forall(i in I) (Magic[i] = count (Magic,i))
or, logically equivalently and even better:

```
global_cardinality_closed(Magic, arrayld(I, [i | i in I]), Magic)
```

Implied Constraints:

```
sum(Magic) = n /\ sum(i in I)(i * Magic[i]) = n
```

Depending on the formulation above of the problem constraint, the implied constraints accelerate a CP solver up to 100 times for $n=150$.

Definition

An implied constraint, also called a redundant constraint, is a constraint that logically follows from other constraints.

Benefit:

Solving may be faster, without losing any solutions.
However, not all implied constraints accelerate the solving.
Good practice in MiniZinc:
Flag implied constraints using implied_constraint. This allows backends to handle them differently, if wanted (see Topic 9: Modelling for CBLS):

```
predicate implied_constraint(var bool: c) = c; vs
predicate implied_constraint(var bool: c) = true;
```


Example

```
constraint implied_constraint(sum(Magic) = n);
```

In Topic 5: Symmetry,
we see the equally recommended symmetry_breaking_constraint.

Outline

1. Viewpoints \& Dummy Values
2. Implied Constraints
3. Redundant Variables \& Channelling Constraints
4. Pre-Computation

Example (n -queens)

Use both the n^{2} decision variables Queen [r, c] in $0 . .1$ and the n decision variables Row [c] in 1..n.

Definition

A redundant decision variable denotes information already denoted by other variables: mutual redundancy (same information) vs non-mutual redundancy.

Benefit: Easier modelling, or faster solving, or both.
Careful, the terminology differs: derived parameters vs redundant variables.

Examples (see Topic 6: Case Studies)

■ Each Queen [.., c] slice is mutually redundant with the variable Row [c].
■ Best model of Black-Hole Patience: mutual redundancy.
■ Models 1 and 3 of Warehouse Location: non-mutual redundancy.
■ Sport Scheduling: mutual redundancy.

Example (n -queens)

One-way channelling from each decision variable Row [c] to one of its mutually redundant decision variables of the slice Queen [.., c]: constraint forall(c in 1..n) (Queen[Row[c],c] = 1);
What sets the other decision variables of the slice Queen $[\ldots, c]$?

Definition

A channelling constraint fixes the value of either some (1-way channelling) or all (2-way channelling) decision variables when the values of the decision variables they are redundant with are fixed.
This applies to both sets of decision variables.

Examples (see Topic 6: Case Studies)

■ Best model of Black-Hole Patience: 2-way channelling.
■ Models 1 and 3 of Warehouse Location: 1-way channelling.

- Sport Scheduling: 2-way channelling.

Example (Student Seating, viewpoint 2 revisited)

Redundant

 Variables \& Channelling Constraints```
Pre-
```

Computation

```
int: dummyS = 0; % Advice: also experiment with nStudents+1
set of int: StudentsAndDummy = 1..nStudents union {dummyS};
% Student[c] = the student, possibly dummy, sitting on chair c:
array[1..nChairs] of var StudentsAndDummy: Student;
constraint global_cardinality_closed(Student, [dummyS]++[i|i in 1..nStudents],
 [nChairs - nStudents] ++ [1 | i in 1..nStudents]);
int: dummyP = 0; % Advice: also experiment with nPgms+1
set of int: PgmsAndDummy = 1..nPgms union {dummyP};
% Pgm[s] = the given study programme of student s:
array[1..nStudents] of 1..nPgms: Pgm;
% Programme[c] = the programme of the student on chair c:
array[1..nChairs] of var PgmsAndDummy: Programme; % non-mut. red. w/ Student
% 1-way channelling from Student to Programme, in case dummyS = 0:
constraint forall(c in 1..nChairs)
 (Programme[c] = array1d(StudentsAndDummy, [dummyP] ++ Pgm)[Student[c]]);
% (1) Each table has students of distinct study programmes:
constraint forall(T in Chairs)
 (all_different_except([Programme[c] | c in T]), {dummyP});
... % constraint (2) and objective (3) of slide 5
```

Note that Student uniquely determines Programme via Pgm, but not vice-versa: one can also formulate (1) directly with Student via Pgm.

UPPSALA UNIVERSITET

Viewpoints \& Dummy Values
Implied Constraints

Redundant
Variables \& Channelling Constraints

## Pre-

Computation

## Outline

1. Viewpoints \& Dummy Values
2. Implied Constraints
3. Redundant Variables \& Channelling Constraints

## 4. Pre-Computation

## Example (Prize-Pool Division)

Consider a maximisation problem where the objective function is the division of an unknown prize pool by an unknown number of winners:

```
2 array[1..5] of int: Pools = [1000,5000,15000,20000,25000];
3 var 1..5: x; % index of the actual prize pool within Pools
4 var 1..500: nbrWinners; % the number of winners
5 constraint ... x ... nbrWinners ...;
6 solve maximize Pools[x] div nbrWinners; % implicit: element!
```

Observation: We should beware of using the div function on decision variables, because:

■ It yields weak inference, at least in CP and LCG solvers.
■ Its inference takes unnecessary time and memory.
Idea: We can precompute all possible objective values, as derived parameters.

## Example (Prize-Pool Division, revisited)

Precompute a 2d array of derived parameters, indexed by 1. . 5 and 1. . 500, for each possible value pair of $x$ and nbrWinners:

```
2 array[1..5] of int: Pools = [1000,5000,15000,20000,25000];
3 var 1..5: x; % index of the actual prize pool within Pools
4 var 1..500: nbrWinners; % the number of winners
5 constraint ... x ... nbrWinners ...;
6 array[1..5,1..500] of int: ObjVal = array2d(1..5, 1..500,
 [Pools[p] div n | p in 1..5, n in 1..500]); % div on par!
7 solve maximize ObjVal[x,nbrWinners]; % implicit: 2d-element!
```


## Example (Kakuro Puzzle, reminder from Topic 3: Constraint Predicates)

We precomputed all_different_sum $(X, \sigma)$ for $|X| \in 2 . .7$ and $\sigma \in 3 . .35$, say table ([x,y], [|1,3|3,1|]) for all_different_sum ([x,y],4) and table ([y,z],[|1,2|2,1|]) for all_different_sum ([y,z],3), because MiniZinc has no all_different_sum predicate and its definition by a conjunction of all_different and sum has too poor inference.


[^0]:    ${ }^{1}$ Many thanks to Guido Tack for feedback

