
Topic 2: Basic Modelling 1

(Version of 23rd October 2023)

Pierre Flener and Jean-Noël Monette

Optimisation Group
Department of Information Technology

Uppsala University
Sweden

Course 1DL442:
Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

1Many thanks to Guido Tack for feedback

https://user.it.uu.se/~pierref
https://www.it.uu.se/research/group/optimisation

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Outline

1. The MiniZinc Language

2. Modelling

3. Set Variables &Constraints

4. Modelling Checklist

COCP/M4CO 2 - 2 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Outline

1. The MiniZinc Language

2. Modelling

3. Set Variables &Constraints

4. Modelling Checklist

COCP/M4CO 2 - 3 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

MiniZinc Model

A MiniZinc model may comprise the following items:

Parameter declarations

Decision variable declarations

Predicate and function definitions

Constraints

Objective

Output

COCP/M4CO 2 - 4 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Types for Parameters

MiniZinc is strongly typed. Some parameter types are:
int: integer
bool: Boolean
enum: enumeration
float: floating-point number
string: string of characters
set of τ : set of elements of type τ
array[ρ] of τ : possibly multidimensional array of elements of type τ ;
each index range in ρ is an enumeration or an integer range α..β

Example
The parameter declaration int: n declares an integer parameter called n.
One can also write par int: n in order to emphasise that n is a parameter.

COCP/M4CO 2 - 5 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Types for Decision Variables

Decision variables are implicitly existentially quantified: the objective is to find
feasible (and optimal) values in their finite domains. Some variable types are:

int: integer
bool: Boolean
enum: enumeration
float: floating-point number (do not use in this course)
set of enum and set of int: set

A possibly multidimensional array can be declared to have variables of any
variable type, but it is itself not a variable.

Example
The variable declaration var int: n declares a decision variable
of domain int and identifier n.

Tight domains for variables might accelerate the solving: see the next slides.
COCP/M4CO 2 - 6 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Literals

The following literals (or: constants) can be used:

Boolean: true and false

Integers: in decimal, hexadecimal, or octal format

Sets: between curly braces, for example {1,3,5},
or as integer ranges, for example 10..30

1d arrays: between square brackets, say [6,3,1,7]

2d arrays: A vertical bar | is used before the first row, between rows,
and after the last row; for example [|11,12,13|21,22,23|]

For higher-dimensional arrays, see slide 11

Careful: The indices of arrays start from 1 by default.

COCP/M4CO 2 - 7 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Declarations of Parameters and Decision Variables

1 int: n = 4;
2 par int: p;
3 p = 10;
4 var 0..23: hour;
5 set of int: Primes = {2,3,5,7,11,13};
6 var set of Primes: Taken;
7 var int: nbr = card(Taken);

A parameter must be instantiated, once, to a literal. The instantiation of a
parameter can be separate from its declaration: either in the model (see p
in lines 2 & 3 above), or in a datafile, or at the command line, or in the IDE.
The domain of a decision variable can be tightened by replacing its type
by a smaller finite set of values of that type:

• hour must take an integer value from 0 to 23 inclusive
• Taken must be a subset of {2,3,5,7,11,13}
• nbr is equality-constrained at its declaration:

its domain is inferred to be 0..6 (see slide 39 for more)
COCP/M4CO 2 - 8 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Array and Set Comprehensions

An array or set can be built by a comprehension, using the notation [σ|γ]
or {σ|γ}, where expression σ is evaluated for each element produced by the
generator γ: a generator introduces one or more identifiers with values drawn
from finite integer sets, optionally under a where test.

Examples
1 [i * 2 | i in 1..8]
2 evaluates to [2,4,6,8,10,12,14,16]
3 [i * j | i,j in 1..3 where i<j] % both i and j are in 1..3
4 evaluates to [2,3,6]
5 [i + 2 * j | i in 1..3, j in 1..4]
6 evaluates to [3,5,7,9,4,6,8,10,5,7,9,11]
7 {i + 2 * j | i in 1..3, j in 1..4}
8 evaluates to {3,4,5,6,7,8,9,10,11}
9 Sudoku[row,..] % slicing

10 is syntactic sugar for [Sudoku[row,col] | col in 1..9]

COCP/M4CO 2 - 9 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Indexing: Syntactic Sugar

For example,

sum(i,j in 1..n where i<j)(X[i] * X[j])

is syntactic sugar for

sum([X[i] * X[j] | i,j in 1..n where i<j])

This works for any function or predicate that takes an array as sole argument.
In particular:

forall(i in 1..n)(Z[i] = X[i] + Y[i]);

is syntactic sugar for

forall([Z[i] = X[i] + Y[i] | i in 1..n]);

where the forall(array[int] of var bool: B) constraint
holds if and only if (iff) all the expressions in the Boolean array B hold:
it generalises the 2-ary logical-and connective (/\).

COCP/M4CO 2 - 10 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Array Manipulation

Changing the number of dimensions and their index ranges,
provided the numbers of elements match:

array1d(5..10,[|2,7|3,7|4,9|]) casts a 2D array into a 1D array

array2d(1..2,1..3,[2,7,3,7,4,9]) casts a 1D array into 2D

and so on, until array6d.

Try and keep your index ranges starting from 1:

• It is easier to read a model under this usual convention.

• Subtle errors might occur otherwise.

Concatenation: for example, [1,2] ++ [3,4].

COCP/M4CO 2 - 11 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Subtyping

A parameter can be used wherever a decision variable is expected.
This extends to arrays: for example, a predicate or function
expecting an argument of type array[int] of var int
can be passed an argument of type array[int] of int.

The type bool is a subtype of the type int.
One can coerce from bool to int using the bool2int function,
defined by bool2int(true) = 1 and bool2int(false) = 0.
This coercion is automatic when needed.

In mathematics, one uses the Iverson bracket for this purpose:
we define [ϕ] = 1 if and only if formula ϕ is true, and [ϕ] = 0 otherwise.

COCP/M4CO 2 - 12 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Option Variables

An option variable is a decision variable that can also take the special value <>
indicating the absence of a value for the decision variable.

A decision variable is declared optional with the keyword opt.

For example, var opt 1..4: x declares a decision variable x
of domain {1,2,3,4,<>}.

Do not use explicit option variables in this course.
However, one can see them:

In the documentation:
for example, var int is a subtype of var opt int.
In error messages, due to implicit option variables being made explicit
while flattening, but things getting too complex:
see the symptomatic example at slide 21.

COCP/M4CO 2 - 13 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Constraints

A constraint is the keyword constraint followed by a Boolean expression
that must be true in every solution.

Examples
1 constraint x < y;
2 constraint sum(X) = 0 /\ all_different(X);

Constraints separated by a semi-colon (;) are implicitly connected
by the 2-ary logical-and connective (/\).
What does constraint x = x + 1 mean?
MiniZinc is declarative and has no destructive assignment:
this equality constraint is not satisfied by any value for x.
MiniZinc tolerates the syntax x == y + 1 for x = y + 1, but note that
MiniZinc is syntax for mathematics and logic, where == does not exist!

COCP/M4CO 2 - 14 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Objective

The solve item gives the objective of the problem:
solve satisfy;
The objective is to solve a satisfaction problem.
solve minimize x;
The objective is to minimise the value of decision variable x.
solve maximize x + y;
The objective is to maximise the value of the objective function x + y.

MiniZinc does not support multi-objective optimisation yet:
multiple objective functions must either be aggregated into a weighted sum,
or be handled outside a MiniZinc model.

COCP/M4CO 2 - 15 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Output

The output item prescribes what to print upon finding a solution:
the keyword output is followed by an array of strings.

output [show(x div n)];

The function show returns a string with the value of its variable expression.

output ["Solution: "] ++ [if X[i] > 0 then
show(X[i])++", " else " , " endif | i in 1..n];

The operator ++ concatenates two strings or two arrays.

The string "\(X[i]), " equals show(X[i])++", ". There is show2d.

The search strategy of the CP backend Gecode depends on the decision
variables mentioned in the output statement.

COCP/M4CO 2 - 16 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Operators and Functions

Booleans: not, /\, \/, <->, ->, <-, xor, forall, exists, xorall,
iffall, clause, bool2int, . . .
Beware of arbitrarily nested logical quantifications,
such as forall(...exists(...forall(...)))!

Integers: +, -, *, div (note that / is for float), mod, abs, pow, min,
max, sum, product, = (or == if you have to), <, <=, =>, >, !=, . . .
Beware of div, mod, and pow on decision variables!

Sets: .., in, card, subset, superset, union, array_union,
intersect, array_intersect, diff, symdiff, set2array, . . .

Strings: ++, concat, join, . . .

Arrays: length, index_set, index_set_1of2, index_set_2of2,
. . . , index_set_6of6, array1d, array2d, . . . , array6d, . . .

COCP/M4CO 2 - 17 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Predicates and Functions

MiniZinc offers a large collection of predefined predicates and functions
in order to enable a high level at which models can be formulated.
See Topic 3: Constraint Predicates.

Each predefined constrained function is defined by the corresponding
constraint predicate, possibly upon introducing a new decision variable.

Example
count(X,v)>m is defined by count(X,v,c) /\ c>m with var int: c.

It is also possible for modellers to define their own functions and predicates,
as discussed at slide 25.

COCP/M4CO 2 - 18 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Reification

Reification enables the reasoning about the truth of a constraint
or a Boolean expression.

Example

constraint x < y;

requires that x be smaller than y.

constraint b <-> x < y;

requires that the Boolean variable b take the value true iff x is smaller than y:
the constraint x < y is said to be reified, and b is called its reification.

Reification is a powerful mechanism that enables:
higher-level modelling;
easier implementation of the logical connectives.

COCP/M4CO 2 - 19 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

The expression bool2int(ϕ), for a Boolean expression ϕ,
denotes the integer 1 if ϕ is true, and 0 if ϕ is false.

Example (Cardinality constraint)
Constrain one or two of three constraints γ1, γ2, γ3 to hold:

bool2int(γ1) + bool2int(γ2) + bool2int(γ3) in {1,2}

As bool2int coercion is automatic, one can actually write:

γ1 + γ2 + γ3 in {1,2}

However, as a coding convention, we recommend to write:

(γ1) + (γ2) + (γ3) in {1,2}

thereby mimicking the Iversion bracket (see slide 12).

Reification (implicit via bool2int and (...)) has pitfalls:
− Inference and relaxation might be poor: slow solving.
− Not all constraints can be reified in MiniZinc,

such as some of those in Topic 3: Constraint Predicates.
COCP/M4CO 2 - 20 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

A conditional expression can be formulated as follows:
Conditional: if θ then ϕ1 else ϕ2 endif

Comprehension: [i | i in σ where θ]

The expressions ϕ1 and ϕ2 must have the same type.
The test θ after if or where may have variables, but this can be a source of
unexpected behaviour (Section 2.4.3), inefficiency, or impossible flattening!

Example
1 enum I; set of int: T; array[I] of var T: X;
2 array[I] of var T: Y=[X[i]|i in I where X[i]>0]; constraint sum(Y)<7;

This yields an error message with var opt (see slide 13) as the indices of Y
cannot be determined when flattening and cannot just be set to I.
But the following works:

2 constraint sum([X[i] | i in I where X[i]>0]) < 7;

and so does the use of implicit reification, possibly better:
2 constraint sum([(X[i]>0) * X[i] | i in I]) < 7;

COCP/M4CO 2 - 21 -

https://www.minizinc.org/doc-latest/en/optiontypes.html

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example (Soft Constraints:

Weighted

Alignment Photo Problem +)
An enumeration Students of students want to line up for a class photo.

Consider:
array[_] of record(Students: who, Students: whom): Wish;

The wish w in Wish denotes that student w.who wants

to pay w.bid in order

to be next to student w.whom on the photo.
Maximise the

weighted

number of granted wishes.

Let decision variable Pos[s] denote the position in 1..card(Students)
of student s on the photo.

The array Pos must form a permutation of the positions:

constraint all_different(Pos);

The objective, formulated using implicit reification, is:
solve maximize sum(w in Wish)
(

w.bid *

(abs(Pos[w.who] - Pos[w.whom]) = 1));

COCP/M4CO 2 - 22 -

https://user.it.uu.se/~pierref/courses/COCP/models/photo.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/photo.dzn

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example (Soft Constraints: Weighted Photo Alignment Problem +)
An enumeration Students of students want to line up for a class photo.

Consider:
array[_] of record(Students: who, Students: whom, int: bid): Wish;

The wish w in Wish denotes that student w.who wants to pay w.bid in order
to be next to student w.whom on the photo.
Maximise the weighted number of granted wishes.

Let decision variable Pos[s] denote the position in 1..card(Students)
of student s on the photo.

The array Pos must form a permutation of the positions:

constraint all_different(Pos);

The objective, formulated using implicit reification, is:
solve maximize sum(w in Wish)
(

w.bid *

(abs(Pos[w.who] - Pos[w.whom]) = 1));

COCP/M4CO 2 - 23 -

https://user.it.uu.se/~pierref/courses/COCP/models/photo.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/photo-weighted.dzn

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example (Soft Constraints: Weighted Photo Alignment Problem +)
An enumeration Students of students want to line up for a class photo.

Consider:
array[_] of record(Students: who, Students: whom, int: bid): Wish;

The wish w in Wish denotes that student w.who wants to pay w.bid in order
to be next to student w.whom on the photo.
Maximise the weighted number of granted wishes.

Let decision variable Pos[s] denote the position in 1..card(Students)
of student s on the photo.

The array Pos must form a permutation of the positions:

constraint all_different(Pos);

The objective, formulated using implicit reification, is:
solve maximize sum(w in Wish)
(w.bid * (abs(Pos[w.who] - Pos[w.whom]) = 1));

COCP/M4CO 2 - 23 -

https://user.it.uu.se/~pierref/courses/COCP/models/photo.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/photo-weighted.dzn

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example (Sum of unweighted reified constraints)
The expression sum(i in index_set(X))(X[i] = v) denotes the
number of decision variables of array X that are equal to decision variable v.

This idiom is very common in constraint-based models. So it has a name:

Definition (The count constraint predicate)
The constraint count(X,v,c) holds if and only if decision variable c has the
number of decision variables of array X that are equal to decision variable v.

For other predicates, see Topic 3: Constraint Predicates.

Definition (The count constrained function)
The expression count(X,v) denotes the
number of decision variables of array X that are equal to decision variable v.

Example (Unweighted Photo Alignment Problem, revisited)
solve maximize count([abs(Pos[w.who] - Pos[w.whom]) | w in Wish], 1);

Functional constraint predicates are available as functions.COCP/M4CO 2 - 24 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Predicate and Function Definitions

Examples

1 function int: double(int: x);
2 function var int: double(var int: x);
3 predicate pos(var int: x);
4 function var bool: neg(var int: x);

A predicate is a function denoting a var bool:

Examples

3 function var bool: pos(var int: x);
4 predicate neg(var int: x);

Function and predicate names can be overloaded.
COCP/M4CO 2 - 25 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

The body of a predicate or function definition is an expression
of the same type as the denoted value.

Examples

1 function int: double(int: x) = 2*x;
2 function var int: double(var int: x) = 2*x;
3 predicate pos(var int: x) = x > 0;
4 function var bool: neg(var int: x) = x < 0;

One can use if . . . then . . . else . . . endif expressions,
predicates and functions, such as forall and exists,
as well as let expressions (see the next slide)
in the body of a predicate or function definition.

COCP/M4CO 2 - 26 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Let Expressions

One can introduce local identifiers within a let expression and constrain them.

Examples

1 function int: double(int: x) =
2 let { int: y = 2 * x } in y;
3 function var int: double(var int: x) =
4 let { var int: y = 2 * x } in y;
5 function var int: double(var int: x) =
6 let { var int: y;
7 constraint y = 2 * x
8 } in y;

The second and third functions are equivalent:
each use adds a decision variable to the model.

COCP/M4CO 2 - 27 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Constraints in Let Expressions

What is the difference between the following two definitions?

1 predicate posProd(var int: x, var int: y) =
2 let { var int: z; constraint z = x * y
3 } in z > 0;
4 predicate posProd(var int: x, var int: y) =
5 let { var int: z
6 } in z = x * y /\ z > 0;

Their behaviour is different in a negative context,
such as not posProd(a,b):

The 1st one then ensures a * b = z /\ z <= 0.
The 2nd one then ensures a * b != z \/ z <= 0
and leaves a and b unconstrained.

COCP/M4CO 2 - 28 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Using Predicates and Functions

Advantages of using predicates and functions in a model:

Software engineering good practice:

• Reusability

• Readability

• Modularity

The model might be solved more efficiently:

• Better common-subexpression elimination.

• The definitions can be technology-specific or solver-specific.
If a predefined constraint predicate is a built-in of a solver,
then its solver-specific definition is identity!

COCP/M4CO 2 - 29 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Remarks

The order of model items does not matter.

One can include other files.
Example: include "globals.mzn".

The following functions are useful for debugging:

• constraint assert(θ,"error message")
If the Boolean expression θ evaluates to false,
then abort with the error message, otherwise denote true.

• trace("message", ϕ)
Print the message and denote the expression ϕ.

• . . .

COCP/M4CO 2 - 30 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Other Modelling Languages

OPL: https://www.ibm.com/optimization-modeling
Comet:
https://mitpress.mit.edu/books/constraint-based-local-search

Essence and Essence′: https://constraintmodelling.org
Zinc: https://dx.doi.org/10.1007/s10601-008-9041-4
AIMMS: https://aimms.com
AMPL: https://ampl.com
FICO Xpress Insight:
https://www.fico.com/en/products/fico-xpress-optimization

GAMS: https://gams.com
SMT-lib: https://smtlib.cs.uiowa.edu
. . .

COCP/M4CO 2 - 31 -

https://www.ibm.com/optimization-modeling
https://mitpress.mit.edu/books/constraint-based-local-search
https://constraintmodelling.org
https://dx.doi.org/10.1007/s10601-008-9041-4
https://aimms.com
https://ampl.com
https://www.fico.com/en/products/fico-xpress-optimization
https://gams.com
https://smtlib.cs.uiowa.edu

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Outline

1. The MiniZinc Language

2. Modelling

3. Set Variables &Constraints

4. Modelling Checklist

COCP/M4CO 2 - 32 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

From a Problem to a Model

What is a good model for a constraint problem?

A model that correctly represents the problem

A model that is easy to understand and maintain

A model that is solved efficiently, that is:

• short solving time to find one, all, or best solution(s)

• good solution within a limited amount of time

• small search space (under systematic search)

Food for thought: What is correct, easy, short, good, . . . ?

COCP/M4CO 2 - 33 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Modelling Issues

Modelling is still more an Art than a Science:

Choice of the decision variables and their domains

Choice of the constraint predicates,
in order to model the objective function, if any, and the constraints

Optional for CP and LCG:

• Choice of the consistency for each constraint
• Choice of the variable selection strategy for search
• Choice of the value selection strategy for search

See Topic 8: Inference & Search in CP & LCG.

Make a model correct before making it efficient!

COCP/M4CO 2 - 34 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Choice of the Decision Variables

Examples (Alphametic Problems)
SEND + MORE = MONEY:
Model without carry variables: 19 of 23 CP nodes are visited:

1000 · (S + M) + 100 · (E + O) + 10 · (N + R) + (D + E)
= 10000 · M + 1000 · O + 100 · N + 10 · E + Y

Model with carry variables: 23 of 29 CP nodes are visited:

D + E = 10 · C1 + Y ∧ N + R + C1 = 10 · C2 + E
∧ E + O + C2 = 10 · C3 + N ∧ S + M + C3 = 10 · M + O

GERALD + DONALD = ROBERT: The model with carry variables is more
effective in CP: only 791 of 869 nodes are visited, rather than 13,795 of 16,651
search nodes for the model without carry variables.

COCP/M4CO 2 - 35 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Choice of the Constraint Predicates

Example (The all different constraint predicate)
The constraint all_different(X) on an array X of size n usually leads to
faster solving than its definition by a conjunction of n·(n−1)

2 disequality
constraints:

forall(i,j in index_set(X) where i < j)(X[i] != X[j])

For more examples, see Topic 3: Constraint Predicates.

COCP/M4CO 2 - 36 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Guidelines: Reveal Problem Structure

Use few decision variables, and declare tight domains
Beware of nonlinear and power constraints: pow
Beware of division constraints: div and mod (avoid /, which is for float)
Beware of disjunction and negation: \/, <-, ->, <->, not

Express the problem concisely (see Topic 3: Constraint Predicates)
Precompute solutions to a sub-problem into a table
(see Topic 3: Constraint Predicates; see Topic 4: Modelling)
Use implied constraints (see Topic 4: Modelling)
Use different viewpoints (see Topic 4: Modelling)
Exploit symmetries (see Topic 5: Symmetry)

Careful: These guidelines of course have their exceptions!
It is important to test empirically several combinations of model, solver, and
solving technology.

COCP/M4CO 2 - 37 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Use Few Decision Variables

When appropriate, use a single integer decision variable instead of an array of
Boolean decision variables:

Example
Assume Joe must be assigned to exactly one task in 1..n:

Use a single integer decision variable, var 1..n: joesTask,
denoting which task Joe is assigned to.
Do not use array[1..n] of var bool:joesTask,
each element joesTask[t] denoting whether (true) or not (false)
Joe is assigned to task t, plus count(joesTask,true) = 1.

When appropriate, use a single set decision variable instead of an array of
Boolean or integer decision variables: see slides 49 and 51.

COCP/M4CO 2 - 38 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Declare the Decision Variables with Tight Domains

Tight domains for decision variables might accelerate the solving.
Beware of var int for non equality-constrained decision variables.

Example (Use parameters for declaring tight domains)
If the decision variable t denotes a time, then write var 0..h: t,
where horizon h is a parameter, instead of var int: t.

Definition
A derived parameter is computed from the parameters in the instance data.

Example (Use derived parameters for declaring tight domains)

1 int: p; int: c= ceil(pow(p,1/3)); int: s= ceil(sqrt(p));
2 var 1..c: x; var 1..s: y; var 1..p: z; % no "var int"
3 constraint x * y * z = p /\ x <= y /\ y <= z;

COCP/M4CO 2 - 39 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Beware of Nonlinear and Power Constraints

Constraining the product of two or more decision variables
often makes the solving slow. Try and find a linear reformulation.

Example
The model snippet

array[1..n] of var 0..1: X;
array[1..n] of var 0..1: Y;
constraint count([X[i] * Y[i] | i in 1..n], 1) = b;

should be reformulated as:

array[1..n] of var 0..1: X;
array[1..n] of var 0..1: Y;
constraint count([X[i] + Y[i] | i in 1..n], 2) = b;

COCP/M4CO 2 - 40 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Beware of Division Constraints

The use of div and mod on decision variables often makes the solving slow.
Use table (see Topic 3: Constraint Predicates) or reformulate.

Example
The model snippet

solve minimize sum(X) div n; % minimise the average

over n decision variables X[i] and parameter n should become:

solve minimize sum(X); % minimise the sum
output [show(sum(X) div n)]; % output the average

COCP/M4CO 2 - 41 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Beware of Disjunction and Negation

The disjunction of constraints (with \/, xor, <-, ->, <->, exists, xorall,
if θ then ϕ else ψ endif) often makes the flat code long and the solving
slow. Try and express disjunctive combinations of constraints otherwise.

Example
The model snippet

constraint x = 0 \/ (low <= x /\ x <= up);

with parameters low and up, should be reformulated as:
constraint x in {0} union low..up;

or, even better in this particular case, as:
var {0} union low..up: x;

Disjunction or other sources of slow solving may also be introduced by not.
COCP/M4CO 2 - 42 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example
The model snippet

constraint x=3 \/ x=5 \/ x=7;

flattens into the very inefficient code:

var int: x;
var bool: B3; var bool: B5; var bool: B7;
constraint array_bool_or([B3,B5,B7],true);
constraint B3 -> x=3; % int_eq_imp(x,3,B3)
constraint B5 -> x=5; % this is called
constraint B7 -> x=7; % half-reification

It should be reformulated as constraint x in {3,5,7} or, even better,
as var {3,5,7}: x, which both flatten into the latter:
a domain is a disjunction of candidate values!

COCP/M4CO 2 - 43 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example
The model snippet

constraint b -> x = 9; constraint (not b) -> x = 0;

can be reformulated as (recall that bool2int(true)=1):

constraint x = 9 * b;

or as (note that array indexing starts by default at 1):

constraint x = [0,9][1+b];

But beware of such premature fine-tuning of a model!
The following reformulations are clearer and often good enough:

constraint x = if b then 9 else 0 endif;

and

constraint if b then x=9 else x=0 endif;

COCP/M4CO 2 - 44 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Express the Problem Concisely

Whenever possible, use a single predefined constraint predicate
instead of a long-winded (quantified) formulation of its semantics.

Example (The all different constraint predicate)
The constraint all_different(X) on an array X of size n usually leads to
faster solving than its definition by a conjunction of n·(n−1)

2 disequality
constraints:

forall(i,j in index_set(X) where i < j)(X[i] != X[j])

For more examples, see Topic 3: Constraint Predicates.

COCP/M4CO 2 - 45 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Outline

1. The MiniZinc Language

2. Modelling

3. Set Variables &Constraints

4. Modelling Checklist

COCP/M4CO 2 - 46 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Motivating Example 1

Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley
corn

millet
oats
rye

spelt
wheat

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

COCP/M4CO 2 - 47 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Motivating Example 1

Example (Agricultural experiment design, AED)
plot1 plot2 plot3 plot4 plot5 plot6 plot7

barley ✓ ✓ ✓ – – – –
corn ✓ – – ✓ ✓ – –

millet ✓ – – – – ✓ ✓
oats – ✓ – ✓ – ✓ –
rye – ✓ – – ✓ – ✓

spelt – – ✓ ✓ – – ✓
wheat – – ✓ – ✓ ✓ –

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

COCP/M4CO 2 - 47 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

In a BIBD, the plots are blocks and the grains are varieties:

Example (BIBD integer model : ✓⇝ 1 and –⇝ 0)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties,Blocks] of var 0..1: BIBD; % BIBD[v,b]=1 iff v is in b
0 solve satisfy;
1 constraint forall(b in Blocks) (blockSize = count(BIBD[..,b], 1));
2 constraint forall(v in Varieties)(sampleSize = count(BIBD[v,..], 1));
3 constraint forall(v, w in Varieties where v < w)

(balance = count([BIBD[v,b]+BIBD[w,b] | b in Blocks], 2));

Example (Instance data for our AED)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

COCP/M4CO 2 - 48 -

https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-int-count2.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-AED.dzn

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example (Idea for another BIBD model)
barley {plot1,plot2,plot3

,plot4,plot5,plot6,plot7

}
corn {plot1,

plot2,plot3,

plot4,plot5

,plot6,plot7

}
millet {plot1,

plot2,plot3,plot4,plot5,

plot6,plot7}
oats {

plot1,

plot2,

plot3,

plot4,

plot5,

plot6

,plot7

}
rye {

plot1,

plot2,

plot3,plot4,

plot5,

plot6,

plot7}
spelt {

plot1,plot2,

plot3,plot4,

plot5,plot6,

plot7}
wheat {

plot1,plot2,

plot3,

plot4,

plot5,plot6

,plot7

}

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

COCP/M4CO 2 - 49 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example (BIBD set model : a block set per variety)

-3 enum Varieties; enum Blocks;
-2 int: blockSize; int: sampleSize; int: balance;
-1 array[Varieties] of var set of Blocks: BIBD; % BIBD[v] = blocks for v
0 solve satisfy;
1 constraint forall(b in Blocks)

(blockSize = sum(v in Varieties)(b in BIBD[v]));
2 constraint forall(v in Varieties)

(sampleSize = card(BIBD[v]));
3 constraint forall(v, w in Varieties where v < w)

(balance = card(BIBD[v] intersect BIBD[w]));

Example (Instance data for our AED)

-3 Varieties = {barley,...,wheat}; Blocks = {plot1,...,plot7};
-2 blockSize = 3; sampleSize = 3; balance = 1;

COCP/M4CO 2 - 50 -

https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-set.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/BIBD-AED.dzn

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Motivating Example 2 2

Example (Hamming code: problem)
The Hamming distance between two same-length strings
is the number of positions at which the two strings differ.
Examples: h(10001,01001) = 2 and h(11010,11110) = 1.

ASCII has codewords of m = 8 bits for n = 2m symbols,
but the least Hamming distance is d = 1: no robustness!

Toward high robustness in data transmission, we want to generate a codeword
of m bits for each of the n symbols of an alphabet, such that the Hamming
distance between any two codewords is at least some given constant d .

2Based on material by Christian Schulte
COCP/M4CO 2 - 51 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Example (Hamming code: model and data)
We encode a codeword of m bits as the set of positions of its unit bits,
the least significant bit being at position 1.
Example: 10001 is encoded as {1,5}, and 01001 is encoded as {1,4}.
In general: bm · · · b1 is encoded as {1 · b1, . . . ,m · bm} \ {0}.
So the Hamming distance between two codewords is u − i , where u is the size
of the union of their encodings and i is the size of the intersection of their
encodings, that is the size of the symmetric difference of their encodings:

array[1..n] of var set of 1..m: Codeword;
constraint forall(i, j in 1..n where i < j)

(card(Codeword[i] symdiff Codeword[j]) >= d);

Definition
A set (decision) variable takes a set as value, and has a set of sets as domain.
For its domain to be finite, a set variable must be a subset of a given finite set.

COCP/M4CO 2 - 52 -

https://user.it.uu.se/~pierref/courses/COCP/models/HammingCode.mzn
https://user.it.uu.se/~pierref/courses/COCP/models/HammingCode.dzn

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Set-constraint predicates exist for the following semantics:

Cardinality: |S| = n

Membership: n ∈ S

Equality: S1 = S2

Disequality S1 ̸= S2

Subset: S1 ⊆ S2

Union: S1 ∪ S2 = S3

Intersection: S1 ∩ S2 = S3

Difference: S1 \ S2 = S3

Symmetric difference: (S1 ∪ S2) \ (S1 ∩ S2) = S3

Order: S1 ⊆ S2 ∨min((S1 \ S2) ∪ (S2 \ S1)) ∈ S1

Strict order: S1 ⊂ S2 ∨min((S1 \ S2) ∪ (S2 \ S1)) ∈ S1

where the Si are set decision variables and n is an integer decision variable.
Set variables may backfire in M4CO assignments, but may be useful in project.

COCP/M4CO 2 - 53 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Beware of Variable Integer Ranges

Reification and set variables may appear while flattening complex expressions:

Example
var 1..5: x; array[1..7] of var 1..9: X;
constraint forall(i in 1..x)(X[i]<3);

flattens into inefficient code, linear in the domain size of x:
var 1..5: x; array[1..7] of var 1..9: X;
var set of 1..5: S; % prefix of indices i with X[i]<3
var bool: B2; ...; var bool: B9;
constraint 1 in S; constraint X[1] < 3;
constraint B2 <-> 2 in S; constraint B2 <-> 2 <= x;
constraint B2 -> B6; constraint B6 -> X[2] < 3;
constraint ...;
constraint B5 <-> 5 in S; constraint B5 <-> 5 <= x;
constraint B5 -> B9; constraint B9 -> X[5] < 3;

Avoid ranges α..β where α or β (or both) are decision variables.
COCP/M4CO 2 - 54 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Collection Variables

Definition
A set decision variable has a set of sets as domain.
An array decision variable has a set of arrays as domain.
A string decision variable has a set of strings as domain.

MiniZinc currently has no syntax for the declaration of array variables and
string variables, and MiniZinc currently has no constraint predicates for such
decision variables (but our proposal at LOPSTR 2016 and CP-AI-OR 2017 for
string variables and string constraint predicates is ready for integration).

Subtle difference with imperative programming and OO programming!
array of variables = variable array ̸= array variable

array[int] of var int: X ̸= var array[int] of int: Y

X[i] is a variable; X itself is not a variable; Y would be a variable, if supported
COCP/M4CO 2 - 55 -

https://doi.org/10.1007/978-3-319-63139-4_4
https://doi.org/10.1007/978-3-319-59776-8_5

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Outline

1. The MiniZinc Language

2. Modelling

3. Set Variables &Constraints

4. Modelling Checklist

COCP/M4CO 2 - 56 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Conventions of all Slides (recommended!)

Scalar identifiers (bool, enum items, int) start with a lowercase letter.
Mass identifiers (array, enum, set) start with an uppercase letter.
Arrays have self-explanatory function identifiers: a given|unknown total
function f : X → Y can be modelled as array[X] of par|var Y: F.
Index identifiers are lowercase and mnemonic: memory aid.
Comments about the next line end in “:”, like line 2 in the example below.

Example
1 int: nQueens; % the given number of queens
2 % Row[c] = the row number of the queen in column c:
3 array[1..nQueens] of var 1..nQueens: Row;

Variable Row[c] is like Row(c), denoting the function Row applied to arg. c.
The array Row is not a variable, but an array of variables: it has row numbers,
but calling it Rows would make Rows[c] seem to denote a set of rows for c!

COCP/M4CO 2 - 57 -

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Ideas for Debugging and Accelerating a Model

If there are no solutions (or missing solutions) to a known-to-be satisfiable
instance, then:

• Comment away constraints in order to increase the solution set
and thereby find unsatisfiable constraints.

• In the IDE or CLI, choose findMUS as the backend
in order to find a minimal unsatisfiable subset (MUS) of the constraints:
see Section 3.8 of the MiniZinc Handbook.

In the IDE, choose “Run > Profile compilation” in order to see per model
line the numbers of constraints and decision variables generated by its
flattening, and the flattening time: if some of these numbers are extreme,
then you probably ran afoul of items of the checklist on the next slide.

In the IDE, choose “Run > Compile” in order to inspect the flat code.

COCP/M4CO 2 - 58 -

https://www.minizinc.org/doc-latest/en/find_mus.html

The MiniZinc
Language

Modelling

Set Variables
&Constraints

Modelling
Checklist

Checklist for Designing or Reading a Model

1 Each index of an array occurs in the semantics of the array
2 Each index range of an array either starts from 1 or is enum, for clarity
3 Beware of decision variables without tight domains
4 No explicit decision variables of type opt τ are used (in this course)
5 No sum|forall(i in 1..x) with a decision variable x is used
6 Beware of where θ and if θ with test θ containing decision variables
7 Beware of explicit (<->) and implicit ((...)) reification
8 Beware of negation and disjunction: not, \/, exists, xor, xorall,
if θ then ϕ else ψ endif, <-, ->, <->

9 Beware of arbitrarily nested logical quantifications,
such as forall(...exists(...forall(...)))

10 Beware of nonlinear, pow, div, mod constraints on decision variables
COCP/M4CO 2 - 59 -

	The MiniZinc Language
	Modelling
	Set Variables &Constraints
	Modelling Checklist

