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Abstract

Several recent works have considered parameterized
verification, i.e. automatic verification of systems con-
sisting of an arbitrary number of finite-state processes
organized in a linear array. The aim of this paper is
to extend these works by giving a simple and efficient
method to prove safety properties for systems with tree-
like architectures. A process in the system is a finite-
state automaton and a transition is performed jointly
by a process and its parent and children processes. The
method derives an over-approximation of the induced
transition system, which allows the use of finite trees
as symbolic representations of infinite sets of configu-
rations. Compared to traditional methods for parame-
terized verification of systems with tree topologies, our
method does not require the manipulation of tree trans-
ducers, hence its simplicity and efficiency. We have
implemented a prototype which works well on several
nontrivial tree-based protocols.

1 Introduction

In recent years, there has been an extensive amount
of work on the verification of parameterized systems,
e.g. [10, 17, 4, 8, 9]. Typically, a parameterized system
consists of an arbitrary number of finite-state processes
organized in a linear array. The task is to perform pa-
rameterized verification, i.e. to verify correctness of the
system regardless of the number of processes inside the
system. Examples of parameterized systems include
mutual exclusion algorithms, bus protocols, telecom-

munication protocols, multi-threaded programs, and
cache coherence protocols. This work aims at extend-
ing the paradigm of parameterized verification in order
to verify systems which operate on tree-like architec-
tures. More precisely, we consider analysis of safety
properties for parameterized tree systems. Such a sys-
tem consists of an arbitrary number of finite-state pro-
cesses which operate on a tree-like architecture. Exam-
ples of parameterized tree systems include several inter-
esting protocols such as the percolate protocol [17],the
Tree-arbiter protocol [7], and the IEEE 1394 Tree iden-
tity protocol [16].

One of the most prominent techniques which have
been used for verification of parameterized tree systems
is that of tree regular model checking [13, 3, 17, 11, 6].
In tree regular model checking, configurations (states)
of the system are represented by trees, sets of config-
urations by tree automata, and transitions by tree au-
tomata operating on pairs of trees, i.e. tree transducers.
Safety properties can be checked through performing
reachability analysis, which amounts to applying the
tree transducer relation iteratively to the set of initial
configurations. The main problem with transducer-
based techniques, such as the ones mentioned above, is
that they are very heavy and usually rely on several lay-
ers of computationally expensive automata-theoretic
constructions; in many cases severely limiting their ap-
plicability.

In this paper, we propose a light-weight approach
to parameterized tree verification which, in addition to
its simplicity, also yields a much more efficient imple-
mentation than tree regular model checking. In our
method, a configuration of the system is represented
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q1 / q′1

q2 / q′2 q3 / q′3

Figure 1. A typical transition rule where a pro-
cess and its two children change state from
q1, q2, q3 to q′1, q

′
2, q
′
3, respectively.

by a tree over a finite alphabet, where elements of the
alphabet represent the local states of the individual
processes. The behaviour of the system is induced by
a set of rewriting rules which describe how the pro-
cesses perform transitions. A transition performed by
a process is conditioned by the current local state of
the process and possibly the local states of neighbor-
ing processes, i.e. the parent and children processes.
The transition may change the states of all involved
processes. (see Figure 1).

Observe that the set of configurations is infinite since
we are dealing with trees of an arbitrary size. In fact,
parameterized verification amounts to analyzing an in-
finite family of systems; namely one for each size of the
system and one for each tree of that particular size.

The main idea of our method is to consider a transi-
tion relation which is an over-approximation of the one
induced by the tree parameterized system. To do so,
we modify the semantics of the transition rules, such
that a rule is applied to a node and two nodes in its
left and right subtrees (rather than its left and right
children). The approximate transition system obtained
in this manner is monotonic with respect to the tree
embedding relation on configurations (larger configu-
rations are able to simulate smaller ones). Since the
approximate transition relation is monotonic, it can
be analyzed using symbolic backward reachability al-
gorithm based on a generic method introduced in [1].
An attractive feature of this algorithm is that it oper-
ates on sets of configurations which are upward closed
with respect to the tree embedding relation. This al-
lows an efficient symbolic representation of upward sets
of configurations, since such a set can be represented
by (the finite set of) its minimal elements. Since the
minimal elements are trees, reachability analysis can be
performed by computing predecessors of trees, which is
much simpler and more efficient than applying trans-
ducer relations on general tree regular languages. Also,
as a side effect, the analysis of the approximate model
is guaranteed to terminate. This follows from the fact
that the embedding relation on configurations (trees)
is a well quasi-ordering by Kruskal’s theorem [18]. The

whole verification process is fully automatic since both
the approximation and the reachability analysis are
carried out without user intervention. Observe that
if the approximate transition system satisfies a safety
property then we can safely conclude that the original
system satisfies the property too.

Based on the method, we have implemented a proto-
type which works well on several tree-based protocols
such as the percolate, leader election, Tree-arbiter, and
the IEEE 1394 Tree identity protocols.

Outline In the next section, we give some preliminar-
ies on trees. In Section 3, we define the basic model of
parameterized tree systems. In Section 4, we describe
the induced transition system and in Section 5, we de-
fine the over-approximated transition system on which
we run our algorithm. We present a generic scheme
for deciding reachability of upward closed sets in Sec-
tion 6, and we show how to instantiate it on our model
in Section 7. In Section 9, we report our experimental
results on several tree protocols. Section 10 concludes
the paper and gives direction for future works.

2 Preliminaries

In this section, we give some basic definitions and
notations needed in the rest of the paper. To simplify
the presentation, we will only consider binary trees in
this paper. However, all the concepts and algorithms
can be extended in a straightforward manner in order
to deal with trees of higher ranks.

For a set X, we use X∗ to denote the set of words
over X. We let ε denote the empty word and use x•x′
to denote the concatenation of two words x, x′ ∈ X∗.
We extend the concatenation operation to sets of words
D ⊆ X∗ by x•D := {x • x′| x′ ∈ D}. Given two words
x, x′ ∈ X∗, we use x ≤ x′ to denote that x is a prefix
of x′; and use x < x′ to denote that x ≤ x′ and x 6= x′.
In case x ≤ x′, we use x′ − x to denote the word x′′

where x • x′′ = x′.

Binary Trees A (binary) tree structure N is a finite
set of words over {0, 1} which is closed under the prefix
relation, i.e. n ∈ N and n′ ≤ n imply n′ ∈ N . In the
rest of the paper, we fix a finite set of symbols Σ and
we use b as a variable ranging over {0, 1}.

A binary tree (tree for short) T over the alphabet Σ
is a tuple (N,λ) where N is a tree structure and λ is a
mapping from N to Σ. Each element of N is called a
node of T . We say that a node n′ is the parent of the
node n iff n′ • b = n for some b. In such a case, n is
said to be a child of n′. A leaf in T is a node which
does not have any children; and the root of T is the
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node ε. Given a node n, we define the descendants of
n by Desc(n) := {n′ ∈ N | n < n′}. We use Trees(Σ) to
denote the set of all trees over Σ.

Inclusions and Embeddings Consider two trees
T = (N,λ) and T ′ = (N ′, λ′) in Trees(Σ).

An inclusion of T in T ′ is an injection f : N → N ′

such that for any n ∈ N :

• n • b ∈ N =⇒ f(n) • b = f(n • b), and

• λ(n) = λ′(f(n)).

We write T ⊆f T ′ to denote that f is an inclusion of T
in T ′, and write T ⊆ T ′ if T ⊆f T ′ for some inclusion
f . Informally, if T ⊆ T ′ then T ′ contains a copy of T .

An embedding of T in T ′ is an injection f : N → N ′

such that for any n ∈ N :

• n • b ∈ N =⇒ f(n) • b ≤ f(n • b), and

• λ(n) = λ′(f(n)).

We use T �f T ′ to denote that f is an embedding
of T in T ′, and write T � T ′ if T �f T ′ for some
embedding f . Observe that � is a weaker relation than
⊆. The difference between the two relations is that an
inclusion preserves the parent/child relation between
nodes, while an embedding preserves a weaker relation,
namely that of ascendant/descendant.

Operations on Trees In this paragraph, we fix a
tree T = (N,λ) ∈ Trees(Σ).

For a node n ∈ N , we use T (n) to denote the subtree
of T rooted at n. Formally, we let T (n) = (N ′, λ′)
where N ′ := {n′′ − n| n′′ ∈ N ∧ n ≤ n′′}; and for any
n′ ∈ N ′, λ′(n′) := λ(n • n′).

T
0 1

T (1)

Now we fix a tree T ′ = (N ′, λ′) ∈ Trees(Σ) and
define the the following operation: Given a node n ∈
N , we denote by T ⊗ (n, T ′) the tree T ′′ = (N ′′, λ′′)
where N ′′ := (N−Desc(n))

⋃
(n•N ′) and for any n′′ ∈

N ′′, λ′′(n′′) := λ(n′′) if n 6≤ n′′, and λ′′(n′′) := λ′(n′′−
n) otherwise. Intuitively, we obtain T ′′ by replacing in
T the subtree rooted at n by T ′.

T
0 1

T ′

T ⊗ (0, T ′)

Consider a (partial) function f : N ⇀ N ′. We define
the renaming of T ′ with respect to f and T , denoted
by T ′�f T , to be the tree T ′′ = (N ′, λ′′) where for any
n′ ∈ N ′, λ′′(n′) = λ′(n′) if n′ 6∈ Img(f), and λ′′(n′) =
λ(f−1(n′)) otherwise.

T ′ T
f

f

T ′ �f T

Given a node n ∈ N which is a leaf in T and a
b ∈ {0, 1}, we use T � (n, b, T ′) to denote the tree
T ′′ = (N ′′, λ′′) obtaining from T by appending T ′ as
a subtree of n “in the b direction”. More formally, we
let N ′′ := N

⋃
n • b • N ′; and for any n′′ ∈ N ′′ we

define λ′′(n′′) := λ(n′′) if n • b 6≤ n′′, and λ′′(n′′) :=
λ′(n • b− n′′) otherwise.

T T ′ T � (0, 1, T ′)

A non-empty set of nodes N ′′ ⊆ N is said to be
almost prefix closed if it is the image of an inclusion
in T . More precisely, there exists a tree T ′′ such that
T ′′ ⊆g T for an inclusion g satisfying Img(g) = N ′′

(see Figure 2). Observe that by definition, any almost
prefix closed set N ′′ contains a unique node n such that
g(n) = ε. In the sequel, we use root(N ′′) to refer to
such a node, and we denote by leaves(N ′′) ⊆ N ′′ the
set of nodes without children or whose all children in
T do not belong to N ′′.

We introduce now a special class of tree relations.
Given a set N ′′ ⊆ N and a function f : N ′′ → N ′. We
say that f is a partial embedding of T in T ′ with respect
to N ′′ if the following conditions hold: (i) N ′′ is an
almost prefix closed set of nodes, and (ii) f satisfies the
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T ′′

T .

.

T ′

fg

Figure 2. In the tree T , we give an example of
an almost prefix closed set defined by the in-
cluion g of the tree T ′′ in T . The trees T and
T ′ are related by the partial embedding f de-
fined on the almost prefix closed set consid-
ered earlier. In the rest of the figures, we will
use T and T ′ as the starting tree examples.

embedding conditions (see Figure 2). More precisely,
for any node n′′ ∈ N ′′

• n′′ • b ∈ N ′′ =⇒ f(n′′) • b ≤ f(n′′ • b), and

• λ(n′′) = λ′(f(n′′)).

3 Parameterized Tree Systems

A parameterized tree system consists of an arbitrary
(but finite) number of identical processes, arranged in
a (binary) tree topology. Each process is a finite-state
automaton. The transitions of the automaton are con-
ditioned by the current local state and possibly the
local states of other processes (parent, children, etc).
A transition may change the states of all processes
involved in the condition. A parameterized tree sys-
tem induces an infinite family of finite-state systems,
namely one for each size and each structure of the tree.
The aim is to verify correctness of the systems for the
whole family regardless of the number of processes in
the system or the particular form of the tree.

Formally, a parameterized tree system P is a tuple
(Q,R) where Q is a finite set of local states, and R ⊆
Trees(Q×Q) is a finite set of trees called rewrite rules.
For each rule r = (N,λ) ∈ R, we associate two special
trees in Trees(Q) called left and right trees of r, and
denoted respectively by lhs(r) and rhs(r). We define
lhs(r) := (N, lhs(λ)) and rhs(r) := (N, rhs(λ)), where
lhs(λ) and rhs(λ) are obtained from λ by projecting
on the first and the second component of Q×Q. More
precisely, for any node n ∈ N , if λ(n) = (q, q′) then
lhs(λ)(n) := q and rhs(λ)(n) := q′.

Example 1 We consider the percolate protocol where
the set of states Q is defined by {q0, q1, qu} and the

r1 qu/q0

q0/q0 q0/q0

r2 qu/q1

q1/q1 q0/q0

r3 qu/q1

q0/q0 q1/q1

r4 qu/q1

q1/q1 q1/q1

Figure 3. The transition rules of the percolate
protocol.

transition rules R = {r1, r2, r3, r4} are as depicted in
Figure 3. The protocol evaluates the disjunction of the
values in the leaves up to the root.

4 Operational Semantics

The operational semantics of a parameterized tree
system can be captured by a transition system. In this
section, we first describe the induced transition system.
Then we introduce the coverability problem.

Transition System A transition system T is a pair
(C,=⇒), where C is an (infinite) set of configurations

and =⇒ is a binary relation on C. We use
∗

=⇒ to de-
note the reflexive transitive closure of =⇒. Given an
ordering � on C, we say that T is monotonic with re-
spect to � if the following holds: For any configurations
c1, c2, c3 ∈ C with c1 =⇒ c3 and c1 � c2, there is a con-
figuration c4 ∈ C such that c2 =⇒ c4 and c3 � c4. We
will consider several transition systems in this paper.

First, a parameterized system P = (Q,R) induces
a transition system T(P) = (C,−→) where C =
Trees(Q). Intuitively, a configuration c = (N,λ) ∈ C
represents an instance of the system with |N | processes.
These processes are arranged according to the tree
structure N and their current local states are given
by λ. More precisely, each node n ∈ N represents a
process in the state λ(n).

Next, we define the transition relation −→ on the
set of configurations as follows. Let r ∈ R be a rewrite
rule. Consider two configurations c1 and c2. We write
c1

r−→ c2 to denote that there is an f such that the
following conditions hold: (i) lhs(r) ⊆f c1, and (ii)
c2 = c1 �f rhs(r). Intuitively, c2 can be derived from
c1 by changing the labels of all the nodes in Img(f)
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qu

qu

q0 q0

qu

q1 q1

r1−→

qu

q0

q0 q0

qu

q1 q1

−→r4

q1

q0

q0 q0

q1

q1 q1

r3←−

qu

q0

q0 q0

q1

q1 q1

Figure 4. A possible run of the percolate pro-
tocol. We highlight in white the zone where
the rule applies (see Example 1).

according to the labeling function of rhs(r). Below, we
give informal explanations of the conditions. First, in
condition (i), we identify the “active processes” (those
which participate in the transition) by the inclusion f
(Img(f)). Implicitly, we interpret lhs(r) as a guard and
therefore require, through condition (i), that the con-
figuration c1 contains a tree which is a copy of the left
hand side of the rule. Then, in condition (ii), we inter-
pret rhs(r) as an operation and require that, in c2, the
processes in Img(f) (the active ones) should all change
state according to rhs(r). Observe that the local states
of the “passive processes”, i.e. those not participating
in the transition, should remain unchanged through the
transition, and also that the transition does not change
the structure of the tree 1 (see Figure 4).

We use c −→ c′ to denote that c
r−→ c′ for some rule

r ∈ R.

Safety Properties In order to analyze safety prop-
erties, we study the coverability problem defined below.
For a parameterized tree system P = (Q,R), we as-
sume that we are given a set of initial configurations
Init , each of which characterizes a possible state of the
system prior to starting the execution.

We recall the definition of the relation � defined in
Section 2. A set of configurations D ⊆ C is said to be
upward closed (with respect to �) if c ∈ D and c � c′

implies c′ ∈ D. For sets of configurations D,D′ ⊆ C
we use D −→ D′ to denote that there are c ∈ D and
c′ ∈ D′ with c −→ c′. The coverability problem for

1In fact, our method can also cope with non-structure pre-
serving rules, such as dynamic creation and deletion of processes.
However, for simplicity of presentation, we choose not to do so.

parameterized tree systems is defined as follows:

PAR-TREE-COV
Instance

• A parameterized tree system P = (Q,R).

• An upward closed set F of configurations.

Question Init
∗−→ F ?

It can be shown, using standard techniques (see
[19, 14]), that checking safety properties (expressed as
regular languages) can be translated into instances of
the coverability problem. Therefore, checking safety
properties amounts to solving PAR-TREE-COV (i.e.
to the reachability of upward closed sets).

5 Approximation

In this section, we introduce an over-approximation
of the transition relation of a parameterized tree sys-
tem.

In Section 4, we mentioned that each parameter-
ized tree system P = (Q,R) induces a transition sys-
tem T(P) = (C,−→). A parameterized tree sys-
tem P also induces an approximate transition system
A(P) = (C,;), where the set C of configurations is
identical to the one in T(P) and the transition relation
; is defined below.

First, we define a special operation on trees needed
in order to describe the semantics of ;.

Tree Subtraction In this paragraph, we fix two
trees T = (N,λ), T ′ = (N ′, λ′) ∈ Trees(Σ) such that
T ′ �f T for some embedding f . We define T 	f T ′
to be the tree T ′′ obtained from T by performing a
sequence of operations described below. First, we enu-
merate the nodes of T ′ in a bottom-up fashion. For-
mally, let {ni}1≤i≤|N ′| be an enumeration of the set N ′

of nodes in T ′ such that for any i, j : 1 ≤ i 6= j ≤ |N ′|,
ni < nj implies that j < i. In other words, if nj is a
descendant of ni in T ′, then nj occurs earlier than ni in
the enumeration. Based on the enumeration, we define
a sequence of trees {Ti}1≤i≤|N ′|−1 as follows. We let
T1 := T . For any i : 1 ≤ i ≤ |N ′| − 1, we denote by
npi the parent of ni, i.e. npi • b = ni for some b; and we
define

Ti+1 := Ti ⊗ (f(npi ) • b, T (f(ni))) .

Finally, we let T ′′ := T|N ′|−1. In other words, we go
through the nodes of T ′ one by one in a bottom-up
manner. For each node ni and its parent npi in T ′ (say
npi • b = ni for some b), we consider their images f(npi )
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T ′

�f

T

. .

.

T1

. .

.

T2

.

.

T3

.

T4

Figure 5. In the first row, we give an exam-
ple of two trees T, T ′ satisfying T ′ �f T for
some embedding f . In the second row, we
give the sequence of trees used in the def-
inition of T 	f T ′. In each of the trees, the
arrow shows where subtrees are re-rooted,
while the nodes surrounded by a dashed line
are those which are removed.

and f(ni) in T . We replace the subtree rooted in the
child of the image f(npi ) • b by the one rooted in the
image f(ni) (see Figure 5). Notice that the resulting
tree T ′′ and the trees T ′, T are related by T ′ ⊆ T ′′ � T .
We formalize this last remark in the following lemma.

Lemma 5.1 For any trees T, T ′ ∈ Trees(Σ) such that
T �f T ′ for some embedding f , the following holds:

There are two functions f̂ , f̃ , such that:

1. T ⊆f̂ T
′ 	f T �f̃ T

′.

2. f̃ ◦ f̂ = f .

Proof. By definition of the 	 operation, we know
that T ⊆ T ′ 	f T � T ′. Assume that T, T ′, T ′ 	f T
are respectively of the forms (N,λ), (N ′, λ′), (N ′′, λ′′).

Below, we define the functions f̂ : N → N ′′ and
f̃ : N ′′ → N ′ such that the lemma statements hold.

First, for any n ∈ N , we define f̂(n) := f(ε) • n.
Second, for any n′′ ∈ N ′′, we consider three cases re-
flecting the membership of n′′ ∈ N ′′:

• If f(ε) 6≤ n′′, then we let f̃(n′′) := n′′.

• If n′′ ∈ Img(f̂), then we take f̃ := f(f̂−1(n′′)).

• Otherwise, since f(ε) ≤ n′′ and n′′ 6∈ Img(f̂),

there is a unique node n′′l ∈ Img(f̂) such that

n′′l ≤ n′′ and for any other node n′′o ∈ Img(f̂) the
following holds: n′′o ≤ n′′ =⇒ n′′o ≤ n′′l . In other

words, n′′l is the longest prefix of n′′ in Img(f̂).

We define f̃(n′′) := f(f̂−1(n′′l )) • (n′′ − n′′l ).

Observe now that following the above definitions, prop-
erties (1) and (2) trivially hold. 2

In the following, we show how the 	 operation pre-
serves the inclusion (⊆) and embedding (�) relations.

Lemma 5.2 For any T, T ′, T ′′ ∈ Trees(Σ) and any
mappings f and g, the following hold:

1. T ′ �g T ′′ =⇒ T ′ �f T � T ′′ �g◦f T , and

2. T �f T ′ �g T ′′ =⇒ T ′ 	f T � T ′′ 	g◦f T .

Proof. Property (1) holds trivially since by definition
of the � operation T ′ �f T �g T ′′ �g◦f T .

In order to prove (2), we provide a mapping h which
guarantees that T ′	fT �h T ′′	g◦fT . First, we assume
that T ′ 	f T is of the form (N ′, λ′). Then, we recall

from 5.1 that there are some functions f̂ , f̃ , ĝ ◦ f, g̃ ◦ f
such that:

• T ⊆f̂ T
′ 	f T �f̃ T

′, and

• T ⊆
ĝ◦f T

′′ 	g◦f T �g̃◦f T
′′.

For a node n′ ∈ N ′, we define h(n′) by three cases
reflecting the membership of n′.

• If f(ε) 6≤ n′, we define h(n′) := g(n′).

• If n′ ∈ Img(f̂), then we take h(n′) := g(f(ε)) •
(n′ − f(ε))(= ĝ ◦ f(f̂−1(n′))).

• Otherwise, we let h(n′) := g̃ ◦ f
−1

(g(f̃(n′))). Ob-

serve that this is well defined (definition of g̃ ◦ f).

2

The Approximate Transition Relation Consider
two configurations c1, c2 and a rule r ∈ R. We write
c1

r
; c2 to denote that there is an f such that (i)

lhs(r) �f c1, and (ii) c2 = (c1	f lhs(r))�f̂ rhs(r). In-

tuitively, starting from c1 and an embedding f of lhs(r)
in c1, we first remove all nodes in c1 such that lhs(r) is
included in the resulting configuration. This is done by
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T1 qu

qu

qu

q1 qu

q1

qu

q0

T3 q1

q1

q1 q1

q0

r
4

; T2 qu

q1

q1 q1

qu

q0

r 2;

Figure 6. A possible run of the approximate
transition system induced by the percolate
protocol (see Example 1). The nodes with
a white background represent those where
the rule will apply while the dashed lines sur-
round the nodes which are removed.

taking lhs(r)	f c1 and the inclusion f̂ . Then we apply
the rule r and obtain c2 from lhs(r)	f c1 in a similar
manner to how it is described in the previous section,
i.e. by renaming the labels of the nodes in Img(f̂) ac-
cording to rhs(r) (see Figure 6). We use c1 ;1 c2 if

c1
r
; c2 for some r ∈ R.
Observe that the relation ; is an over-

approximation of the transition relation defined
in the previous section (i.e. ;⊇−→) by the following
argument. Consider two configurations c1, c2 ∈ C with
c1 −→ c2. By definition, this implies the existence of
a rule r ∈ R and an inclusion f of lhs(r) in c1 such
that c2 = c1 �f rhs(r). Observe that, by definition of
the 	 operation, since f is an inclusion it follows that
c1 	f lhs(r) = c1 and f̂ = f . Therefore, we obtain
c2 = c1 �f rhs(r) = (c1 	f lhs(r)) �f̂ rhs(r), and as a

consequence, c1
r
; c2.

We are now ready to state a key property of the
approximated transition system.

Lemma 5.3 The approximate transition system
(C,;) is monotonic with respect to �.

Proof. Consider three configurations c1, c2, c3 ∈ C
such that c1 �g c3 for some embedding g, and c1 ; c2.
The task is to prove that there is a configuration c4 ∈ C
such that c2 � c4 and c3 ; c4.

By definition c1 ; c2 iff there is a rule r ∈ R and a
mapping f such that lhs(r) �f c1 and (c1	f lhs(r))�f̂
rhs(r) = c2. By definition of f and g, it follows that

lhs(r) �g◦f c3. Let c4 = (c3 	g◦f lhs(r)) �
ĝ◦f rhs(r).

As a consequence and by definition of the transition
relation ;, we obtain c3 ; c4. It remains to show
that c2 � c4 which gives the result.

By Lemma 5.2(2) and the fact that lhs(r) �f c1 �g
c3, we have c1	f lhs(r) � c3	g◦f lhs(r). We use a sim-
ilar reasoning (see proof of Lemma 5.2(2)) to define the
embedding h satisfying c1 	f lhs(r) �h c3 	g◦f lhs(r).

Observe that we have h ◦ f̂ = ĝ ◦ f by the following

argument: By definition, the mappings h ◦ f̂ and ĝ ◦ f
are both inclusions of lhs(r) in c3	g◦f lhs(r) rooted at
the same node g(f(ε)). Now by Lemma 5.2(1) and the
fact that c1 	f lhs(r) �h c3 	g◦f lhs(r), we obtain

c2 = (c1 	f lhs(r))�f̂ rhs(r)

� (c3 	g◦f lhs(r))�h◦f̂ rhs(r)

= (c3 	g◦f lhs(r))�
ĝ◦f rhs(r) = c4.

2

We define the coverability problem for the approxi-
mate system as follows.

APRX-PAR-TREE-COV
Instance

• A parameterized tree system P = (Q,R)

• An upward closed set F of configurations.

Question Init
∗
; F ?

Since −→⊆;, a negative answer to APRX-PAR-
TREE-COV implies a negative answer to PAR-
TREE-COV.

6 Scheme

In this section, we recall a generic scheme from [1]
for performing symbolic backward reachability analy-
sis. The scheme in question is based on symbolic repre-
sentations of infinite sets of configurations called con-
straints. Throughout this section, we fix a transition
system T = (C,=⇒) and a set Init ⊆ C of initial con-
figurations.

Constraint Systems A constraint system Ψ rela-
tive to the transition system T is a set whose elements
are called constraints and can be finitely encoded, such
that there is a function [[·]] : Ψ → 2C . For a finite set
Φ of constraints, we let [[Φ]] =

⋃
φ∈Φ[[φ]]. We say that a

set D ⊆ C is computable or representable (in the con-
straint system Ψ) if it is possible to compute a finite
set of constraints Φ ⊆ Ψ such that D = [[Φ]].

7



We define an entailment relation v on constraints,
where φ1 v φ2 iff [[φ2]] ⊆ [[φ1]]. For sets Φ1,Φ2 of
constraints, abusing notation, we let Φ1 v Φ2 denote
that for each φ2 ∈ Φ2 there is a φ1 ∈ Φ1 with φ1 v φ2.
Notice that Φ1 v Φ2 implies that [[Φ2]] ⊆ [[Φ1]].

For a constraint φ, we let Pre(φ) be the set of con-
straints, such that [[Pre(φ)]] = {c| ∃c′ ∈ [[φ]]. c =⇒ c′}.
In other words, Pre(φ) characterizes the set of config-
urations from which we can reach a configuration in φ
through the application of a single rewrite rule. Such a
set does not necessarily exist, nevertheless, for our class
of systems, we will show that such a set always exists
and is in fact computable. For a set Φ of constraints,
we let Pre(Φ) =

⋃
φ∈Φ Pre(φ).

Symbolic Backward Reachability We present a
scheme for a symbolic algorithm which, given a finite
set ΦF of constraints, checks whether Init

∗
=⇒ [[ΦF ]].

In the scheme, we perform a backward reachabil-
ity analysis, generating a sequence {Φi}i∈N : Φ0 w
Φ1 w Φ2 w · · · of finite sets of constraints such that
Φ0 = ΦF , and Φi+1 = Φi ∪ Pre(Φi). Since [[Φ0]] ⊆
[[Φ1]] ⊆ [[Φ2]] ⊆ · · · , the procedure terminates when we
reach a point j where Φj v Φj+1. Consequently, Φj
characterizes the set of all predecessors of [[ΦF ]]. This

means that Init
∗

=⇒ [[ΦF ]] iff Init ∩ [[Φj ]] 6= ∅.
Observe that, in order to implement the scheme (i.e.

transform it into an algorithm), we need to be able to
(i) compute Pre; (ii) check for entailment between con-
straints; and (iii) check for emptiness of Init ∩ [[φ]] for
any constraint φ. A constraint system satisfying these
three conditions is said to be effective. Moreover, in [1],
it is shown that termination is guaranteed in case the
constraint system is well quasi-ordered (WQO) with re-
spect to v, i.e. for each infinite sequence φ0, φ1, φ2, . . .
of constraints, there are i < j with φi v φj .

7 Algorithm

In this section, we instantiate the scheme of Sec-
tion 6 to derive an algorithm for solving APRX-PAR-
TREE-COV. We do that by introducing an effective
and well quasi-ordered constraint system.

Throughout this section, we assume a parameterized
tree system P = (Q,R) and the induced approximate
transition system A(P) = (C,; ). We define a con-
straint to be a tree in Trees(Q). Although we use the
same syntax as for configurations, constraints are in-
terpreted differently. More precisely, given a constraint
φ, we let [[φ]] = {c ∈ C| φ � c}.

An aspect of our constraint system is that each con-
straint characterizes a set of configurations which is

upward closed with respect to �. Conversely (by Hig-
man’s Lemma [15]), any upward closed set F of con-
figurations can be characterized as [[ΦF ]] where ΦF is a
finite set of constraints. In this manner, APRX-PAR-
TREE-COV is reduced to checking the reachability of
a finite set of constraints.

Below we show effectiveness and well quasi-ordering
of our constraint system, meaning that we obtain an al-
gorithm for solving APRX-PAR-TREE-COV. First,
observe that the entailment relation can be computed
in a straightforward manner since for any constraints
φ, φ′, we have φ v φ′ iff φ � φ′.

In order to check the initial condition, we rely on
previous works on regular tree languages [12] and pro-
vide a sufficient condition on Init which guarantees ef-
fectiveness of Init ∩ [[φ]] = ∅ for any constraint φ. More
precisely, we require that the set Init can be character-
ized by a regular tree language.

We devote the rest of the section to proving the re-
maining effectiveness preperty; namely computability
of Pre(). In order to do that, we define the tree addition
operation which will be needed to capture the effect of
the approximation in the computation of Pre().

Tree Addition In the following, we fix two trees
T = (N,λ), T ′ = (N ′, λ′) ∈ Trees(Σ) and a partial
embedding f of T in T ′ defined over some almost pre-
fix closed set N ′′ ⊆ N . Intuitively, the existence of a
partial embedding f of T in T ′ implies the following:
Starting from T , we can construct a tree by adding to T
the nodes from N ′ which are not in Img(f), such that
(i) we do not modify the “structure” of the remain-
ing nodes in T , and (ii) T ′ is included in the resulting
tree. We formalize this construction by the addition
operation T ⊕f T ′ described below.

We first define several auxiliary operations in order
to describe the addition of subtrees from T ′ in different
positions (above, below and in-between) with respect
to some reference node(s).

Given a node n ∈ N ′′, we first consider the addition
in T of certain nodes from T ′ above n. Formally, we

denote by T
over
⊕f (n, T ′) the tree T ′′ of the following

form:

T ′′ = T ⊗ (n, Ta) where Ta = T ′ ⊗ (f(n), T (n))

Intuitively, we first construct Ta by concatenating T ′

with the subtree T (n) at f(n). Then, we derive T ′′ by
replacing in T the subtree T (n) by Ta.
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T
over
⊕f (1, T ′).

.

We consider now, the addition in T of some nodes
from T ′ below a reference node of T . In such a case, we
also need to take into consideration the position (left
or right subtree) in which we add the nodes. More
precisely, given a node n ∈ N ′′ and some b ∈ {0, 1},

we denote by T
below
⊕f (n, b, T ′) the set of trees S ⊆

Trees(Σ) constructed as described below: In case the
node f(n)•b is not defined (i.e., 6∈ N ′), then we let S :=
{T}. Otherwise, we look at the tree T and consider two
subcases depending on whether n • b is defined in T or
not.

• If n • b ∈ N , we let Ta := T ⊗ (n • b, T ′(f(n) • b)),
we denote by Nl the set of leaves in Ta which
are descendants of n • b, and we define S :=
{Ta � (nl, bl, T (n • b)) | nl ∈ Nl ∧ bl ∈ {0, 1}}.

• Otherwise, we let S := {T � (n, b, T ′(f(n) • b))}.

We generalize the above operation by

T
below
⊕f (n, T ′) :=

⋃
T ′′∈T

below
⊕f (n,0,T ′)

T ′′
below
⊕f (n, 1, T ′).

T
below
⊕f (1, 1, T ′)

.

.

.

.

Finally, we consider the addition of nodes between
two given reference nodes in T . In such a case, we
require that the given nodes are directly related to each
others (parent/child). For two nodes n, n′ ∈ N ′′ such
that n • b = n′ for some b ∈ {0, 1}, we denote by

T
between
⊕f (n, n′, T ′) the tree T ′′ of the following form:

T ′′ = T ⊗ (n, Ta(f(n) • b)) where

Ta = T ′ ⊗ (f(n′), T (n′)) .

Intuitively, we first construct Ta by replacing the sub-
tree T ′(f(n′)) by T (n′), then we derive T ′′ by replacing
the subtree T (n) by Ta(f(n)).

T
between
⊕f (1, 10, T ′)

.

.

We are now ready to generalize the above operations
by defining T ⊕f T ′. First, we consider an enumera-
tion of the nodes N ′′ in a bottom-up fashion. In other
words, let {ni}1≤i≤|N ′′| be an arrangement of the nodes
of N ′′ such that for any i, j : 1 ≤ i 6= j ≤ |N ′′|, ni < nj
implies that j < i. Then, we define a sequence of sets
of trees {Si}0≤i≤|N ′′| as follows. We let S0 := {T}. For
any i : 0 ≤ i ≤ |N ′′| − 1, we define Si+1 in terms of Si
by three case analysis reflecting the nature of the node
ni+1.

• If ni+1 ∈ leaves(N ′′), then we let

Si+1 :=
⋃

T ′′∈Si

T ′′
below
⊕f (ni+1, T

′).

• If there is b ∈ {0, 1} such that ni+1 • b ∈ N ′′ and
ni+1 • (1− b) 6∈ N ′′, then we define

Si+1 :=
⋃

T ′′∈Sa

T ′′
below
⊕f (ni+1, 1− b, T ′) where

Sa :=
⋃

T ′′∈Si

{
T ′′

between
⊕f (ni+1, ni+1 • b, T ′)

}
.

Observe that this is the case where ni+1 has only
one child in N ′′.

• Otherwise, we define

Si+1 :=
⋃

T ′′∈Sa

{
T ′′

between
⊕f (ni+1, ni+1 • 1, T ′)

}
where

Sa :=
⋃

T ′′∈Si

{
T ′′

between
⊕f (ni+1, ni+1 • 0, T ′)

}
.

Finally, we let

T ⊕f T ′ :=
⋃

T ′′∈S|N′′|

{
T ′′

over
⊕f (n|N ′′|, T

′)
}

.

Observe that each tree T ′′ ∈ T ⊕f T ′ satisfies (i) T �
T ′′, and (ii) there is a unique inclusion denoted by f of
T ′ in T ′′ such that f(ε) = root(N ′′) (see Figure 7).

The following property, related to the ⊕ operation,
will be needed in the sequel.
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S0
.

.

S1
.

.

S2
.

.

.

.

T ⊕f T ′

.

.

.

.

Figure 7. The figures shows the sequence of
sets of trees in the computation of T ⊕f T ′.

Lemma 7.1 For any T0, T1, T2 ∈ Trees(Σ) and any
mappings f and g satisfying T0 ⊆f T2 and T1 �g T2,
the following holds: If Img(f)∩ Img(g) 6= ∅, then there
is a partial embedding h of T1 in T0 such that for any
T ∈ T1 ⊕h T0 we have T � T2.

Proof. Assume that T0, T1, T2 are of the
forms (N0, λ0), (N1, λ1), (N2, λ2) respectively.
We first define the following set of nodes
N ′′ := {n ∈ N1| g(n) ∈ Img(f)}. Observe that
Img(f) ∩ Img(g) 6= ∅ iff N ′′ 6= ∅. We now show that
N ′′ is almost prefix closed.

In order to do that, we assume the opposite and de-
rive a contradiction. We suppose that N ′′ is not almost
prefix closed. By definition, this implies the existence
of two nodes n, n′ ∈ N ′′ such one the following condi-
tions is satisfied.

1. n ≤ nc ≤ n′ for some nc 6∈ N ′′.

2. n 6≤ n′ ∧n′ 6≤ n and there is no np ∈ N ′′ such that
np ≤ n ∧ np ≤ n′.

If condition (1) holds then this implies that g(nc) 6∈
Img(f). Since g(n), g(n′) ∈ Img(f) and g(n) ≤ g(n′),
it holds by definition of an inclusion that any n2 ∈ N2 :

g(n) ≤ n2 ≤ g(n′) satisfies n2 ∈ Img(f). This is a con-
tradiction since by definition of an embedding g(n) ≤
g(nc) ≤ g(n′) and by assumption g(nc) 6∈ Img(f).

If condition (2) holds, then we let np ∈ N0 be the
node satisfying np • b ≤ n and np • (1 − b) ≤ n′ for
some b ∈ {0, 1}. Observe that such a node exists since
N0 is prefix closed. We recall here that by assumption
np 6∈ N . By definition of an embedding g(np)•b ≤ g(n)
and g(np) • (1− b) ≤ g(n′). Since g(n), g(n′) ∈ Img(f),
it follows by definition of an inclusion that g(np) ∈
Img(f). This is also a contradiction.

So far, we have shown that N ′′ is almost prefix
closed. We let h := f−1 ◦ g denote the function de-
fined over N ′′. Observe that by definition of g and f ,
and since N ′′ is almost prefix closed, it follows that h
is a partial embedding of T1 in T0.

Consider now a tree T = (N,λ) ∈ T1 ⊕h T0. We
first recall that T0 ⊆h T . Then, we provide below a
mapping e that guarantees T �e T2. We define e by
case analysis depending on the membership of n ∈ N .

• If n ∈ Img(h), then we let e(n) := f(h
−1

(n)).

• If h(ε) 6≤ n, we define e(n) := g(n).

• Otherwise, we denote by nh the longest prefix in
Img(h) such that and nh•b ≤ n for some b ∈ {0, 1}.
Two cases follow depending on the membership of

f(h
−1

(nh)) in Img(g).

– If f(h
−1

(nh)) ∈ Img(g), then we define

e(n) := g(g−1(f(h
−1

(nh))) • (n− nh)).

– Otherwise, we denote by ng, the longest
word in Img(g) ∩ Img(h) such that ng • b′ ≤
nh for some b′ ∈ {0, 1}. We let e(n) :=

g(g−1(f(h
−1

(ng))) • b′ • (n− nh • b)).

2

We are now ready to describe Pre().

Computing Pre Consider a constraint φ′ and a rule
r ∈ R. We define Prer(φ

′) to be the set of con-
straints satisfying the following: A constraint φ belongs
to Prer(φ

′) iff there is a partial embedding f of φ′ in
rhs(r) such that

φ ∈ (φ′ ⊕f rhs(r))�f lhs(r).

Lemma 7.2 For any constraint φ:

• PreR(φ) is computable and finite.

• [[Pre(φ)]] ⊆ [[φ]] ∪ [[PreR(φ)]].
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Proof. Observe that Finiteness and computability of
PreR(φ) follows by definition of the ⊕ operation.

In order to show correctness (the second item), we
consider a constraint φ′ and a configuration c′ ∈ [[φ′]]
and show that for any constraint c with c; c′ it is the
case that c ∈ [[φ′]] ∪ [[PreR(φ′)]].

By definition of the approximate transition relation,
c ; c′ implies that there is a rule r ∈ R and an em-
bedding f of lhs(r) in c such that

(c	f lhs(r))�f̂ rhs(r) = c′. (1)

By assumption c′ ∈ [[φ′]], therefore there is a function
g such that φ′ �g c′. By Equation (1) and the defini-

tion of f̂ , we have rhs(r) ⊆f̂ c′. Below, we consider

two cases depending on emptiness of Img(f̂)
⋂

Img(g).

In case Img(f̂)
⋂

Img(g) = ∅, it follows directly that
φ′ �g (c 	f lhs(r)) � c where the last embedding
relation holds by Lemma 5.1(1). As a consequence,
c ∈ [[φ′]].

In case Img(f̂) ∩ Img(g) 6= ∅, then this combined
with the fact that φ′ �g c′ and Lemma 7.1 yields the
following: There is a partial embedding h of φ′ in rhs(r)
such that for any φ” ∈ φ′ ⊕h rhs(r), it is the case that
rhs(r) ⊆h φ” � c′.

We fix a constraint φ” in φ′ ⊕h rhs(r) and we re-
call from the proof of Lemma 7.1 the definition of the
embedding e satisfying φ” �e c′. Observe that by defi-
nition of e, f̂ and h, we have f̂ = e ◦ h. This combined
with Lemma 5.2(1) and the fact that φ” �e c′ yields
the following:

φ”�h lhs(r) � c′�e◦h lhs(r) = c′�f̂ lhs(r) = c	f lhs(r),

where the last equality follows from the definition of c′

and the renaming operation.
By Lemma 5.1(1), c	f lhs(r) � c and hence by the

above equations φ” �h lhs(r) � c. Finally, since by
definition of Prer(·) we have

φ”�h lhs(r) ∈ (φ′ ⊕h rhs(r))�h lhs(r)

⊆ Prer(φ
′) ⊆ PreR(φ′),

it follows that c ∈ [[PreR(φ′)]]. 2

Termination It was shown in [18] that the embed-
ding relation on trees � is a well quasi-order (Kruskal’s
theorem). This combined with results in [1] guarantee
termination of our scheme when instantiated on the
constraints we have defined above.

8 Case Studies

In this section, we provide descriptions of two tree
protocols we have analyzed using our method. For each

protocol, we define the corresponding parameterized
tree system model and we give the sets of unsafe (F )
and initial (Init) configurations.

8.1 The Tree-arbiter Protocol

The protocol supervises the access to a shared re-
source of a set of processes arranged in a tree topology.
The processes competing for the resource reside in the
leaves.

A process in the protocol can be in state idle (i),
requesting (r), token (t) or below (b). All the processes
are initially in state i. A node is in state b whenever it
has a descendant in state t. When a leaf is in state r,
the request is propagated upwards until it encounters
a node which is aware of the presence of the token (i.e.
a node in state t or b). A node that has the token
(in state t) can choose to pass it upwards or pass it
downwards to a requesting child (node in state r).

We model the tree-arbiter protocol with a pa-
rameterized tree system P = (Q,R) where Q =
{qns | s ∈ {i, r, t, b} ∧ n ∈ {leaf, inner, root}} and R is
as depicted in the figure below (figure 8). Observe that
in the definition of Q, we use the scripts s and n to
model respectively the state and the nature (leaf, in-
ner or root) of the nodes. In the definition of the rules,
we will drop the script(s) whenever we mean that it is
arbitrary (it can take any value).

The rules to model this protocol are as follows: 2
rules to propagate the request upwards, 2 rules to prop-
agate the token downwards, 2 rules to propagate the
token upwards and one rule to initiate a request from
a leaf.

The set of bad constraints F is represented by trees
where at least two processes (i.e. two leaves) obtain

the token (i.e. in state qleaft ). The set of initial con-
figurations Init contains all trees where the leaf nodes
are either idle or requesting, inner nodes are idle, and
the root has the token.

q

qleaft qleaft

8.2 The IEEE 1394 Tree Identification Protocol

The 1394 High Performance serial bus [16] is used
to transport digitized video and audio signals within a
network of multimedia systems and devices.

The tree identification protocol is used in one of the
phases implementing the IEEE 1394 protocol. More
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qi/qr

qr

qi/qr

qr

qt/qb

qr/qt

qt/qb

qr/qt

qb/qt

qt/qi

qb/qt

qt/qi

qleafi /qr

Figure 8. The rewrite rules for the tree-arbiter
protocol. We mention here that there are
more rules in the model we have verified. For
example, the rule in the top-left corner is rep-
resented in the concrete model by 2 rules,
each of which corresponds to a particular
combination of the natures of the parent and
child nodes: For the parent there are 2 possi-
bilities (qinneri /qinnerr and qrooti /qrootr ) while for
the child, there are 2 (qinnerr and qleafr ).

precisely, it is run after a bus reset in the network and
leads to the election of a unique leader node.

In this section, we consider a version working on
tree topologies. Furthermore, we assume that (i) each
inner node is connected to 3 neighbors, (ii) the root
is connected to 2 neighbors, and (ii) communication is
atomic.

Initially, all nodes are in state undefined (u). We
identify two steps in the protocol depending on the
number n of neighbors which are still in state u. If
n > 1, the node waits for (“be my parent”) requests
from its neighbors. If n = 1, the node sends a request
to the remaining neighbor in state u. Observe that we
implicitly assume that the leaf nodes are the first to
communicate with their neighbors.

Formally, we derive a parameterized tree system
model P = (Q,R) as follows. We define the set of states
by Q = {qns | s ∈ {u, c, l} ∧ n ∈ {leaf, inner, root}}
where the scripts s and n describe respectively the
state and the nature of the node. In the definition of
the state (s), the letters u, c and l stand respectively
for undefined, child and leader. In a similar manner

to the previous section, we drop the script(s) when-
ever we mean that it can take any value (see caption
of Figure 8).

The rewrite rules R are described as follows:

• The leaves initiate the communications:

qu

qleafu /qc

qu

qleafu /qc

• The inner nodes become children or wait for re-
quests:

qu/qc

qu

qc

qc

qu/qc

qc

qu

qc

qu/qc

qc

qc

qu

• The leader is chosen:

qu/ql

qc

qc

qc

qc

qleafu /ql

qc

qleafu /ql

The set of initial configurations Init is represented
by trees where all nodes are in state undefined, and the
set of bad constraints F is represented by trees where
at least 2 leaders are elected.

ql

ql

ql

ql

q

ql ql

9 Experiments

We have implemented a prototype tool in C++
and run it on several models of protocol with tree-like
topologies. The experiments have been performed on
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Table 1. Experimental Results
Protocol Time # iter. # cons. Mem.

Token 1s 1 3 <1
2-way token 1s 1 3 <1
Percolate 1s 1 2 <1
Leader 1s 4 41 63
Tree Arbiter 37s 12 1173 70
IEEE 1394 ∼1h15m 17 4145 137

a dual Opteron 2.8 GHz, with 8 GB of RAM memory
and the results are reported in Table 1.

For each example, we give the number of iterations
(# iter.) performed by the reachability algorithm, the
largest number of constraints (# cons.) maintained at
the end of the execution, the time and total memory
consumption (in MB). Full details of the remaining ex-
amples can be found in the appendix.

10 Conclusions and Future Work

We have presented a method for verification of tree
parameterized systems where the components are or-
ganized in a tree. We derive an over-approximation of
the transition relation which allows the use of symbolic
reachability analysis defined on upward closed sets of
trees (configurations). This technique has been imple-
mented and successfully tested on a number of tree-
based protocols.

It would be interesting to see if one can extend
our method to other classes of architectures such as
unordered trees, DAGs, and more general classes of
graphs. In a similar manner to the case of words [2]
we intend to consider tree systems where the individ-
ual processes may contain unbounded variables. This
would allow to analyze algorithms for manipulation of
heaps, (balanced) binary trees, etc. Finally, we intend
to extend our framework to check for liveness proper-
ties on tree-like architecture systems (as done for words
in [5]).
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11 Appendix – Description of the Case
Studies

In the following, we give detailed description of the
case studies. For each example, we describe how we
instantiate the algorithm by specifying (i) the initial
configuration, (ii) the set of rewriting rules , and (iii)
the set of bad constraints.

11.1 Leader Election Protocol

The protocol operates on binary trees to elect a
leader among processes which reside in the leaves and
which are candidates. A leaf process can be labeled
as candidate c or non-candidate n. An inner node is
initially labeled as undefined u and will be labeled as
candidate if at least one of its children is candidate,
and non-candidate otherwise.

In a first phase, the information that a node is can-
didate or not travels up to reach the root. In a second
phase, the decision el, initially in the root, travels down
from candidate parent to candidate child. (If several
children are candidates, the parent chooses one unde-
terministicly). Once the decision reaches a leaf, this
leaf process is elected as leader. Below follows a small
scenario:

el

u

n c

u

n n

el

c

n c

u

n n

el

c

n c

n

n n

el

el

n c

n

n n

el

el

n el

n

n n

The rules for the upwards propagation of candidate
information are:

u / c

c n

u / c

n c

u / c

c c

u / n

n n

The rules for the downwards propagation of election
decision are:

el

c / el

el

c / el

The set of bad constraints F is represented by trees
where at least two nodes in different branches are
elected.
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*

el el

The set of initial constraints Init is represented
by trees where leaves are either candidates or non-
candidates, inner nodes are labeled undefined and the
root is labeled el.

We have been able to prove Init is not backward
reachable from F (i.e. that Init

∗−→ F does not hold).

11.2 Token Protocol

The protocol operates on binary trees to transmit
a token from the root to the leaves. A node can be
labeled as having the token t, or not having the token
n. As an example:

t

n

n n

n

n n

n

t

n n

u

n n

n

n

n t

n

n n

The rules for the propagation of the token are:

t / n

n / t

t / n

n / t

The set of bad constraints F is represented by trees
where at least two nodes contain the token.

t

t

t

t

*

t t

Initially, the token is in the root.
We have been able to prove Init is not backward

reachable from F (i.e. that Init
∗−→ F does not hold).

11.3 Two-way Token Protocol

This protocol is a generalization of the token proto-
col by allowing the token to both move upwards and
downwards. As an example:

t

n

n n

n

n n

n

t

n n

u

n n

n

n

n t

n

n n

n

t

n n

u

n n

n

n

t n

n

n n

The rules for the propagation of the token are:

t / n

n / t

t / n

n / t

n / t

t / n

n / t

t / n

The set of bad constraints F is represented by trees
where at least two nodes contain the token, similarly
to the simple token protocol.

Initially, the token is in the root.
We have been able to prove Init is not backward

reachable from F (i.e. that Init
∗−→ F does not hold).

11.4 Percolate Protocol

The protocol [17] operates on binary trees of pro-
cesses and evaluates the disjunction of the values in
the leaves up to the root. Initially, the leaves contain
either a 0 or a 1 and all other nodes are labeled as un-
defined u. An still undefined inner node will be labeled
as 1 if at least one of its children contains a 1, and 0
otherwise. As an example:

u

u

0 0

u

1 1

u

0

0 0

1

1 1

1

0

0 0

1

1 1

The corresponding rules are:

u / 0

0 0

u / 1

1 0

u / 1

0 1

u / 1

1 1

The set of bad constraints F is represented by trees
where a 0 get propagated upwards while there is a 1
below.

0

1

0

1

We have been able to prove Init is not backward
reachable from F (i.e. that Init

∗−→ F does not hold).
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