
Control-Flow and Low-Level
OptimizationsOptimizations

OutlineOutline
• Unreachable-Code EliminationUnreachable Code Elimination
• Straightening
• If and Loop SimplificationsIf and Loop Simplifications
• Loop Inversion and Unswitching
• Branch OptimizationsBranch Optimizations
• Tail Merging (Cross Jumping)
• Conditional MovesConditional Moves
• Dead-Code Elimination
• Branch PredictionBranch Prediction
• Peephole Optimization
• Machine Idioms & Instruction CombiningMachine Idioms & Instruction Combining

Unreachable-Code EliminationUnreachable Code Elimination
Unreachable code is code that cannot be executedUnreachable code is code that cannot be executed,

regardless of the input data
d th t i t bl f i t d t– code that is never executable for any input data

– code that has become unreachable due to a previous
il t f ticompiler transformation

Unreachable code elimination removes this code
– reduces the code spacereduces the code space
– improves instruction-cache utilization

enables other control-flow transformations– enables other control-flow transformations

Unreachable-Code EliminationUnreachable Code Elimination
entry entry

c = a + b

y

c = a + b

y

f = a + c
g = e

d = c
e > c

d = c
e > c

a = e +c
f = c – g
b = c + 1

f = c – g
b = c + 1b c + 1

d = 4 * a
e = d – 7
f = e + 2

h = e + 1
e < a

b c + 1
d = 4 * a
e = d – 7
f = e + 2f e + 2

it

f e + 2

itexit exit

StraighteningStraightening
Straightening is applicable to pairs of basic blocks suchStraightening is applicable to pairs of basic blocks such

that the first has no successors other than the second
and the second has no predecessors other than the firstand the second has no predecessors other than the first

…
a = b + c

…
a = b + c

b = c * 2

a = b + c
b = c * 2
a = a + 1

a = a + 1
c < 0

c < 0

Straightening ExampleStraightening Example
Straightening in the presence of fall throughs is trickyStraightening in the presence of fall-throughs is tricky...

L1: L1:L1: …
a = b + c
goto L2

L1: …
a = b + c
b = c * 2

L6: …
t L4

a = a + 1
if c < 0 goto L3

t L5goto L4

L2: b = c * 2

goto L5

L6:L2: b c 2
a = a + 1
if c < 0 goto L3

L6: …
goto L4

L5: … L5: …

If SimplificationsIf Simplifications

If simplifications apply to conditional constructsIf simplifications apply to conditional constructs
one or both of whose branches are empty:
– if either the then or the else part of an if-construct is

empty, the corresponding branch can be eliminated
– one branch of an if with a constant-valued condition

can also be eliminated
– we can also simplify ifs whose condition, C, occurs

in the scope of a condition that implies C (and nonein the scope of a condition that implies C (and none
of the condition’s operands has changed value)

If Simplification ExampleIf Simplification Example
a > d a > d

b = a
Y N

b

Y N

c = 4 * b
(a >= d) or bool

Y N

b = a
c = 4 * b

d = b d = c
Y N

d = b

e = a + b e = a + b

… …

Loop SimplificationsLoop Simplifications

• A loop whose body is empty can be eliminated• A loop whose body is empty can be eliminated
if the iteration-control code has no side-effects
(Side-effects might be simple enough that they can be

replaced with non-looping code at compile time)

• If number of iterations is small enough loops• If number of iterations is small enough, loops
can be unrolled into branchless code and the
l b d b d il iloop body can be executed at compile time

Loop Simplification ExampleLoop Simplification Example

0

s = 0

s = 0
i = 0
i = i + 1

i = 0
L1: if i >= 4 goto L2

i i + 1

i i + 1
s = s + i
i = i + 1

i = 4
s = 10i = i + 1

s = s + i
goto L1

s = s + i
i = i + 1
s s + i

s 10
L2: …

goto L1
L2: …

s = s + i
i = i + 1
s = s + is s i

L2: …

Loop InversionLoop Inversion

Loop inversion transforms a while loop into aLoop inversion transforms a while loop into a
repeat loop (i.e. moves the loop-closing test
from before the loop to after it).
– Has the advantage that only one branch instruction g y

needs to be executed to close the loop.
– Requires that we determine that the loop is enteredRequires that we determine that the loop is entered

at least once!

Loop Inversion Example 1Loop Inversion Example 1
for (i = 0; i < 100; i++) { Loop boundsfor (i = 0; i < 100; i++) {

a[i] = i + 1;
}

Loop bounds
are known

}

i 0i = 0; i = 0;
do {

a[i] = i + 1;

i = 0;
while (i < 100) {

a[i] = i + 1; a[i] = i + 1;
i++;

} while (i < 100)

a[i] i + 1;
i++;

} } while (i 100)

Loop Inversion Example 2Loop Inversion Example 2

if (k >= n) goto Lif (k > n) goto L
i = k;
do {

for (i = k; i < n; i++) {
a[i] = i + 1; do {

a[i] = i + 1;
i++;

}

;
} while (i < n)

L:
Loop bounds
are unknown

UnswitchingUnswitching
Unswitching is a control flow transformation thatUnswitching is a control-flow transformation that

moves loop-invariant conditional branches out
of loopsof loops

for (i = 1; i < 100; i++) {
if (k == 2) {

for (i = 1; i < 100; i++) {
if (k == 2)

a[i] = a[i] + 1;

for (i = 1; i < 100; i++)
a[i] = a[i] + 1;

} l {a[i] a[i] + 1;
else

a[i] = a[i] – 1;

} else {
for (i = 1; i < 100; i++)

a[i] a[i] 1;a[i] a[i] 1;
}

a[i] = a[i] – 1;
}

Unswitching ExampleUnswitching Example

if (k == 2) {

for (i = 1; i < 100; i++) {
if (k == 2 && a[i] > 0)

for (i = 1; i < 100; i++) {
if (a[i] > 0)

[i] [i] + 1if (k 2 && a[i] > 0)
a[i] = a[i] + 1;

}

a[i] = a[i] + 1;
}

} else {} } else {
i = 100;

}}

Branch OptimizationsBranch Optimizations
Branches to branches are remarkably common!Branches to branches are remarkably common!

– An unconditional branch to an unconditional branch can be
replaced by a branch to the latter’s targetreplaced by a branch to the latter s target

– A conditional branch to an unconditional branch can be
replaced by the corresponding conditional branch to thereplaced by the corresponding conditional branch to the
latter branch’s target

– An unconditional branch to a conditional branch can be
replaced by a copy of the conditional branch

– A conditional branch to a conditional branch can be replaced
by a conditional branch with the former’s test and the latter’s
target as long as the latter condition is true whenever the
f iformer one is

Branch Optimization ExamplesBranch Optimization Examples

if 0 t L1 if 0 t L2if a == 0 goto L1
…

L1: if a >= 0 goto L2

if a == 0 goto L2
…

L1: if a >= 0 goto L2L1: if a 0 goto L2
…

L2: …

L1: if a 0 goto L2
…

L2: …

goto L1g
L1: … L1: …

if a == 0 goto L1
goto L2

L1

if a != 0 goto L2
L1:L1: … L1: …

Eliminating Useless Control-FlowEliminating Useless Control Flow

The Problem:The Problem:
– After optimization, the CFG might contain empty blocks
– “Empty” blocks still end with either a branch or jump
– Produces jump to jump, which wastes time and space

The Algorithm: (Clean)The Algorithm: (Clean)
– Use four distinct transformations

A l h i f ll l d d– Apply them in a carefully selected order
– Iterate until done

Eliminating Useless Control-FlowEliminating Useless Control Flow

Both sides of branch target B2Transformation 1 Both sides of branch target B2
– Neither block must be empty

R l it ith j t B1B1 B1

Transformation 1

– Replace it with a jump to B1
– Simple rewrite of the last

operation in B1

B1 B1

operation in B1
B2 B2

B h t j How does this happen?
– By rewriting other branchesEliminating redundant branches

Branch, not a jump

How do we recognize it?
– Check each branch

Eliminating Useless Control-FlowEliminating Useless Control Flow

Merging an empty blockTransformation 2 Merging an empty block
– Empty B1 ends with a jump
– Coalesce B1 and B2empty

Transformation 2

Coalesce B1 and B2
– Move B1’s incoming edges
– Eliminates extraneous jump

empty
B1

B2
j p

– Faster, smaller codeB2
B2

How does this happen?
– By eliminating operations in B1Eliminating empty blocks By eliminating operations in B1

How do we recognize it?
– Test for empty blockTest for empty block

Eliminating Useless Control-FlowEliminating Useless Control Flow

Coalescing blocksTransformation 3 Coalescing blocks
– Neither block must be empty
– B1 ends with a jump to B2B1

Transformation 3

B1 ends with a jump to B2
– B2 has one predecessor
– Combine the two blocks

B1
B1
B2

– Eliminates a jumpB2
B2

How does this happen?
– By simplifying edges out of B1Eliminating non-empty blocks By simplifying edges out of B1

How do we recognize it?
– Check target of jumpCheck target of jump

Eliminating Useless Control-FlowEliminating Useless Control Flow

Jump to a branchTransformation 4 Jump to a branch
– B1 ends with a jump, B2 is

emptyB1

Transformation 4

B1 p y
– Eliminates pointless jump
– Copy branch into end of B1

B1

t

B1

t – Might make B2 unreachableempty
B2

empty
B2

How does this happen?
– By eliminating operations in B1Hoisting branches

How do we recognize it?
– Jump to empty block

Hoisting branches
from empty blocks

Eliminating Useless Control-FlowEliminating Useless Control Flow
Putting the transformations togetherg g

– Process the blocks in postorder
• Clean up Bi’s successors before Bi
• Simplifies implementation and understanding

– At each node, apply transformations in a fixed order
• Eliminate redundant branch
• Eliminate empty block

M bl k ith• Merge block with successors
• Hoist branch from empty successor

– May need to iterateMay need to iterate
• Postorder ⇒ unprocessed successors along back edges
• Can bound iterations, but deriving a tight bound is hardg g
• Must recompute postorder between iterations

Tail Merging (Cross Jumping)Tail Merging (Cross Jumping)
Tail merging applies to basic blocks whose last few instructions

are identical and that continue to the same location.
It replaces the matching instructions of one block with a branch to

the corresponding point in the other.
…

1 2 + 3
…

1 2 + 3r1 = r2 + r3
r4 = r3 shl 2
r2 = r2 + 1

r1 = r2 + r3
goto L2
…

r2 = r4 – r2
goto L1

…

r5 = r4 – 6
L2: r4 = r3 shl 2

r2 = r2 + 1
r5 = r4 – 6
r4 = r3 shl 2
r2 = r2 + 1

r2 = r4 – r2
L1: …

r2 = r4 – r2
L1: …

Conditional MovesConditional Moves
Conditional moves are instructions that copy a source toConditional moves are instructions that copy a source to

a target if and only if a specified condition is satisfied
il bl i l d hit t– available in several modern architectures (SPARC-V9, PentiumPro)

– are used to replace simple branching code sequences with
non branching codenon-branching code

if > b t L1if a > b goto L1
max = b
goto L2

t1 = a > b
max = bgoto L2

L1: max = a
L2: …

max b
max = (t1) a

Conditional Moves Help Loop UnrollingConditional Moves Help Loop Unrolling

for (i = 1; i <= n; i++) { for (i = 1; i <= n; i++) {for (i = 1; i <= n; i++) {
x = a[i];
if (x>0) u = z * x;

for (i = 1; i <= n; i++) {
x = a[i];
w = z * x; u = b[i];if (x 0) u z x;

else u = b[i];
s = s + u;

w z x; u b[i];
u = (x>0) w;
s = s + u;

B i diti l i t ti ll

;
} }

• By using conditional move instructions, we can unroll
loops containing internal control-flow and end up with
“straight-line” codestraight-line code
– helps because instruction scheduling is then more effective
– works if the two instruction blocks of the if are small in sizeworks if the two instruction blocks of the if are small in size

Dead-Code EliminationDead Code Elimination
A variable is dead if it is not used on any path from the location inA variable is dead if it is not used on any path from the location in

the code where it is defined to the exit point of the routine.
An instruction is dead if it computes values that are not used onAn instruction is dead if it computes values that are not used on

any executable path leading from the instruction.

• Many compiler optimizations create dead code as part of the
division of labor principle: keep each optimization phase as
simple as possible (to make it easy to implement and maintain)
and leave it to other passes to clean up the mess…

• Detecting dead code local to a procedure is simple
• Interprocedural analysis is required to detect dead variables

ith id i ibilitwith wider visibility

Dead-Code Elimination ExampleDead Code Elimination Example
entry entry

i = 1
j = 2 i = 1

j = 2

k is only used
to define new

l f it lf!k = 3
n = 4

j = 2
n = 4

values for itself!

i = i + j
l = j + 1

i = i + j
l = j + 1

j = j + 2
j > n

j = j + 2
j > n

k = k – j
print(l) return j + i print(l) return j + i
print(l) j

Branch PredictionBranch Prediction
Branch prediction refers to predicting whether aBranch prediction refers to predicting whether a

conditional branch transfers flow of control or not
M d hi l b h di ti t k thModern machines rely on branch prediction to make the

right guess on which instructions to fetch after a branch
Static prediction: the compiler predicts which way the

branch is likely to go and places its prediction in the
branch instruction itself

Dynamic prediction: the hardware remembers for eachDynamic prediction: the hardware remembers for each
recently executed branch, which way it went the
previous time and predicts that it will go the same wayprevious time and predicts that it will go the same way

Static Branch PredictionStatic Branch Prediction

A simple rule used by many machines:A simple rule used by many machines:
Backward branches are assumed to be taken,
forward branches are assumed to be not-taken

• When generating code for machines following• When generating code for machines following
this prediction rule, a compiler can order the
b i bl k i h th t th di t dbasic blocks in such a way that the predicted-
taken branches go towards lower addresses

• Several empirically validated heuristics help the
compiler predict the direction of a branchcompiler predict the direction of a branch

Static vs Dynamic Branch PredictionStatic vs. Dynamic Branch Prediction

Perfect static production results in a dynamicPerfect static production results in a dynamic
misprediction rate of about 9% for C and about 6% for
Fortran programsp g

Profile-based prediction approaches the accuracy of
perfect static prediction

Heuristic-based static prediction results in a dynamic
misprediction rate of about 20% (for C)

Hardware-based prediction typically results in a
misprediction rate of about 11% (for C)p ()

Relying on heuristics that mispredict 20% of branches is better
than no prediction, but does not suffice in practice!p , p

Peephole OptimizationPeephole Optimization
Peephole optimization is an effective post passPeephole optimization is an effective post-pass

technique for improving assembly code

Basic Idea:
– Discover local improvements by looking at a window

of the code (a peephole)
Peephole: a short sequence of (usually contiguous) instructions
• slide the peephole over the code, and examine the contents

– The optimizer replaces the sequence with another
equivalent one (but faster)

Peephole Optimization (Cont)Peephole Optimization (Cont.)

Write peephole optimizations as rewrite rulesWrite peephole optimizations as rewrite rules
i1, …, in → j1, …, jm

where the RHS is the improved version of the LHS
• Example:Example:

move r1⇒r2, move r2⇒r1 → move r1⇒r2
k if i h f j– Works if move r2⇒r1 is not the target of a jump

• Another example:p
addiu r1, i ⇒ r1 addiu r1, j ⇒ r1 → addiu r1, i+j ⇒ r1

Peephole Optimization ExamplesPeephole Optimization Examples
store r1 ⇒ r0 8 store r1 ⇒ r0 8store r1 ⇒ r0, 8
load r0, 8 ⇒ r2

store r1 ⇒ r0, 8
move r1 ⇒ r2

addiu r1, 0 ⇒ r2
mult r3, r2 ⇒ r2

mult r3, r1 ⇒ r2

jumpl L1

mult r3, r2 ⇒ r2

jumpl L2jumpl L1
L1: jumpl L2

jumpl L2
L1: jumpl L2

Peephole Optimization (Cont)Peephole Optimization (Cont.)

• Many (but not all) of the basic block (i e local)• Many (but not all) of the basic block (i.e. local)
optimizations can be cast as peephole
optimizations
– Example: add r1, 0 ⇒ r2 → move r1 ⇒ r2p ,
– Example: move r ⇒ r →

These two together eliminate add r 0 ⇒ r– These two together eliminate add r, 0 ⇒ r
• Just like most compiler optimizations, peephole

optimizations need to be applied repeatedly to
achieve maximum effect

Machine Idioms & Instruction
Combining

Machine idioms are (sequences of) instructions for aMachine idioms are (sequences of) instructions for a
particular architecture that provide a more efficient
way of performing a computation than one might use ifway of performing a computation than one might use if
compiling for a more generic architecture.

Pattern matching is used to recognize opportunities where
Individual instructions can be substituted by faster and more– Individual instructions can be substituted by faster and more
specialized instructions that achieve the same purpose

– Groups of instructions can be combined into a shorter or– Groups of instructions can be combined into a shorter or
faster sequence

Examples of Instruction CombiningExamples of Instruction Combining
If high-order 20 bits of const are all 0

add r0, const ⇒ r1sethi %hi(const) ⇒ r1
or r1, %lo(const) ⇒ r1

g o de 0 b s o co s e 0

, ()

mult r1, 5 ⇒ r2
shl r1, 2 ⇒ r2
add r1, r2 ⇒ r2

b 1 2 ⇒ 3sub r1, r2 ⇒ r3 subcc r1, r2 ⇒ r3
….
bg L1

sub , ⇒ 3
….
subcc r1, r2 ⇒ r0 bg L1
bg L1

