

Loop Optimizations

- Important because lots of execution time occurs in loops
- First, we will identify loops
- Then, we will study three optimizations
- Loop-invariant code motion
- Strength reduction
- Induction variable elimination

What is a Loop?

- Set of nodes
- Loop header
- Single node
- All iterations of loop go through header

- Back edge

Kasis Ssegnses	5

- No loop header, no loop
Two back edges, two loops, one header
- Compiler merges loops

Anomalous Situations

Kostis Sagonas Spring 2006

Defining Loops With Dominators

- Concept of dominator
- Node n dominates a node m if all paths from start node to m go through n
- If d_{1} and d_{2} both dominate m, then either
$-\mathrm{d}_{1}$ dominates d_{2}, or
$-\mathrm{d}_{2}$ dominates d_{1} (but not both - look at path from start)
- Immediate dominator of m - last dominator of m on any path from start node

Dominator Problem Formulation

- A cross product of the lattice for each basic block:
- Lattice per basic block

- Flow direction: Forward Flow
- Dataflow Equations:
- GEN $=\left\{b_{k} \mid b_{k}\right.$ is the current basic block $\}$
- KILL $=\{$ \}
- OUT $=$ GEN $\cup($ IN - KILL $)$
$-\mathrm{IN}=\cap$ OUT

Kostis Sagonas \qquad 8 Spring 2006

Dominator Tree

- Nodes are nodes of control flow graph
- Edge from d to n if d is the immediate dominator of n
- This structure is a tree
- Rooted at start node

Identifying Loops

- Unique entry point - header
- At least one path back to header
- Find edges whose heads dominate tails
- These edges are back edges of loops
- Given a back edge $\mathrm{n} \rightarrow \mathrm{d}$
- Loop consists of n plus all nodes that can reach n without going through d (all nodes "between" d and n)
-d is loop header

Loop Construction Algorithm

insert(m)
if $m \notin$ loop then
loop $=\operatorname{loop} \cup\{m\} ;$
push m onto stack;
loop (d,n)
loop $=\varnothing$; stack $=\varnothing$; insert(n);
while stack not empty do
$\mathrm{m}=$ pop stack;
for all $p \in \operatorname{pred}(m)$ do insert(p);
Kostis Sagonas
14
Spring 2006

Nested Loops

- If two loops do not have same header then
- Either one loop (inner loop) is contained in the other (outer loop)
- Or the two loops are disjoint
- If two loops have same header, typically they are unioned and treated as one loop

Two loops:
$\{1,2\}$ and $\{1,3\}$
Unioned: $\{1,2,3\}$

Loop Preheader

- Many optimizations stick code before the loop
- Put a special node (loop preheader) before the loop to hold this code

Loop Optimizations

- Now that we have the loop, we can optimize it!
- Loop invariant code motion
- Stick loop invariant code in the header
\qquad

Loop Invariant Code Motion

If a computation produces the same value in every loop iteration, move it out of the loop.

for $i=1$ to N
$x=x+1$
for $j=1$ to N
$a[i, j]=100 * N+10 * i+j+x$

$t 1=100 * N$
for $i=1$ to N
$x=x+1$
$t 2=t 1+10 * i+x$
for $j=1$ to N
$a[i, j]=t 2+j$

Kostis Sagonas Spring 2006

Detecting Loop Invariant Code

- A statement is loop-invariant if operands are
- Constant,
- Have all reaching definitions outside loop, or
- Have exactly one reaching definition, and that definition comes from an invariant statement
- Concept of exit node of loop
- node with successors outside loop

Loop Invariant Code Detection Algorithm

for all statements in loop
if operands are constant or have all reaching definitions outside loop, mark statement as invariant
do
for all statements in loop not already marked invariant
if operands are constant, have all reaching definitions outside loop, or have exactly one reaching definition from invariant statement
then mark statement as invariant
until there are no more invariant statements

Kostis Sagonas 20
20
Spring 2006

Loop Invariant Code Motion

- Conditions for moving a statement $\mathrm{s}: \mathrm{x}=\mathrm{y}+\mathrm{z}$ into loop header:
- The node containing s dominates all exit nodes of loop
- If it does not, some use after loop might get wrong value
- Alternate condition: definition of x from s reaches no use outside loop (but moving s may increase run time)
- No other statement in loop assigns to x
- If one does, assignments might get reordered
- No use of x in loop is reached by definition other than s
- If one is, movement may change value read by use
\qquad

Induction Variables

Example:

```
for j = 1 to 100
    *(&A + 4*j) = 202 - 2*j
```

Base induction variable:
$\mathrm{J} \quad=1, \quad 2, \quad 3, \quad 4, \ldots$

Derived induction variable $\& \mathrm{~A}+4 *$ j:
$\& A+4 * j=\& A+4, \quad \& A+8, \quad \& A+12, \quad \& A+16, \ldots$.

Order of Statements in Preheader

Preserve data dependences from original program (can use order in which discovered by algorithm)

Kostis Sagonas
Spring 2006

Induction Variable Elimination

What are induction variables?

- x is an induction variable of a loop L if
- variable changes its value on every loop iteration
- the value is a function of number of iterations of the loop
- In many programs, this function is often a linear function

Example: for loop index variable j , function $\mathrm{d}+\mathrm{c}^{*} \mathrm{j}$

What is an Induction Variable?

- Base induction variable
- Only assignments in loop are of form $\mathrm{i}=\mathrm{i} \pm \mathrm{c}$
- Derived induction variables
- Value is a linear function of a base induction variable
- Within loop, $\mathrm{j}=\mathrm{c}^{*} \mathrm{i}+\mathrm{d}$, where i is a base induction variable
- Very common in array index expressions an access to $\mathrm{a}[\mathrm{i}]$ produces code like $\mathrm{p}=\mathrm{a}+4 *_{\mathrm{i}}$

26 Spring 2006

Elimination of Superfluous Induction Variables

Three Algorithms

- Detection of induction variables
- Find base induction variables
- Each base induction variable has a family of derived induction variables, each of which is a linear function of base induction variable
- Strength reduction for derived induction variables
- Elimination of superfluous induction variables

Output of Induction Variable Detection Algorithm

- Set of induction variables
- base induction variables
- derived induction variables
- For each induction variable j, a triple <i,c,d>
$-i$ is a base induction variable
- the value of j is $i^{*} c+d$
$-j$ belongs to family of i

Kostis Sagonas $\longrightarrow-30$ Spring 2006

Induction Variable Detection Algorithm

Scan loop to find all base induction variables do

Scan loop to find all variables k with one assignment of form $k=j^{*} b$ where j is an induction variable with triple <i, c, d> make k an induction variable with triple <i, c*b,d>
Scan loop to find all variables k with one assignment of form $\mathrm{k}=\mathrm{j} \pm \mathrm{b}$ where j is an induction variable with triple <i, c, d>
make k an induction variable with triple <i,c, $\mathrm{b} \pm \mathrm{d}>$ until no more induction variables are found

Strength Reduction Algorithm

for all derived induction variables j with triple $<\mathrm{i}, \mathrm{c}, \mathrm{d}>$
Create a new variable s
Replace assignment $\mathrm{j}=\mathrm{c} * \mathrm{i}+\mathrm{d}$ with $\mathrm{j}=\mathrm{s}$
Immediately after each assignment $\mathrm{i}=\mathrm{i}+\mathrm{e}$,
insert statement $\mathrm{s}=\mathrm{s}+\mathrm{c}^{*} \mathrm{e}$ ($\mathrm{c}^{*} \mathrm{e}$ is constant)
Place s in family of i with triple <i, c, $\mathrm{d}>$
Insert $s=c^{*} i+d$ into preheader

Strength Reduction for Derived Induction Variables

Induction Variable Elimination

Choose a base induction variable i such that only uses of i are in
termination condition of the form $\mathrm{i}<\mathrm{n}$ assignment of the form $\mathrm{i}=\mathrm{i}+\mathrm{m}$
Choose a derived induction variable k with $\langle\mathrm{i}, \mathrm{c}, \mathrm{d}>$ Replace termination condition with $\mathrm{k}<\mathrm{c}^{*} \mathrm{n}+\mathrm{d}$

Induction Variable Wrap-up

There is lots more to induction variables

- more general classes of induction variables
- more general transformations involving induction variables

Compiler Optimization Summary

- Wide range of analyses and optimizations
- Dataflow analyses and corresponding optimizations
- reaching definitions, constant propagation
- live variable analysis, dead code elimination
- Induction variable analyses and loop optimizations
- Strength reduction
- Induction variable elimination
- Important because lots of time is spent in loops

